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Swarm intelligence integrated approach for experimental
investigation in milling of multiwall carbon

nanotube/polymer nanocomposites

In manufacturing industries, the selection of machine parameters is a very com-
plicated task in a time-bound manner. The process parameters play a primary role
in confirming the quality, low cost of manufacturing, high productivity, and provide
the source for sustainable machining. This paper explores the milling behavior of
MWCNT/epoxy nanocomposites to attain the parametric conditions having lower sur-
face roughness (Ra) and higher materials removal rate (MRR). Milling is considered
as an indispensable process employed to acquire highly accurate and precise slots.
Particle swarm optimization (PSO) is very trendy among the nature-stimulated meta-
heuristic method used for the optimization of varying constraints. This article uses the
non-dominated PSO algorithm to optimize the milling parameters, namely, MWCNT
weight% (Wt.), spindle speed (N ), feed rate (F), and depth of cut (D). The first setting
confirmatory test demonstrates the value of Ra and MRR that are found as 1.62 µm
and 5.69 mm3/min, respectively and for the second set, the obtained values of Ra
and MRR are 3.74 µm and 22.83 mm3/min respectively. The Pareto set allows the
manufacturer to determine the optimal setting depending on their application need.
The outcomes of the proposed algorithm offer new criteria to control the milling
parameters for high efficiency.

Nomenclature

ANOVA Analysis of variance
CNC Computer numeric control
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CNT Carbon nanotube
DM Decision maker
ECM Electro-chemical machining
EDM Electro discharge machining
f-MWCNT functionalized multiwall carbon nanotube
GA Genetic algorithm
MOPSO Modified particle swarm optimization
MRR Material removal rate
MWCNT Multiwall carbon nanotube
PSO Particle swarm optimization
Ra Surface roughness

1. Intoduction

Polymeric materials play an important role in the development of lightweight
structures [1, 2]. This is due to their exceptional chemical stability, excellent
strength, electrical insulation, and low-cost processability [3, 4]. Polymeric com-
posites lead to the design and production of a new range of structural material,
which can provide a far-reaching modification in engineering and constructions.
The composite material is a combination of two elements having their distinct
properties. The strengthening of the polymer obtained by reinforcing various kinds
of natural and synthetic reinforcement such as wood particles, carbon nanotube,
nanorods, graphene [5–7]. MWCNT reinforced epoxy composites can fulfill the
varying demand for the material society. Earlier, various scholars performed their
work for the synthesis and characterization of carbon nanofiller materials. It has
been observed that little addition of carbon nanofiller can enhance the material
properties in a significant manner [8–10]. The imbalance addition of nanomate-
rials can lead to the tendency of agglomeration, in turn, reduce the strength and
other properties of the composites [11–14]. Hence, there is an extreme need to
understand the behavior of these nanomaterials. Szebe [15] performed mechanical
characterization onMWCNT reinforced epoxy composites and found improvement
in the tensile stress, Young’s modulus, and flexural strength at up to 4 wt.% com-
pared to pristine epoxy resin. Mittal et al. [16] reinforced functionalized multi-wall
carbon nanotubes (f-MWCNTs) with the epoxy. They observed that the critical
strain energy release rate improved by 57% in comparison to pristine epoxy at
0.1 wt.% reinforcement. Behzad et al. [17] reinforced epoxy polysulfide resin with
pure and treated MWCNTs (0.1–0.3 wt.%), and investigation illustrated significant
differences in mechanical properties of acid-treated and untreated CNTs reinforced
epoxy polysulfide nanocomposites. Yu et al. [18] investigated the stress-life and
fracture toughness in mode-I of MWCNT reinforced epoxy composites. The av-
erage fracture toughness was 1.29 and 1.62 times higher than pristine epoxy for



Swarm intelligence integrated approach for experimental investigation in milling . . . 355

