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Abstract. Mathematical analysis for 3D Williamson nanofluid flow past a bi-directional stretched surface in Darcy-Forchheimer permeable 
media constitutes the focus of this study. The novelty of the proposed model is augmented by the addition of thermal and solutal stratifica-
tion with chemical species and variable thermal conductivity. Calculations of the suggested model are conducted via the renowned homotopy 
analysis method (HAM). The results obtained are validated by comparing them in a limiting form with an already published article. Excellent 
harmony is achieved in this regard. Graphical structures, depicting impacts of assorted arising parameters versus the profiles involved are also 
provided. It is noticed that the velocity profile is a dwindling function of the Williamson parameter and Hartmann number. It is also stated that 
the Cattaneo-Christov heat flux exhibits conventional Fourier and Fick’s laws behavior when both coefficients of thermal and concentration 
relaxations are zero.
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studied by Lu et al. [5]. The flow of third-grade fluid with 
CC heat flux accompanying homogeneous-heterogeneous (hh) 
reactions is studied by Ramzan et al. [6]. Vasu and Ray [7] 
numerically solved the Carreau nanofluid flow with CC heat 
flux. Lu et al. [8] numerically solved the mathematical model of 
nanofluid time-dependent flow containing both types of nano-
tubes between two rotating disks with hh reactions and the CC 
heat flux model. The flow generated by a rotating disk with 
CC heat flux is deliberated analytically by Imtiaz et al. [9]. 
The flow of Carreau fluid past a convectively heated stretched 
surface with variable thermal conductivity and CC heat flux is 
discussed by Lu et al. [10].

Nanof luids, an emerging f ield of  engineering, has 
enthralled numerous researchers who were looking at ways 
to improve the eff iciency of cooling processes in industry. 
This amalgamated f luid is unique in its own nature as nano-
f luids are prepared by means of implanting nanoparticles into 
base f luids. Signif icant improvement in thermal conductivity 
of the base f luid is witnessed through the addition of sus-
pended metallic particles, and it constitutes a relatively new 
advancement in the engineering biosphere. Nanof luids possess 
interesting characteristics such as adequate viscosity, more sta-
bility, improved wetting, spreading, and dispersion features on 
the solid surface, even for f luids possessing weak nanoparticle 
concentrations [11]. The nanoparticles are usually composed 
of metals, non-metals, carbides and nitrides with compara-
tively high thermal conductivity. It is experimentally proved 
that up to 5% of nanoparticle volume f raction in nanof luids is 
quite enough for enhancement in effective heat transfer [12]. 
Diverse natural advantages of nanof luids may f ind their appli-
cation in areas such as power generation, nuclear reactors, fuel 

1.	 Introduction

The study of heat transfer is mandatory whenever there is 
a change in temperature between the boundaries or among the 
parts of a similar body. The heat transfer process has various 
applications in the industry and engineering, which include 
energy production, transfer of heat in tissues, pasteurization 
process of food, fuel cells and cooling atomic reactors, etc. 
Fourier [1] devised a law that provided the most effective 
model and has been the yardstick for many years because of 
its multiple applications. But, as a result of some drawbacks, 
this model often leads to an equation of parabolic energy, which 
specifies that in the beginning trouble was instantly met by the 
medium under attention. Cattaneo [2] addressed the irregularity 
in Fourier’s law named “Paradox in heat conduction” by insert-
ing the relaxation time. It was noted that this alteration results 
in hyperbolic energy equation. Eventually he made it possible 
for the heat to be transported in the form of thermal waves 
with limited speed. Nowadays, this updated model is termed 
the Cattaneo-Christov (CC) heat flux model. Hayat et al. [3] 
studied the effect of the CC heat flux model on Darcy-Forch-
heimer flow with constant density for third-grade liquid with 
varying thermal conductivity. Hashim and Khan [4] inspected 
the effect of the CC heat flux model on Carreau fluid flow 
near the stagnation point. Meanwhile, thin film nanofluid flow 
comprising nanotubes under the influence of CC heat flux is 
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cells, transportation and biomedicine [13]. An important study 
on nanof luid f low has been reported by Ramzan et al. [14], 
using the series solution technique. Nasir et al. [15] studied the 
f low of nanof luid thin f ilm comprising carbon nanotubes in 
a Darcy-Forchheimer porous medium. The f low of nanof luid 
with magnetohydrodynamics effects in a permeable medium 
through the Darcy-Forchheimer relation is scrutinized analyt-
ically by Rasool et al. [16]. Taseer et al. [17] used the optimum 
series scheme to investigate 3D nanof luid f low containing 
CNTs of both types in a Darcy-Forchheimer porous medium 
past a nonlinear stretched surface. Another exploration com-
prising nanof luid 3D f low with Darcy-Forchheimer expression 
as well as convective and hh reactions is solved optimally by 
Hayat et al. [18]. Farooq et al. [19] found an analytical solution 
of nanof luid f low between two squeezing parallel plates with 
melting heat transfer. Some more recent investigations high-
lighting various aspects of nanof luids may be found in [20–26] 
and many other publications.

