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Abstract: Most of the existing statistical forecasting methods utilize the historical values
of wind power to provide wind power generation prediction. However, several factors
including wind speed, nacelle position, pitch angle, and ambient temperature can also be
used to predict wind power generation. In this study, a wind farm including 6 turbines
(capacity of 3.5 MW per turbine) with a height of 114 meters, 132-meter rotor diameter
is considered. The time-series data is collected at 10-minute intervals from the SCADA
system. One period from January 04th, 2021 to January 08th, 2021 measured from the
wind turbine generator 06 is investigated. One period from January 01st, 2021 to January
31st, 2021 collected from the wind turbine generator 02 is investigated. Therefore, the
primary objective of this paper is to propose a combined method for wind power generation
forecasting. Firstly, response surface methodology is proposed as an alternative wind power
forecasting method. This methodology can provide wind power prediction by considering
the relationship betweenwind power and input factors. Secondly, the conventional statistical
forecastingmethods consisting of autoregressive integratedmoving average and exponential
smoothing methods are used to predict wind power time series. Thirdly, response surface
methodology is combined with autoregressive integrated moving average or exponential
smoothing methods in wind power forecasting. Finally, the two above periods are performed
in order to demonstrate the efficiency of the combined methods in terms of mean absolute
percent error and directional statistics in this study.
Key words: autoregressive integrated moving average, exponential smoothing method,
forecasting, response surface methodology, wind power

Nomenclature

ARIMA is the autoregressive integratedmoving average, RSM is the response surfacemethod-
ology, EXP is the exponential smoothing method, x1 is the wind speed, x2 is the nacelle position,
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x3 is the pitch angle, x4 is the ambient temperature, MAPE is the mean absolute percent error,
Dstat is the directional statistics, yt is the wind power generation at time period t, ŷt is the estimated
value (forecasted value) of y at time period t.

1. Literature review

Because of the environmental issues, especially the exhaustion of fossil fuels, wind power
sources have been highly integrated into electrical power systems in recent decades. Power from
wind produces no air pollution or carbon dioxide emissions, no water consumption, and it is
an inexhaustible renewable energy source [1]. Global wind report 2019 of GWEC (global wind
energy council) showed that the 60.4 GW of new installations brings global cumulative wind
power capacity up to 651 GW. New installations in the onshore wind market reached 54.2 GW,
while the offshore wind market passed a milestone of 6 GW, making up 10% of the global
new installation in 2019 the highest level to date. GWEC Market Intelligence expects that over
355 GW of new capacity will be added. That is nearly 71 GW of new installations each year until
2024 [2]. The rapid growth of this kind of energy has provided an alternative energy source in
the electrical power systems. However, the high penetration of this energy source into the grid
has caused several challenges for electrical power system operators. In addition, wind power is
intermittent availability because it is weather-dependent. Therefore, accurate wind power forecasts
are necessary for the efficient operation and the process of grid integration of wind power. As wind
energy makes significant penetration into the electricity grid, the need for accurate predictions of
wind power generation becomes critical and urgent [3, 4].

Numerous models and methods were proposed to forecast wind power generation. Based on
a time-scale framework, wind power forecasting methods are normally divided into four different
types, namely immediate short-term, short-term,medium-term, and long-term predictions [5]. For
time-series data, various statisticalmethods andmodelswere suggested forwind power forecasting
and estimation. Statisticalmodels are easy to use and cheaper to develop compared to othermodels.
Basically, statistical methods use the previous history of wind data to perform a forecast over the
next few hours; they are suitable for short periods of time [6]. An exponential smoothing approach
was used for time-series wind power short-horizon prediction [7,8]. This approach was also used
for time-series wind power prediction in real-time electricity markets [9]. The methods based on
autoregressive (AR), moving average (MA), autoregressive moving average (ARMA), or ARIMA
models were employed to predict time-series wind power generation as in [10–14]. Recently,
the artificial intelligence-based forecasting methods have been used to predict time-series data.
Among these methods, models of multilayer neural networks have been developed to make the
wind energy forecasts as in [6, 15, 17–19]. In this line, the recurrent neural networks models
are also used to forecast wind power generation [20, 21]. The performance of the neural network
models has been improved by using a deep learning approach inwind power forecasting [22,23]. In
the artificial intelligence-based forecasting methods, the support vector machine is also integrated
into wind power predictions [24–26]. Obtaining the wind power forecasting results by using the
artificial intelligence-based forecasting methods is time consuming since the performance of
these methods must be trained. In addition, the training algorithms for the artificial intelligence
methods are complicated. Another direction in non-stationary time series investigation is the
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deterministic chaos theory. Based on chaos theory, numerous efforts have been made to develop
forecasting models to predict short-term wind power generation [27–29]. The accuracy of wind
power prediction is highly addressed in these studies. Wind power forecasting errors for different
methods by using different evaluation criteria were investigated in these existing studies.