1 wt.% and 3 wt.%, respectively. Park et al. [19] used a thin sheet of entangled
nanotubes and long MWCNTs to fabricate the composites for higher thermal con-
ductivity and electrical conductivity. From the result, it was noticed that thermal
conductivity increased up to 55 W/mK for long MWCNTs composites. For the
complete utilization of any novel composites, it is highly required to understand its
machining nature. Hence, the machining process, such as drilling, sinking, milling,
turning, is the primary indispensable manufacturing process which is mainly used
for the development and assembly of different machined samples. During manu-
facturing, the industrial requirements in the form of technical and economic facet
play a vital part in the quality and productivity of the manufactured samples.The
varying need for cutting factor is a judicious choice to achieve the machining objec-
tives in terms of production rate, accuracy, and precision of developed components,
cost-effectiveness. To achieve appropriate process conditions and simultaneously
balance the conflicting responses, the optimization tools are widely utilized by
scholars [20–24]. In many case studies, the multiple response optimization is pre-
ferred to afford a set of Pareto optimal values of the parameters for decision-makers
(DM). In the optimization of multiple responses and varying parameters, the evolu-
tionary algorithm (EA) is used as an effective alternative to conventional methods
which have particular limitations [25].

Recently, the PSO algorithm was developed by Kennedy and Eberhart [26] to
solve various complicated issues of multiple response optimization. It can find the
solution in a unique exploring mechanism, conceptualized, computationally effi-
cient, and straightforward in execution. The aforesaid evolutionary tools effectively
deal with a set of solutions, and it seems natural to apply this algorithm in opti-
mization issues for the search of Pareto values in a single run. PSO is significantly
easy in use without complex computations, needs fewer constraints adjustment,
provides efficient balancing among local and global solutions and requires less
memory space. Recently, Sibalija [25] presented an exhaustive survey on the fea-
sibility of the PSO and MOPSO modules. The outcome of the work demonstrates
that the Swarm intelligence approach is more efficient than the Genetic algorithm
[27], Desitrablity functions [24], Traditional Taguchi [20], ant colony optimization;
cuckoo search, differential evolution; glow-worm swarm optimization, artificial bee
colony [28]. Del Prete et al. [29] investigated the machining of AISI steel using
MOPSO-based approach for parametric appraisal of process constraints. The out-
comes of the work minimized the production time, which shows the application
potential of MOSPO. Xu et al. [30] also used the MOPSO approach for injection
molding procedure, and their results show that it is better than then Taguchi concept
in optimization.

Some other potential works on process optimization, performed by the emi-
nent scholars which related to PSO and other evolutionary tools, are summarized
in this paper. Juan et al. [31] constructed the mathematical model for high-speed
milling based on the polynomial network and found the optimal condition for
lower production cost. Uros Zuperl et al. [32] constructed an artificial neural
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network for multiobjective optimization of machining conditions. Franci Cus et
al. [33] explored the Genetic algorithm(GA) to assess cutting parameters for re-
ducing the machining cost and time. Amiolemhen et al. [26] found that a GA
is capable of optimizing single pass finishing operation and multi-pass rough-
ing operation for drilling, turning, chamfering, and boring. Ezugwu et al. [34]
established a PSO-based model to analyze and predict the relationship between
process and cutting parameters for turning of nickel-based 718 alloys. Asokan
et al. [35] optimized surface grinding parameters for minimizing production cost
and maximizing productivity. Ramon et al. [36] used the metaheuristic approach
and discussed the advantage of multiobjective optimization over single-objective
optimization. Jia et al. [37] planned a new method for improving the efficiency
of multiobjective PSO. Three classes of information derived from the population-
based cultural algorithms can update the personal guide and the global guide.
The epsilon domination criterion has improved the convergence and complexity
of the estimated Pareto front. For verification of the competitive performance of
the proposed algorithm, a comparative study with numerous algorithm has been
performed. Carlos et al. [38] initiated the secondary repository based on the Pareto
optimality in MOPSO for the non-dominated particles and with the adaptive grid.
It was done for crowding distance-based CD-MOPSO selection based on crowding
disitance [39] and in clustering MOPSO selection of global guide by clustering
method [40]. Mostaghim and Teich [41] determined a local guide by sigma test
method and their findings were confirmed by Branke and Mostaghim [42] by
choosing different methods to select the local guide. Jegan et al. [43] investi-
gated the chemical machining (ECM) parameters using PSO by developing the
multiple regression model for varying input and responses. For feasibility eval-
uation, PSO was matched with the Genetic algorithm (GA) and it outperformed
the GA in terms of mathematical analysis and estimation timing. Also, the out-
come of the work has been validated by the confirmatory run, which gave accurate
predictions with little error. Mohanty et al. [44] proposed optimal condition of
Die-sinking EDM parameters of Inconel superalloys through a multiobjective PSO
tool for the simultaneous analysis of machining performances. This study used
the mutation operator of the GA tool to overcome the premature convergence
in PSO.