Study of non-Newtonian fluids [27–29] plays a pivotal role 
in numerous engineering and industrial applications. Examples 
of non-Newtonian materials include blood, ketchup, different 
polymeric liquids, paints, jellies, soap, glues, gel and many 
more. When compared to viscous fluids, mathematical mod-
eling of non-Newtonian fluids is very complex. Nevertheless, 
there have been numerous researchers that are contributing a lot 
on these fluids, highlighting their different features.

Stratification plays a pivotal role in many processes, either 
natural or industrial ones. This type of phenomenon evolves 
owing to the temperature and concentration variations of liquids 
with different densities. Various attempts and studies related 
to stratification have been made recently. Hamid et al. [30] dis-
cussed the flow of Williamson nanofluid past an expanding/
contracting cylinder with a mixed convective double stratifi-
cation medium. Khan et al. [31] numerically investigated the 
problem of Williamson nanofluid flow with thermal and solutal 
stratification, activation energy and entropy generation. The 
change in viscosity in Williamson nanofluid flow with both 
types of stratification is deliberated by Khan et al. [32]. An 
optimum series solution of 3D Williamson nanofluid flow with 
the convective boundary condition is found by Hayat et al. [33]. 
Many investigations on the significance of thermal stratifica-
tion can be found in [34–36].

In view of the foregoing, it is revealed that abundant studies 
are available discussing 3D MHD Williamson nanofluid flows. 
But fewer deliberate the combined effects of chemical reaction 
and variable thermal conductivity. And no study so far has been 
conducted that deliberates the amalgamated impacts of gener-
alized Fourier and Fick’s laws with Darcy-Forchheimer expres-
sion and thermal & solutal stratifications. This is being tackled 
for the first time and will make a valuable contribution to the 
existing literature. Series solutions of the envisioned mathe-
matical model are attained via the homotopy analysis method 
(HAM). Graphs of numerous parameters are also presented 
versus the distributions involved. To endorse the results given 
in the present exploration, a comparison table is provided, com-
paring those with an already published article in a limiting case, 
and excellent concurrence is recorded in this regard.

2.	 Mathematical modeling

Consider the 3D flow of a nanofluid over a bidirectional 
stretching surface with impacts of CC in a Darcy-Forchheimer 
porous medium. The fluid is flowing over the surface in x and 
y – directions with respective velocities u = ax and v = by, 
respectively (Fig. 1). The analysis is performed in attendance 
of hh reactions and variable thermal conductivity.

Fig. 1. Schematic diagram of the flow problem
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By using the boundary layer approximation, the governing 
nonlinear PDEs are [37–38].

	 ux + vy + wz = 0,� (1)
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2u
ρ
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� (3)
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uCx + vCy + wCz + λCφC = 

= DBCzz + DT

T1
Tzz ¡ Kc(C ¡ C1),

� (5)

with F =  Cb

xK1/2  is the inertia coefficient.