Numerous efforts have been made in order to improve the forecasting accuracy and robust-
ness of these methods. These models were improved or combined with other forecasting methods
for better time-series wind power forecasting results as in [30–34]. In these studies, a statisti-
cal forecasting method is combined with another statistical forecasting method or an artificial
intelligence-based forecasting method, and vice versa. However, useful information such as air
pressure, air temperature, and climatic information, etc can be also employed for the forecast of
wind power by using physical models as in [35]. Literature reviews of wind power forecasting
methods can be found in [36, 37].

2. Introduction

In the existing studies in the literature, most of the wind power forecasting methods deal with
time-series data problem. Unfortunately, in the practical operation of wind power plants, several
factors can affect the power output. These operational parameters including wind speed, nacelle
position, pitch angle, ambient temperature, etc can be used to predict wind power generation. In
this case study, a wind farm, located on the south-central coast, Vietnam, including 6 turbines
(capacity of 3.5 MW per turbine) with a height of 114 meters, 132-meter rotor diameter is
considered. Given the topology of the land, the wind speed, nacelle position, pitch angle, ambient
temperature, and active power of a wind turbine generator in this wind farm are measured based
on the SCADA system. In order to provide the appropriate operation schedules for the wind
farm, the wind power generation forecasting issue is necessary. Normally, the existing wind
power generation forecasting methods are used for time-series data prediction. This study also
investigates the effects of the operational parameters on the wind power forecasting results. In
this case, RSM is used to investigate the relationship between the operational parameters of wind
power plants and their power output. RSM is a collection ofmathematical and statistical techniques
that was introduced in the early 1950s by Box and Wilson [38]. A comprehensive presentation of
RSM and its application can be found in [39]. In addition, the RSM-based forecasting method can
be combined with other statistical forecasting models which are used to predict wind power time
series for better prediction results in this case study. Therefore, the main motivation of this paper
is to propose a combined method for wind power forecasting. RSM is proposed to predict wind
power generation based on the operational parameters including wind speed, nacelle position,
pitch angle, ambient temperature. Statistical models consisting of ARIMA and EXP are used to
forecast wind power time series. The combined forecasting method is proposed by using RSM and
ARIMA model/EXP. Finally, two different periods from practical wind power data is performed
to illustrate the efficiency of the proposed methods. The data from the wind turbine generator 06
is measured in the period from January 04th, 2021 to January 08th, 2021. The data from the wind
turbine generator 02 is measured in the period from January 01st, 2021 to January 31st, 2021.
An overview of the proposed hybrid method for a wind power generation forecasting method in
this study is presented in Fig. 1.
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Fig. 1. Overview of the proposed hybrid method for wind power generation forecasting method

The remainder of this paper is organized as follows. The next section will discuss the proposed
wind power forecasting methods used in this paper. Section 4 will investigate the two periods of
wind power generation. The final section will be the conclusions and further studies.

3. The proposed methods

3.1. Response surface methodology
RSM is usually used to analyze and estimate the functional relationship between the input

variables and the corresponding output response. The general form of RSM can be represented
as follows:

y = Xβ + ε , (1)

where: y is the vector of the observations, X is the matrix consisting of the levels of the input
variables, β is the vector of the regression coefficients, and ε is the vector of random errors. By
using the least-squares method, the estimator of β is

β̂ =
(X′X)−1 X′y. (2)

Therefore, the fitted regression model of e.g. (1) becomes

ŷ = Xβ̂ . (3)
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In scalar form, the estimated second-order regression function of e.g. (3) can be shown as

ŷsec = β0 +

p∑
i=1

βi xi +
p∑
i=1

βi (xi)2 +

p∑
i=1

∑
j,i

βi j xi x j . (4)

In scalar form, the estimated third-order regression function of e.g. (3) can be shown as