Milling is an essential process in the slot making and provides final shape
polymer composites requisite for riveting/fastening final assembly of the finished
products in various manufacturing industries. Metaheuristics can be an effective
way which, in a reasonably practical time, provides acceptable solutions for com-
plex problems through trial and error. It is a challenging task to find a possible
solution or combination of possible solutions because of the complexity of the
problem of interest, and the goal is to find a right and viable solution within a
reasonable time scale.

From the above literature, one can observe that MWCNT reinforced nanocom-
posites play a vital role in the growth of a lightweight structure for various indus-
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trial applications. Scholars have made multiple attempts for the development of
MWCNT polymer nanocomposites. However, very limited data is available on the
machining of MWCNT/polymer nanocomposites using nature-inspired evolution-
ary tools. Nevertheless, these are broadly used in themanufacturing of various parts
like sensors, PCB, battery application fuse-lag components. The machining and
machinability aspects of epoxy nanocomposites are not sufficiently explored and
require more attention for proper utilization in society’s interest. PSO method is
recently developed with evolutionary tools and successively employed in decision-
making case studies [45–48], but limitedly used in machining of nanocomposites.
Therefore, this article efficiently explores the modified PSO to achieve Pareto op-
timal values for multiobjective optimization of milling characteristics. This article
aims to achieve a lower surface roughness and higher materials removal rate us-
ing limited memory space (archive) for the non-dominated values of PSO. The
consequences of process constraints on milling characteristics (MRR and Ra) are
evaluated through the Taguchi concept based designed experiments using ANOVA.
An attempt has beenmade to overcome the drawback and limitations of the custom-
ary optimization tools. The outcomes of the PSO are validated by a confirmatory
test to appraise the feasibility of the recommended module.

2. Material and methods

TheMWCNT reinforced epoxy composites are developedwith solution casting
techniques. The average length of MWCNT is 15 µm and the average diameter is
10–15 nm. The mechanical properties of the fabricatedMWCNT/Epoxy nanocom-
posites are specified in Table 1. The milling tool used for machining of composites
was HSS-made parallel shank end mill. The assessment of surface roughness (Ra)
was done by using roughnessmeasurement setup Surtronic S128 supplied by Taylor
Hobson Co., and the MRR was assessed by using expression (Eq. (1)):

MRR =
(Wi −W f )

ρtm
, (1)

Wi – the initial weight of the workpiece, W f – final weight of the workpiece.
ρ – density of the work material, tm – machining time.

Table 1.
Mechanical properties of developed nanocomposites

Material

Uniaxial tensile
testing Flexural test Impact

strength
(kJ/m2)Tensile strength

(MPa)
Flexural strength

(MPa)
Flexural modulus

(GPa)
0.5 wt.% MWCNT/Epoxy 62.945 107.31 4.759 3.63

1.0 wt.% MWCNT/Epoxy 65.82 158.05 4.647 4.030

1.5 wt.% MWCNT/Epoxy 41.742 83.914 4.264 3.044
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The MWCNT wt.%, spindle speed, feed rate, and depth of cut are measured
as the milling parameters, as depicted in Table 2. As per the Taguchi concept, the
favorable design for four factors at three levels is the L27 orthogonal array (Table 3).
It is utilized to perform milling experiments on the CNC milling machine (Model:
BMV35 TC20, Fig. 1), and their corresponding observed data are illustrated in
Table 3. The fabricated MWCNT reinforced epoxy composites sample is shown in
Fig. 2. After the fabrication, the sample was examined under the FE-SEM test as
shown in Fig. 3. It revealed a good dispersion of MWCNT into the epoxy matrix.
The dispersion of filler material/ reinforcing agent is highly desired for improved
mechanical properties and it also provides a favorable machining interface during
milling procedure [49–53].

