Applied sciences

Bulletin of the Polish Academy of Sciences Technical Sciences

Content

Bulletin of the Polish Academy of Sciences Technical Sciences | 2025 | 73 | 3

Download PDF Download RIS Download Bibtex

Abstract

In this study, the methods used for the detection of sub-station pollution failures in district heating and cooling (DHC) systems are analyzed. In the study, high, medium, and low-level pollution situations are considered and machine learning methods are applied for the detection of these failures. Random forest, decision tree, logistic regression, and CatBoost regression algorithms are compared within the scope of the analysis. The models are trained to perform fault detection at different pollution levels. To improve the model performance, hyperparameter optimization was performed with random search optimization, and the most appropriate values were selected. The results show that the CatBoost regression algorithm provides the highest accuracy and overall performance compared to other methods. The CatBoost model stood out with an accuracy of 0.9832 and a superior performance. These findings reveal that CatBoost-based approaches provide an effective solution in situations requiring high accuracy, such as contamination detection in DHC systems. The study makes an important contribution as a reliable fault detection solution in industrial applications.
Go to article

Authors and Affiliations

Mehmet Çınar
1
Emrah Aslan
2
ORCID: ORCID
Yıldırım Özüpak
3
ORCID: ORCID

  1. Bitlis Eren University, Organized Industrial Zone Vocational School, Electrical Department, Bitlis, Türkiye
  2. Mardin Artuklu University, Faculty of Engineering and Architecture, Department of Computer Engineering, Mardin, Türkiye
  3. Dicle University, Silvan Vocational School, Electrical Department, Diyarbakır, Türkiye

Instructions for authors

Guide for Authors

https://www.editorialsystem.com/bpasts/journal/for_authors/

As of January 1st, 2025, there are changes in the fees for open access publications in Bulletin of the Polish Academy of Sciences Technical Sciences: 2000 PLN (approx. 500 EUR) - up to 8 pages of the journal format and mandatory over-length charges of 250 PLN (approx. 60 EUR) per page (see the above link with instructions for Authors for details)

Guide for Reviewers

https://www.editorialsystem.com/bpasts/journal/for_reviewers/

Call for Papers

https://www.editorialsystem.com/bpasts/journal/call_for_papers/

Guide for Guest Editors

https://www.editorialsystem.com/editor/bpasts/journal/page1/

Additional info

NEW PUBLICATION FEES
Articles submitted by December 31st, 2024: existing fee: 1500 PLN (and mandatory over-length charges of 230 PLN per page)
Articles submitted from January 1st, 2025: new fee: 2000 PLN (approx. 500 EUR- depending on the exchange rate) - a flat fee per paper up to 8 pages of the journal format (each additional page will be charged an additional 250 PLN).

This page uses 'cookies'. Learn more