ŷthird = β0 +

p∑
i=1

βi xi +
p∑
i=1

βi (xi)2 +

p∑
i=1

∑
j,i

βi j xi x j +

p∑
i=1

βi (xi)3+

+

p∑
i=1

∑
j,i

βi j xi (x j )2. (5)

The degree of fit of RSM is expressed by the coefficient of determination (R2). In this study,
the third-order regression function of RSM is proposed as an alternative wind power forecasting
method. The four different input factors including wind speed, nacelle position, pitch angle,
ambient temperature, are used to estimate the wind power generation. The proposed RSM – based
wind power forecasting procedure can be shown in Fig. 2.
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Fig. 2. The proposed RSM – based wind power forecasting procedure

3.2. Autoregressive integrated moving average
The ARIMAmodel first proposed by Box and Jenkins (1970) is a class of statistical models for

time series data forecast and analysis. In order to predict the time series data, the ARIMA model
uses three basic sequence processes including autoregressive, integrated, and moving average.
The ARIMA model uses the past time-series data plus an error in order to predict future values.
The application of the ARIMA model for time series forecasting includes the following steps:
identification, estimation, diagnostic checking, and model’s use. The general forecasting ARIMA
model for time series is represented as

ŷt = c + φ1yt−1 + . . . + φpyt−p + θ1εt−1 + . . . + θqεt−q , (6)

where c is the constant; ŷt is the estimated value of y at time period t; yt−1, . . . , yt−p are the lagged
values of y at different time periods t−1, . . . , t−p; εt−1, . . . , εt−q are the lagged errors at different
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time periods t−1, . . . , t−q; φi (i = 1, . . . , p) and θi (i = 1, . . . , q) are the model parameters. This
model is named the ARIMA (p, d, q) model where p, d, and q are non-negative integers. In the
ARIMAmodel, p, d, and q represent the order (number of time lags) of the autoregressive model,
the degree of differencing, and the order of the moving-average model, respectively.

3.3. Exponential smoothing method
The EXP method proposed in the late 1950s by Brown (1959) is another class of statistical

models for time-series data forecast and analysis. The principle of the EXP is to assign exponen-
tially decreasing weights over time to make forecasts. Three different main types of exponential
smoothing time-series forecasting methods are represented as follows:

Simple exponential smoothing method: This method is used for forecasting data without
a trend or seasonality. For any time period t, the forecasted value ŷt is

ŷt = αyt−1 + (1 − α) ŷt−1 , (7)

where the smoothing α is a constant between 0 and 1.
Double exponential smoothing method: This method is used for forecasting data with a trend.

For any time period t, the forecasted value ŷt can be calculated as

Lt = αyt + (1 − α) (Lt−1 + Tt−1)

Tt = β (Lt − Lt−1) + (1 − β)Tt−1

ŷt = Lt−1 + Tt−1

, (8)

where Lt and Tt are the level and the trend at time t, respectively. β is the weight (or smoothing
constant) for the trend.

Triple exponential smoothing method: This method is used for forecasting data with a trend
and seasonality. For any time period t, the forecasted value ŷt can be calculated as

Lt = α
(
yt − St−p

)
+ (1 − α) (Lt−1 + Tt−1)

Tt = β (Lt − Lt−1) + (1 − β)Tt−1

St = δ (yt − Lt ) + (1 − δ)St−p
ŷt = Lt−1 + Tt−1 + St−p

, (9)

where St is the seasonal component at time t, δ is the weight (or smoothing constant) for the
seasonal component, and p is the seasonal period.

3.4. The combined method
Different forecasting methods may provide different prediction results. However, forecasts

from a given method may provide some useful information that is not conveyed in forecasts
from other methods. Thus, instead of choosing a single forecasting method, it seems reasonable
to consider aggregating information by generating forecasts from several methods and then
combining these forecasts [40]. In this paper, the forecasts obtained from RSM are combined
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with the forecasts obtained from the ARIMA model or EXP. Therefore, the combined forecast at
time t, Ct , is given by

Ct = w1 ŷ1,t + w2 ŷ2,t , (10)

where ŷ1,t and ŷ2,t are the forecasts at time t from the first set and the second set, respectively. By
using the variance-covariance method, the corresponding weights in e.g. (10) can be calculated as

w1 =

∑
e2

2,t −
∑

e1,te2,t∑
e2

1,t +
∑

e2
2,t + 2

∑
e1,te2,t

, (11)

w2 =

∑
e2

1,t −
∑

e1,te2,t∑
e2

1,t +
∑

e2
2,t + 2

∑
e1,te2,t

, (12)

where e1,t and e2,t represent the individual forecast errors at time t.