Fig. 1. Milling setup

Fig. 2. Fabricated MWCNT reinforced epoxy nanocomposite sample
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Table 2.
Process parameters

Process parameters
wt.% (Wt) Spindle speed (N ) Feed rate (F) Depth of cut (D)

Level 1 0.5 500 50 1
Level 2 1.0 1000 100 2
Level 3 1.5 1500 150 3

Table 3.
L27 orthogonal design

S. No.
MWCNT
weight %
(Wt. %)

Spindle speed
(rpm)

Feed rate
(mm/min)

Depth of cut
(mm)

Ra
(µm)

MRR
(mm3/min)

1 0.5 500 50 1 2.432 2.876
2 0.5 500 100 2 3.613 11.504
3 0.5 500 150 3 3.873 25.884
4 0.5 1000 50 1 1.908 2.907
5 0.5 1000 100 2 2.996 11.63
6 0.5 1000 150 3 3.596 26.16
7 0.5 1500 50 1 1.888 2.939
8 0.5 1500 100 2 2.906 11.75
9 0.5 1500 150 3 3.41 26.453
10 1 500 50 2 2.473 5.752
11 1 500 100 3 3.303 17.25
12 1 500 150 1 3.098 8.628
13 1 1000 50 2 1.996 5.815
14 1 1000 100 3 2.696 17.44
15 1 1000 150 1 2.859 8.72
16 1 1500 50 2 2.251 5.878
17 1 1500 100 3 2.81 17.635
18 1 1500 150 1 2.81 8.817
19 1.5 500 50 3 2.24 8.628
20 1.5 500 100 1 3.256 5.752
21 1.5 500 150 2 2.976 17.256
22 1.5 1000 50 3 2.068 8.723
23 1.5 1000 100 1 2.429 5.815
24 1.5 1000 150 2 2.77 17.446
25 1.5 1500 50 3 2.043 8.817
26 1.5 1500 100 1 2.722 5.878
27 1.5 1500 150 2 2.701 17.635
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Fig. 3. FE-SEM image

3. Methodology

The evolutionary algorithm is mainly utilized to tackled the high-dimensional
problems with multiple local optima. This article explores the feasibility of a
nature-inspired metaheuristic algorithm, i.e., Particle swarm optimization (PSO).
Firstly, Kennedy and Eberhart [26] suggested the PSO algorithm in the year 1995
by observing social behavior simulation. The PSO used the idea of information
sharing between members who have some evolutionary advantage. Nowadays,
the PSO effectively explores optimization case studies of the real-world such as
job scheduling, power controller, agile and supply chain, weight spring method,
energy optimizer, economic region studies, electric machining, routing of vehicles
and control and inspection [43, 48, 54–63]. The PSO algorithm starts with the
population (swarm) of randompotential results (particles). Each particle is traveling
iteratively through the search space and draws the best fitness obtained historically
through the particle itself (local best) and the best among its neighbors (global best).
Each particle adjusts its flying based on its flying skill and its companion’s practice.
Recently, the PSO tool is expanded to handle multi-criterion optimization studies.
The distinctive approach of the Genetic Algorithm (GA) and the evolutionary
approach is incorporated in the PSO. Once all the objectives function is considered,
the solution is optimal in the logic that no other solution in the search field is
particularly suitable for an alternative solution. These solutions are signified as
Pareto optimal solutions. The non-dominance of each solution is matched with
each solution and tested for satiating the rules provided for the solution. If the
problem has two objective functions, one is for minimization and the second one
for the maximization problem.
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Then Obj.1[l] > Obj.1[m] and Obj.2[l] 6 Obj.2[m]
where l and m are the solution number and Obj.1 and Obj.2 are the objective
functions.