	

φE = u2Txx + v2Tyy + w2Tzz + 2uvTxy + 2uwTxz +

φE + 2vwTyz + (uux + vuy + wuz)Tx + 

φE + (uvx + vvy + wvz)Ty + (uwx + vwy + wwz)Tz,

� (6)
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φc = u2Cxx + v2Cyy + w2Czz + 2uvCxy + 2uwCxz +
φc + 2vwCyz + (uux + vuy + wuz)Cx + 
φc + (uvx + vvy + wvz)Cy + (uwx + vwy + wwz)Cz.

� (7)

The subjected boundary conditions are
u = Uw, v = Vw, w = 0, T = Tw = T0 + A1x, 
C = Cw = C0 + B1x, at z = 0

	
u → 0, v → 0, T → T1 = T0 + A2 x,
C → C1 = C0 + B2x, as z → 1

� (8)

using the following transformations:

	

u = axf '(η),  v = ayg '(η), 

w = – aν ( f (η) + g(η)),  η =  a
ν

z ,

θ(η) =  T ¡ T1
Tw ¡ T1

,  φ(η) =  C ¡ C1

Cw ¡ C1
.

� (9)

Considering thermal conductivity  k = ka(1 + εθ (η)), with 
ε  = (kw ¡ ka)/ka, as given in [39–40]. The non-dimensional 
system of equation is given by:

	
f ''' + Wef '' f ''' ¡ f '2 + f f '' + g f '' ¡
¡ λ1 f ' ¡ Mf ' ¡ Frf '2 = 0,

� (10)

	
g ''' + Weg ''g ''' ¡ g '2 + gg '' + f g '' ¡
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� (11)
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+ ( f  + g)( f ' + g ')θ ') = 0 ,

� (12)
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Nb
θ '' + Pr Le( f  + g)φ ' +  f '(P + φ) ¡

¡ Pr Leδc(( f  + g)2φ '' ¡ 2 f '( f  + g)φ ' + 
+  f '(P + φ) + ( f  + g)( f ' + g ')φ ') ¡ kcφ = 0 ,

� (13)

	

f (0) = 0,  f '(0) = 1,  g '(0) = β,  g(0) = 0,
θ (0) = 1 ¡ S,  φ (0) = 1 ¡ P,  f '(1) = 0,
g '(1) = 0,  θ (1) = 0, 1 φ (1) = 0,

� (14)
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ν
.

� (15)

Drag force coefficients Cf x and Cf y in the direction of x and 
y are given by:

	 Cf x = 
2τwx

ρUw
2

, Cf y = 
τwy

ρUw
2

,� (16)

with

	 τwxjz = 0 = uz =  Γ
2

(uz)
2,� (17)

	 τwyjz = 0 = vz =  Γ
2

(vz)
2,� (18)

Dimensionless forms of drag force coefficients are:

	 Cf x Re
1
2 =  f ’’ + We

2
( f ’’)2

η = 0
,� (19)

	 Cf y Re
1
2 =  g’’ + We

2
(g’’)2

η = 0
,� (20)

where

	 Rex =  
Uw x
ν

.� (21)

3.	 Homotopic solutions

It was required to choose some appropriate technique that 
can address such a highly nonlinear mathematical problem. 
To address this issue homotopy analysis method (HAM) is 
applied to get an analytical solution in series form with asso-
ciated boundary conditions. Earlier on researchers and scien-
tists have looked for alternating analytical techniques owing 
to obvious limitations of the numerical schemes [41]. Amid 
these, perturbation methods prove most common and are being 
used extensively in theoretical and engineering problems [42]. 
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But one major drawback of these methods, consisting in rely-
ing on small or large parameters and being effective only for 
weakly nonlinear problems, turns them into schemes with lim-
ited scope. Then non-perturbation schemes like the Adomian 
decomposition method [43], the δ  – expansion method [44], 
the variational iteration method [45], and the Lyapunov’s arti-
ficial small parameter [46] and so on are proposed to tackle this 
limitation of reliance on small/large parameters. But conver-
gence of the solutions is not guaranteed in these schemes. These 
methods are only defined for weakly nonlinear mathematical 
models. However, the homotopy analysis method (HAM) 
claimed by Liao [41] addresses all highly nonlinear problems 
with sufficient choice to select parameters’ values to warrant 
a convergent series solution. Contrary to numerical schemes, 
HAM can also tackle the far field boundary value problems. 
Salient characteristics of the said scheme are as follows:
1.	HAM solutions are free from the selection of small/large 

parameters, unlike the perturbation schemes. Here, initial 
guess estimates are made to obtain the final solution based 
on the concept of homotopic deformation.