3.5. Evaluation criteria
In order to evaluate the performance of the forecasting method, several criteria were proposed.

In this paper, two primary evaluation criteria are used as follows:
MAPE is used to evaluate the prediction accuracy.

MAPE =

n∑
t=1

|et |
yt

n
=

n∑
t=1

|yt − ŷt |

yt

n
, (13)

where n is the number of observations.
Dstat is used to evaluate the ability of direction prediction.

Dstat =
1
n

n∑
t=1

dt , (14)

where dt = 1 if ( ŷt+1 − yt ) (yt+1 − yt ) ≥ 0, and dt = 0 otherwise.

4. The investigated periods

4.1. Period 1
In this period, the time-series data from the wind turbine generator 06 is collected at 10-

minute intervals in the period from January 04th, 2021 to January 08th, 2021. The total number
of observations is 720. The wind speed, nacelle position, pitch angle, ambient temperature, and
active power of the wind turbine generator in the investigated period are illustrated in Figs. 3–7,
respectively.

By using the proposed RSM–based wind power forecasting procedure as shown in Fig. 2 with
a third-order regression function, the functional relationship between the active power (y) and
the operational parameters including wind speed (x1), nacelle position (x2), pitch angle (x3), and



998 Tuan-Ho Le Arch. Elect. Eng.

Fig. 3. Wind speed

Fig. 4. Nacelle position

ambient temperature (x4) is represented in e.g. (15). The corresponding analysis of a variance
(ANOVA) table is shown in Table 1.

y = −26389 − 10628x1 + 1185x2 − 3668x3 + 10465x4 − 124x2
1 − 0.506x2

2−

− 48.3x2
3 − 783x2

4 − 7.27x1x2 + 114x1x3 + 1070x1x4 − 3.43x2x3 − 86.8x2x4+

+ 245x3x4 − 8.85x3
1 − 0.000044x3

2 − 0.412x3
3 + 16.3x3

4 + 0.0965x2
1x2+

+ 7.17x2
1x3 + 13.86x2

1x4 + 0.00629x1x2
2 − 0.0437x1x2x3 + 0.133x1x2x4+

+ 2.44x1x2
3 − 11.19x1x3x4 − 27.9x1x2

4 − 0.00033x2
2x3 + 0.01797x2

2x4+

+ 0.0737x2x2
3 + 0.130x2x3x4 + 1.632x2x2

4 − 0.22x2
3x4 − 1.9x3x2

4 .

(15)
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According to Table 1, the p-value of the regression model is 0.000 (less than 0.05). This
indicates that the regression is statistically significant. In addition, the coefficient of determination
(R-sq equals 97.10%) indicates that the regression predictions almost perfectly fit the data.
Furthermore, the p-values of x2, x2 ∗ x2, x1 ∗ x2, x2 ∗ x4, x1 ∗ x1 ∗ x1, x1 ∗ x1 ∗ x2, x1 ∗ x1 ∗ x3,
x1 ∗ x1 ∗ x4, x1 ∗ x2 ∗ x2, x2 ∗ x2 ∗ x4, x2 ∗ x3 ∗ x3 and x2 ∗ x4 ∗ x4 are less than 0.05. This
indicates these input parameters have a high relationship with the output response (y). In this
period, the ARIMA (1, 1, 1) model was used to make the wind power forecast. In addition,
a simple EXP with the smoothing α = 0.7 was employed to predict the wind power. Based on
the variance-covariance method, the proposed RSM–based wind power forecasting procedure is
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combined with the ARIMA (1, 1, 1) model and EXP to make better forecasting results. The five
forecasting results from the RSM, ARIMA (1, 1, 1) model, EXP, RSM+ARIMA, and RSM+EXP
with the actual wind power are represented in Fig. 8.