In modified PSO, each particle in the swarm population has a velocity Ut (i),
which allows it to pass through the problem region. A position then represents
every particle Yt (i). The dimensions for velocity and position vector are described
by the number of decision variables on the optimization problem. The update of
the position and velocity of particles shall be affected by the use of information of
its previous location and the current velocity.

Thus

(i) = ωUt (i) + C1R1
(
pbestt (i) − Yt (i)

)
+ C2R2

(
gbestt (i) − Yt (i)

)
, (2)

Yt+1(i) = Yt (i) +Ut (i), (3)

where: Ut (i), Yt (i) is the velocity and current location of particle ith at iteration t,
pbest(i) and gbest(i) are the personal and global best of ith particles, R is the random
number in the range of [0, 1], ω, C1 and C2 are the weighting function, cognition
learning rate and social learning rate, respectively. Such as a set of gbest(i) is the
externally archived ‘At’. It is a repository where a non-dominated solution is stored
so-far.

The crowding distance (CD) factor was calculated to make a well-dispersed
set of non-dominated solutions. The CD factor was calculated for the solution k
using Eq. (4).

CDk =
( fk+1 − fk−1)
( fmax − fmin)

. (4)

The non-dominated solution in ‘At’ placed in the decreasing order of the CD
factor and the top 10% among them are arbitrarily used as the best reference. The
PSO usually converges reasonably quickly at the outset of the search and then
declines due to the loss in variety inside the population. If the value of iteration
is less than the product or the maximum number of repetitions and probability of
mutation, then the mutation is done at the location of the particles. Given particles,
a randomly chosen variables say mp is mutated to undertake a value mp′ as given
by the equation:

mp′ =



mp + ∆ (t,UB − mp) if flip = 0,

mp − ∆ (t,mp − LB) if flip = 1,
(5)

where: UB and LB represent the upper bound and lower bound of the variables
mp, respectively. The probability of ∆(t, x) being near and local to 0 increases as t
amplifies.

∆(t, x) = x ×
(
1 − r (1− t

itermax )b
)
, (6)
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where r is the random number created in the range [0, 1], itermax is the highest
number of iterations, and b is the dependency degree.

The parameter b estimates the mutation dependency degree on the iteration
number. The pbest archives consist of the newest non-dominated position of a
particle that has earlier encountered. The highest number of iterations is consid-
ered as the termination criteria. The proposed modified PSO algorithm for the
multiobjective optimization problem is illustrated with a flow chart (Fig. 4).
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4. Result and discussion

The execution of the PSO algorithm and the regression model are discussed
to predict the values of MRR and Ra. ANOVA was presented to evaluate the
importance of the parameters for milling responses, as mentioned in Table 4 and
Table 5.

The R-square value of the established ANOVA model for MRR and SR are
found as 99.91 and 96.83, respectively, which indicates the adequacy of the pro-
posed regression model, and it can be used for further analysis and modeling of
parameters. The second-order polynomial equation has been developed for both
process response as represented in Eq. (7) and Eq. (8).

Surface roughness

Ra = 2.44 − 0.22Wt. − 0.00252N + 0.0200F + 0.444D + 0.351Wt.Wt.
+ 0.00000N N − 0.000032F F − 0.023D D + 0.000203Wt.N

− 0.00515Wt. F − 0.280Wt.D . (7)

Material removal rate

MRR = 0.012 − 0.004Wt. − 0.000012N − 0.00014F − 0.125D + 0.004Wt.Wt.
+ 0.000N N + 0.000001F F − 0.0005D D − 0.0009Wt. D

+ 0.000128N D + 0.058149F D . (8)

Table 4.
ANOVA for surface roughness (Ra)

Source DF Seq SS Adj SS Adj MS F-Value

Regression 11 7.52888 7.52888 0.684444 41.64

Wt. 1 0.64832 0.00012 0.000117 0.01

N 1 0.76963 0.51263 0.512628 31.19

F 1 4.29597 0.47910 0.479105 29.15

D 1 0.38623 0.11390 0.113904 6.93

Wt.Wt. 1 0.02819 0.02819 0.028195 1.72

NN 1 0.32202 0.32202 0.322017 19.59

FF 1 0.68209 0.30623 0.306231 18.63

DD 1 0.00011 0.01600 0.016003 0.97

Wt. N 1 0.04184 0.04184 0.041843 2.55

Wt. F 1 0.24970 0.07338 0.073383 4.46

Wt.D 1 0.10479 0.10479 0.104790 6.37

Error 15 0.24657 0.24657 0.016438

Total 26 7.77545

R-sq 96.83
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Table 5.
ANOVA for material removal rate (MRR)