2.	Convergence of the series solutions is controlled by the aux-
iliary parameter instead of the physical parameter.

3.	HAM also provides us autonomy for the choice of initial 
guess estimates by keeping in view the physical system of 
the problem under consideration. This may be of polynomi-
al, exponential, trigonometric or logarithmic nature. For ex-
ample, for an oscillatory problem, a trigonometric function 
may be selected. For a problem with damping, the function 
may be of of e–η type.
The homotopy analysis method necessities initial guess 

estimates ( f 0, g0, θ 0, φ 0) with auxiliary linear operators 
(Lf , Lg, Lθ , Lφ) for the problem under consideration in the 
form given below:

	
f0(η) = 1 ¡ e–η,  g0(η) = β(1 ¡ e–η),

θ 0(η) = (1 ¡ S),  φ0(η) = (1 ¡ P),
� (22)

	
Lf  = f ''' ¡ f ',  Lg = g ''' ¡ g ',
Lθ = θ '' ¡ θ ',  Lφ = φ '' ¡ φ ',

� (23)

with

	
Lf

£
B1 + B2 + B3

¤
 = 0,  Lg

£
B4 + B5 + B6

¤
 = 0,

Lθ
£
B7 + B8

¤
 = 0,  Lφ

£
B9 + B10

¤
 = 0,

� (24)

where Bi(i = 1 ¡ 7) symbolize arbitrary constants.

3.1 Analysis of convergence. Homotopy analysis method 
is applied to arrive at the solution in series form, and it also 
depends on auxiliary parameters. These auxiliary parameters 
are required to control the region of series solutions. For the 
present problem, the range of these parameters are:

– 0.1 ∙ hf  ∙ –1.5,  –1.1 ∙ hg ∙ – 0.3,

–1.3 ∙ hθ ∙ – 0.6,  –1.1 ∙ hφ ∙ – 0.6.

Table 1 
Convergence for varied order of approximations  

of series solutions when
λ1 = 0.2, M = 0.4, Fr = 0.2, β = 0.1, Nb = 0.2, Nt = 0.8, Pr = 0.7, 

ε  = 0.1, Le = 1, δc = δ t = 0.2, We = 1, n = 0.05.

Order  
of approximation – f ''(0) – g ''(0) – θ '(0) – φ '(0)

01 1.0850 0.0797 0.4083 0.7773
05 1.1457 0.0760 0.2874 0.7446
10 1.1478 0.7589 0.2807 0.7443
15 1.1478 0.7589 0.2784 0.7425
20 1.1478 0.7589 0.2784 0.7429
25 1.1478 0.7589 0.2784 0.7429

Table 2
Comparison of Cf x Re⅟₂ with Nadeem et al. [47]  

for varied values of We in limiting case

We Cf x Re⅟₂ Present

0.0 1 1
0.1 0.976588 0.976588
0.2 0.939817 0.939817
0.3 0.882720 0.882720

4.	 Results and discussion

This section is dedicated to examining the outcomes of evolv-
ing parameters on particular distributions. The response of 
Hartmann number M versus velocity components in x – and y 
– directions is represented in Fig. 3 and Fig. 4. It is witnessed 
that both velocity components are on the decline because of 
strong Lorentz force, which demonstrates resistance to the flu-
id’s movement. The impact of the Williamson fluid parameter 
We on the velocity profile is presented in Fig. 5. It is seen that 
the velocity profile is a diminishing function of We. Physically, 
owing to higher values of relaxation time, increased fluid’s 