Fig. 8. The forecasted results of wind power generation

In this figure, the actual wind power values are demonstrated by the solid line (black color).
The forecasted values by using the RSM, ARIMA model, EXP, RSM and ARIMA model, as
well as RSM and EXP, are represented by the dash lines with a * marker (red color), o marker
(yellow color), + marker (purple color), no marker (light green color), and a pentagram marker
(light blue color), respectively. Most of the forecasted lines are approximate to the actual value
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Table 1. ANOVA table

Source DF Adj SS Adj MS F-Value P-Value
Regression 34 472386982 13893735 675.40 0.000

x1 1 11954 11954 0.58 0.446
x2 1 152629 152629 7.42 0.007
x3 1 4342 4342 0.21 0.646
x4 1 622 622 0.03 0.862

x1 ∗ x1 1 13120 13120 0.64 0.425
x2 ∗ x2 1 184637 184637 8.98 0.003
x3 ∗ x3 1 8770 8770 0.43 0.514
x4 ∗ x4 1 2196 2196 0.11 0.744
x1 ∗ x2 1 85593 85593 4.16 0.042
x1 ∗ x3 1 7367 7367 0.36 0.550
x1 ∗ x4 1 19682 19682 0.96 0.328
x2 ∗ x3 1 4840 4840 0.24 0.628
x2 ∗ x4 1 130259 130259 6.33 0.012
x3 ∗ x4 1 3084 3084 0.15 0.699

x1 ∗ x1 ∗ x1 1 1215264 1215264 59.08 0.000
x2 ∗ x2 ∗ x2 1 2132 2132 0.10 0.748
x3 ∗ x3 ∗ x3 1 10809 10809 0.53 0.469
x4 ∗ x4 ∗ x4 1 5343 5343 0.26 0.610
x1 ∗ x1 ∗ x2 1 359302 359302 17.47 0.000
x1 ∗ x1 ∗ x3 1 262385 262385 12.75 0.000
x1 ∗ x1 ∗ x4 1 107105 107105 5.21 0.023
x1 ∗ x2 ∗ x2 1 158012 158012 7.68 0.006
x1 ∗ x2 ∗ x3 1 69612 69612 3.38 0.066
x1 ∗ x2 ∗ x4 1 19210 19210 0.93 0.334
x1 ∗ x3 ∗ x3 1 42083 42083 2.05 0.153
x1 ∗ x3 ∗ x4 1 45122 45122 2.19 0.139
x1 ∗ x4 ∗ x4 1 34002 34002 1.65 0.199
x2 ∗ x2 ∗ x3 1 924 924 0.04 0.832
x2 ∗ x2 ∗ x4 1 129127 129127 6.28 0.012
x2 ∗ x3 ∗ x3 1 169348 169348 8.23 0.004
x2 ∗ x3 ∗ x4 1 4214 4214 0.20 0.651
x2 ∗ x4 ∗ x4 1 115288 115288 5.60 0.018
x3 ∗ x3 ∗ x4 1 112 112 0.01 0.941
x3 ∗ x4 ∗ x4 1 486 486 0.02 0.878

Error 685 14091244 20571 R-sq R-sq(adj)
Total 719 486478226 97.10% 96.96%
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line. This indicates the efficiency of the forecasting models and methods. The evaluation criteria
of the RSM, ARIMA model, EXP, RSM and ARIMA model, as well as RSM and EXP in wind
power forecasting are illustrated in Table 2.

Table 2. Evaluation criteria of the proposed forecasting models and methods

Evaluation criteria RSM ARIMA Exp RSM+ARIMA RSM+exp

MAPE (%) 4.3129 9.2140 9.1015 4.1971 4.1964

Dstat (%) 76.4951 62.0306 61.4743 76.7733 76.9124

Based on the results in Table 2, the proposed RSM-based forecasting method can provide
better prediction results (with MAPE = 4.3129% and Dstat = 76.4951%) compared to the tradi-
tional statistical forecasting methods consisting of the ARIMA model (with MAPE = 9.2140%
and Dstat = 62.0306%) and EXP (with MAPE = 9.1015% and Dstat = 61.4743%) in this period.
Furthermore, the combined forecasting methods based on the variance-covariance method con-
sisting of RSM and ARIMA (with MAPE = 4.1971% and Dstat = 76.7733%) as well as RSM
and EXP (with MAPE = 4.1964% and Dstat = 76.9124%) can provide more accurate forecasting
results compared to the others. Obviously, the proposed forecasting method consisting of RSM
and EXP is the best wind power forecasting regarding MAPE and Dstat in this period.