Source DF Seq SS Adj SS Adj MS F-Value

Regression 11 1318.84 1318.84 119.894 17567.37

Wt. 1 38.00 13.29 13.289 1947.13

N 1 0.29 0.01 0.008 1.11

F 1 608.60 8.66 8.663 1269.27

D 1 608.53 15.35 15.349 2248.93

Wt.Wt. 1 12.70 12.70 12.696 1860.30

NN 1 0.00 0.00 0.000 0.00

FF 1 0.00 9.53 9.532 1396.71

DD 1 0.00 9.50 9.503 1392.45

Wt. N 1 0.00 0.00 0.003 0.42

Wt. F 1 12.68 38.04 38.040 5573.70

Wt.D 1 38.05 38.05 38.051 5575.36

Error 15 0.10 0.10 0.007

Total 26 1318.94

R-sq 99.99%

The contour plots between the combination of process parameters and process
response, i.e., MRR and Ra, are developed to inspect the combined influence
of process constraints on response. Figs. 5–9 demonstrate the contour plots for
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the surface roughness (Ra), and it has been noted that Ra decreases with the
accumulation of MWCNT into the matrix, which is mainly due to the gap in the
epoxy matrix, in turn, significantly demises with adding nano reinforcement [64].
The surface roughness reduces from 500 rpm to 1000 rpm, and after that increases
with a rise in speed, which is due to the developed wear on a machined surface with
high spindle speed [65, 66]. The surface roughness increased with feed rate due to
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strain hardening effect while machining with a higher feed rate [67, 68]. Surface
roughness is also enhanced with a higher depth of cut due to large volume removal
from the surface, which generates the rough surface of the machined sample. It has
been noticed that lower surface roughness can be obtained by the combination of
lower feed rate, lower depth of cut, higher spindle speed, and higherMWCNTwt.%.
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Figs. 10–14 display the contour plots for MRR against the combination of
process parameters. From the contour plot, it is found that MRR reduces at higher
MWCNT loading as the increased material removal rate decreases with Wt.%
of MWCNT due to improving the machinability of thermoset epoxy by adding
MWCNT, which causes the removal of small particles while machining [69, 70].
The MRR increases with a rise in spindle speed and the feed rate and the depth
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of cut in a similar manner, because the high cutting depth is responsible for large
chip thickness, and higher feed rate refers to the movement of the tool into the
material [71–73].

To provide a set of non-dominated solution, an optimum Pareto front is gener-
ated, which can guide process engineers on how to determine the different combi-
nations of weights for the output values. These values are actuality non-dominated
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and, in turn, confirm the outcomes as the optimally desired. In this paper, the
simultaneous optimization of Ra and MRR using PSO has been performed. In the
first run, surface roughness is minimized by generating all sets of all the points
collected using iterations. The outcomes of all the collected points represent the
convergence trends for reduced Ra values.

The second run ofMRR is again separately maximized by a similar algorithm
to obtain related sets of points towards the maximumMRR values. Afterward, both
the datasets are clubbed, and optimal Pareto front is thus developed forRa andMRR,
i.e., a set of non-dominated solutions is designed, which simultaneously gives the
desired values of Ra and MRR (Fig. 15). From the Pareto-optimal solution, two
runs were picked randomly from an extreme range for Ra andMRR to validate the
estimate of responses (Ra and MRR). The confirmatory experiment performed in
the selected setting is detailed in Table 6. From the confirmation test, it is perceived
that theMRR and SR attained in PSOdemonstrates a satisfactory target value among
the actual ones. The errors generated among experimental and prediction results
of MRR and SR at two extreme ranges are observed as 3.1 and 1.4%, and 6.7 and
2.9%, respectively. The successful implementation of the population algorithm
(PSO) must be tuned appropriately to maintain stability between global and local
exploration for the estimation of actual optimum.