Fig. 2. h-curves for f , g, θ , φ
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resistance is seen. This ultimately results in decreased velocity 
of the fluid. Figures 6 and 7 are illustrated to witness the con-
sequence of porosity parameter λ1 on velocity profile compo-
nents. It is seen that velocity is a declining function of λ1 in 
both cases. Velocity of the fluid is on the decrease as the bottom 

surface of the fluid is more absorbent. Which is in fact a more 
realistic situation. Further, far-off from the surface, the impact 
of λ1 is not very significant on the outer layer of the boundary 
layer and it does not affect fluid motion in this region. Figure 8 
exemplifies the consequence of thermal conductivity parameter 

Fig. 4. Influence of M on g

Fig. 7. Influence of λ1 on g
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ε  on the temperature profile. The temperature of the fluid rises 
for larger values of ε . Thermal conductivity is defined as the 
rate of heat transfer via conduction. The larger the amount of 
heat transfer, the higher the temperature of the fluid. Figure 9 is 
drawn to see the impact of inertia coefficient Fr on the velocity 
profile. It is obvious from the figure that higher estimates of 
the Forchheimer number strengthen the resistance to fluid flow 
and as a result a decrease in velocity is observed. If Fr = 0 
then the momentum boundary layer exhibits the Darcy’s flow. 
The impact of Prandtl number Pr on temperature distribution is 
portrayed in Fig. 10. It is detected that the rate of heat transfer 
from the hot surface tends to slow down for larger estimates 
of Pr. That is why a decrease in temperature of the fluid is 
noticed. Figure 11 and Fig. 12 depict the effect of concentra-
tion and thermal relaxation times δ c and δ t on concentration 
and temperature distributions, respectively. From the figures, 
it is seen that both profiles are declining functions of respec-
tive relaxation times. In fact, higher estimates of relaxation 
times result in non-conductive behavior of the material which 
is responsible for a decrease in temperature and concentration 
fields. It is further seen that for δc = δ t = 0 the CC heat flux 
acts according to conventional Fourier and Fick’s laws. The 

influence of thermophoresis parameter Nt on concentration and 
temperature profiles is displayed in Fig. 13 and Fig. 14, respec-
tively. Both concentration and temperature fields will increase 
owing to higher values of Nt. Actually, for higher values of Nt, 

Fig. 12. Influence of δ t on θ

Fig. 13. Influence of Nt on φ
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the temperature of the fluid far away from the surface will be 
boosted due to the transfer of nanoparticles. Thus, augmented 
profiles are observed in both cases. The impact of Brownian 
motion parameters Nb on temperature and concentration profiles 

is presented in Figs. 15 and 16. Larger estimates of Nt escalate 
the temperature of the fluid but also reduce concentration. Fig-
ure 17 is used to present the effects of local porosity number 
λ1 and Hartmann number M. It is gathered that the drag force 
coefficient is a growing function of both parameters λ1 and M. 
It is a known fact that increase in λ1 will slow the fluid flow 
and thus strengthen the friction force. Similarly, higher values 
of M also assist the Lorentz force that hampers the movement 
of the fluid’s flow. Thus, increased estimates of fluid drag force 
are observed. Similar behavior is seen for the values of M and 
Fr. This effect is shown in Fig. 18.

5.	 Final remarks

Analytical solutions for three-dimensional MHD Williamson 
nanof luid f low with variable thermal conductivity and gener-
alized Fourier and Fick’s laws over a bidirectional stretched 
surface are found. Double stratif ication conditions are uti-
lized to solve the problem. Results are obtained using HAM. 
Signif icant results of the present problem are summarized 
as follows:

Fig. 18. Influence of M and Fr on Drag force

Fig. 15. Influence of Nb on θ

Fig. 17. Influence of λ1 and M on Drag force
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●	 The velocity profile is a diminishing function of the Wil-
liamson parameter and Hartmann number.

●	 The fluid’s temperature rises for larger estimates of the 
thermal conductivity parameter.

●	 For both thermal relaxation times δ c = δ t = 0, the Catta-
neo-Christov heat flux illustrates conventional Fourier and 
Fick’s laws.

●	 Opposite behavior is noticed for the thermophoresis param-
eter and Brownian motion parameter versus nanoparticle 
concentration distribution.

●	 The drag force coefficient is augmented with increased val-
ues of M, λ1 and Fr.
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