4.2. Period 2
In this period, the time-series data from the wind turbine generator 02 is collected at 10-

minute intervals in the period from January 01st, 2021 to January 31st, 2021. The total number
of observations is 4461. The wind speed, nacelle position, pitch angle, ambient temperature, and
active power of the wind turbine generator in the investigated period are illustrated in Figs. 9– 12,
and Fig. 13, respectively.
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By using the proposed RSM–based wind power forecasting procedure as shown in Fig. 2 with
third-order regression function, the functional relationship between the active power (y) and the
operational parameters including wind speed (x1), nacelle position (x2), pitch angle (x3), and
ambient temperature (x4) is represented in e.g. (16). The corresponding analysis of the variance
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(ANOVA) table is shown in Table 3.

y = −38681 − 558x1 − 63.2x2 + 69.6x3 − 4371x4 + 78.55124x2
1 + 0.0085x2

2−

− 3.348x2
3 + 156.2x2

4 − 1.124x1x2 − 26.65x1x3 + 23.5x1x4 − 0.012x2x35.98x2x4+

+ 5.34x3x4 − 0.6786x3
1 + 0.000046x3

2 + 0.03159x3
3 − 1.819x3

4 − 0.0356x2
1x2+

+ 0.1725x2
1x3 − 2.104x2

1x4 + 0.003105x1x2
2 + 0.00016x1x2x3 + 0.0314x1x2x4+

+ 0.18468x1x2
3 + 0.198x1x3x4 + 0.238x1x2

4 + 0.000231x2
2x3 − 0.00281x2

2x4−

− 0.001756x2x2
3 + 0.00407x2x3x4 − 0.1193x2x2

4 − 0.0403x2
3x4 − 0.079x3x2

4 .

(16)
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Table 3. ANOVA table

Source DF Adj SS Adj MS F-Value P-Value
Regression 34 7560324430 222362483 3633.48 0.000

x1 1 241975 241975 3.95 0.047
x2 1 259476 259476 4.24 0.040
x3 1 55585 55585 0.91 0.341
x4 1 1137328 1137328 18.58 0.000

x1 ∗ x1 1 8856330 8856330 144.72 0.000
x2 ∗ x2 1 5960 5960 0.10 0.755
x3 ∗ x3 1 7002379 7002379 114.42 0.000
x4 ∗ x4 1 988395 988395 16.15 0.000
x1 ∗ x2 1 553924 553924 9.05 0.003
x1 ∗ x3 1 5233892 5233892 85.52 0.000
x1 ∗ x4 1 94720 94720 1.55 0.214
x2 ∗ x3 1 439 439 0.01 0.932
x2 ∗ x4 1 462637 462637 7.56 0.006
x3 ∗ x4 1 67741 67741 1.11 0.293

x1 ∗ x1 ∗ x1 1 5697813 5697813 93.10 0.000
x2 ∗ x2 ∗ x2 1 553104 553104 9.04 0.003
x3 ∗ x3 ∗ x3 1 29262017 29262017 478.15 0.000
x4 ∗ x4 ∗ x4 1 655842 655842 10.72 0.001
x1 ∗ x1 ∗ x2 1 3053028 3053028 49.89 0.000
x1 ∗ x1 ∗ x3 1 2012297 2012297 32.88 0.000
x1 ∗ x1 ∗ x4 1 5669566 5669566 92.64 0.000
x1 ∗ x2 ∗ x2 1 7192092 7192092 117.52 0.000
x1 ∗ x2 ∗ x3 1 185 185 0.00 0.956
x1 ∗ x2 ∗ x4 1 287497 287497 4.70 0.030
x1 ∗ x3 ∗ x3 1 60474200 60474200 988.17 0.000
x1 ∗ x3 ∗ x4 1 232859 232859 3.80 0.051
x1 ∗ x4 ∗ x4 1 29956 29956 0.49 0.484
x2 ∗ x2 ∗ x3 1 2800122 2800122 45.75 0.000
x2 ∗ x2 ∗ x4 1 453271 453271 7.41 0.007
x2 ∗ x3 ∗ x3 1 1879712 1879712 30.72 0.000
x2 ∗ x3 ∗ x4 1 32641 32641 0.53 0.465
x2 ∗ x4 ∗ x4 1 582699 582699 9.52 0.002
x3 ∗ x3 ∗ x4 1 920336 920336 15.04 0.000
x3 ∗ x4 ∗ x4 1 31655 31655 0.52 0.472