The number of swarms depends on the convolution of the optimization prob-
lem. It is noticed that a large number of swarms increase the performance PSO
algorithm. In this study, there are four milling parameters studied; therefore, 200
population size is considered and 0.4 is inertia weight, which is used to limit the
velocity because large velocity could miss out a suitable solution. Individual and
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Fig. 15. Pareto optimal front

Table 6.
Confirmatory test

S. N Optimal setting
Experimental results Predicted results Error %
Ra
(µm)

MRR
(mm3/min)

Ra
(µm)

MRR
(mm3/min)

Ra
(µm)

MRR
(mm3/min)

1 1.5 Wt., 1000 rpm,
50 mm/min, 1 mm 1.62 5.69 1.73 5.51 6.7% 3.1%

2 1.5 Wt., 1500 rpm,
150 mm/min, 3 mm 3.74 22.83 3.85 22.51 2.9% 1.4%

swarm confidence factors, i.e., C1 = 2 and C2 = 2, respectively, have equal value,
generally. Thus, the proposed PSO algorithm is effectual in deciding appropriate
parametric settings during milling of MWCNT/Polymers. The outcomes of the
validation test give satisfactory conformity with the predicted values of milling
characteristics with very minute error, which is highly desired for a cost-effective
and capable milling environment. The machining behavior of such a kind of poly-
meric material is less explored in previous works. The effect of process parameters
and the obtained results show a similar trend [74–77]. Also, the present work
demonstrates a significant improvement in the machining responses with accept-
able errors in the results.

5. Conclusions

This article investigates the end-milling of MWCNT-based epoxy composites
usingModified Particle SwarmOptimization (MOPSO). The potential ofMWCNT
into the epoxy matrix shows the exceptional properties for multifunctional appli-



Swarm intelligence integrated approach for experimental investigation in milling . . . 371

cations. The machining nature of MWCNT polymers is significantly distinct from
other materials and it can be controlled by proper selection of parameters using the
PSO algorithm that can enrich the machining performance. The conclusion of this
work can be outlined as follows.

A second-order polynomial equationwas established for surface roughness and
material removal rate. The contour plots were proposed to explore the influence
of machine constraints on MRR and Ra. The MRR reduces at higher MWCNT
loading as increased material removal rate decreases with Wt.% of MWCNT due
to improving the machinability of thermoset epoxy by adding MWCNT. The sur-
face roughness reduces from 500 rpm to 1000 rpm, and after that increases with
a rise in spindle speed, which is due to developed wear on a machined surface
caused by high spindle speed. The surface roughness increases with feed rate due
to strain hardening effect and it also enhances with a higher depth of cut due
to large volume removal from the surface, which generates the rough surface of
the machined sample. MPSO was effectively used for multiobjective optimiza-
tion problems associated with the machining (milling) performances of MWCNT
nanocomposites. The proposed Pareto optimal graphics reveal sufficient informa-
tion for a decision-maker to select the optimal parametric condition during milling
of MWCNT polymers. The outcomes of the confirmatory test show a satisfactory
agreement with a very small error. This research provided significant and bene-
ficial information that could be helpful for machinists to improve quality indices
and reduce milling time and cost. It is a generalized optimization module that can
be modified for manufacturing and micro-manufacturing procedures like drilling,
turning, etc.

This article effectively investigates the machining (milling) behavior of
MWCNT epoxy nanocomposites using advanced PSO algorithm. The results of the
confirmatory test show the prediction accuracy of the PSO algorithm in a machin-
ing environment. These nanocomposites possess a broad spectrum of applications
in plastic manufacturing sectors. Therefore, consideration of some other factors like
tool design, thermal behavior, chips mechanism, tool wear, temperature, etc., can
be considered for different manufacturing methods, such as plastic forming, metal
casting, heat treatment process, welding, etc. The modified PSO can be endorsed
to other operational research case studies of industrial engineering as it gives very
little error during the prediction of results.
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