Error 4426 270863662 61198 R-sq R-sq(adj)
Total 4460 7831188091 96.54% 96.22%
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According to Table 3, the p-value of the regression model is 0.000 (less than 0.05). This
indicates that the regression is statistically significant. In addition, the coefficient of determination
(R-sq equals 96.54%) indicates that the regression predictions almost perfectly fit the data.
Furthermore, the p-values of x1, x2, x4, x1 ∗ x1, x2 ∗ x2, x3 ∗ x3, x4 ∗ x4, x1 ∗ x2, x1 ∗ x3, x2 ∗ x4,
x1 ∗ x1 ∗ x1, x2 ∗ x2 ∗ x2, x3 ∗ x3 ∗ x3, x4 ∗ x4 ∗ x4, x1 ∗ x1 ∗ x2, x1 ∗ x1 ∗ x3, x1 ∗ x1 ∗ x4,
x1 ∗ x2 ∗ x2, x1 ∗ x2 ∗ x4, x1 ∗ x3 ∗ x3, x2 ∗ x2 ∗ x3, x2 ∗ x2 ∗ x4, x2 ∗ x3 ∗ x3, x2 ∗ x4 ∗ x4, and
x3 ∗ x3 ∗ x4 are less than 0.05. This indicates these input parameters have a high relationship with
the output response (y). In this period, the ARIMA (1, 1, 1) model was used to make the wind
power forecast. In addition, a simple EXP with the smoothing α = 0.6 was employed to predict
the wind power. Based on the variance-covariance method, the proposed RSM–based wind power
forecasting is combined with the ARIMA model and EXP to make better forecasting results. The
five forecasting results from the RSM, ARIMA model, EXP, RSM+ARIMA, and RSM+EXP
with the actual wind power are represented in Fig. 14.

Fig. 14. The forecasted results of wind power generation

The actual wind power values are demonstrated by the solid line (black color). The forecasted
values by using the RSM, ARIMA model, EXP, RSM and ARIMA model, as well as RSM
and EXP are represented by the dash lines with a * maker (red color), o marker (yellow color),
+ marker (purple color), no marker (light green color), and a pentagram marker (light blue
color), respectively. Most of the forecasted lines are approximate to the actual value line. The
evaluation criteria of the RSM, ARIMA model, EXP, RSM+ARIMA, and RSM+EXP in wind
power forecasting are illustrated in Table 4.

Based on the results in Table 4, the proposedRSM-based forecastingmethod can provide better
prediction results (with MAPE = 83.3192% and Dstat = 70.4709%) compared to the traditional
statistical forecasting methods consisting of the ARIMA model (with MAPE = 88.2990% and
Dstat = 59.2825%) and EXP (with MAPE = 85.8814% and Dstat = 59.0807%) in this period.
Furthermore, the combined forecasting methods based on variance-covariance method consisting
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Table 4. Evaluation criteria of the proposed forecasting models and methods

Evaluation criteria RSM ARIMA Exp RSM+ARIMA RSM+exp

MAPE (%) 83.3192 88.2990 85.8814 75.3274 75.1407

Dstat (%) 70.4709 59.2825 59.0807 70.1794 70.1570

of RSM and ARIMA (with MAPE = 75.3274% and Dstat = 70.1794%) and RSM and EXP
(with MAPE = 75.1407% and Dstat = 70.1570%) can provide more accurate forecasting results
compared to the others. Obviously, the proposed forecasting method consisting of RSM and
ARIMA is the best wind power forecasting regarding MAPE and Dstat in this period.

5. Conclusions

In this paper, RSM is proposed as an alternative forecasting method for wind power gener-
ation. Wind power is forecasted by considering the relational relationship between operational
parameters (wind speed, nacelle position, pitch angle, and ambient temperature) and wind power,
instead of time-series data, in this method. In addition, two popular statistical forecasting meth-
ods consisting of the ARIMA model and EXP are used to make the time-series wind power
data. By using the variance-covariance method, RSM is combined with the ARIMA model and
EXP, respectively. The combined forecasting methods consisting of RSM+ARIMA and RSM+
the exponential smoothing method show more accurate prediction results in terms of MAPE
and Dstat compared to the only RSM or ARIMA or exponential smoothing method. For further
studies, all of the factors that affect wind power generation can be used such as air density, turbine
swept areas, etc. In addition, the forecasting results can be improved by using the neural network,
support vector machine, and deep machine learning-based forecasting methods with a suitable
period dividing algorithm. Moreover, the missing value issues in wind power forecasting can be
investigated. Other evaluation criteria can also be used to identify better forecasting methods.
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