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Least squares multi-point matching for DEM with consideration
of correlated neighbouring pixels and terrain height differences

One of the major tasks in digital photogrammetry is image matching technique for finding
corresponding points in a stereopair. Area-based matching has been acknowledged as being more
precise than feature-based matching. Least squares multi-point matching (LSMM) is one of the Global
Image Matching (GIM) which was developed from the Least-squares Single point matching (LSSM) so
called area-based matching. LSMM method has been more reliable than LSSM one because the
relationship between the different neighbouring points is considered in simultaneous computation.
LSMM is just for the simultaneous determination of the horizontal parallaxes at the node points of the
regular rectangular nets for the purpose of the establishing the DEM. This paper undertakes a trial of
improving the accuracy of LSMM by consideration of the correlated pixels and terrain height
differences.

INTRODUCTION

From the early 1970 to mid 1980s researches related to image matching focus on digital
technique. Despite more considerable effort, no general solution was found [1]. First
experiment with Least squares area-based matching was proposed by Ackermann and Forstner
(in Germany) in the mid 1980 [6]. The idea of this method is to minimise the grey level
differences between the template and the matching window whereby the position and the shape
of the matching window are parameters to be determined in the adjustment process. From mid
1980 to last years of XX century, image-matching technique has been quickly developed.
Rosenholm (1987) [5] proposed the method of least squares multi-point matching in evaluating
three-dimensional models. In 1992 Heipke [3] represented ,,A global approach for least squares
image matching and surface reconstruction in object space". Integrating multi-image matching
and object surface reconstruction does Heipke's method. Many other research papers related to
LSMM for accuracy improvement have been published from 1990s till now. Global image
matching (including LSMM) can provide much more reliable and accurate matching results
than the single point matching method. For example, LSMM based on image space can reach
+0,1 ~ +0,5 pixel accuracy and LSMM based on object space can reach 0,15 ~ +0.25 pixel [9].
In the LSMM there are two directions of investigating. First of them depends on the
computational optimalization of the normal equation system. The method of using array
relaxation technique (ART) proposed by Xiaoliang Wu [9] is about 15 times faster than the
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conventional LSMM. . The second direction depends on the choice of weight model for
observation system. Using the variable weight model for LSMM computed by ART, obtained
result accuracy is about 2 times better than the conventional LSMM and is about 1.5 times
better than LSMM with uniform weight model computed by ART [9].

This paper focuses on the possibility improving the accuracy of LSMM for establishing
DEM by considering correlated neighbouring pixels and terrain height differences.

Least squares multi-point matching (LSMM)

Algorithms in image matching are based on the assumption that digital stereo-pair is
registered in epipolar geometry. An aerial stereo-pair is not likely to be in epipolar geometry,
since the attitude of the camera at the instant of exposure is different at every exposure station.
The epipolar geometry is only recovered with respect to the model space by relative
orientation. The real images or original photoes received at the instant of exposure have to be
scanned. By this procedure we receive digital images (pixel images). There are two steps
involved in the transformation of the digital images into epipolar images. First, digital images
are transformed to true vertical images — the images are parallel to the XY plan of the object
space system. Next, the true vertical images are transformed to normalised images, which must
be parallel to the air base and must have the same focal length [8]. The important property of
normalised images is that the epipolar lines of corresponding points are parallel to the image x-
axis (Fig.l).
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Fig. 1. The epipolar lines on the normalised images with a DEM

Assuming that a point A (Fig.l) whose horizontal parallax is to be determined and located
in a rectangle formed by four corner points Py (i, j); P, (i+1, j); P4 (i, j+1); P3 (i+1, j+1). By the
use of the following bilinear interpolation the height Z, of point A (X, Y) among 4 points Py, P,,
Py, Ps, is calculated as:



Least squares multi-point matching for DEM ... 47

Zy=ay+a X +aY +a, XY )

The height Z, of point A can be computed by use of bilinear interpolation method with
respect to a squares in the object space whose side length is L as follows:

Z = Zp (= XILX1-YIL)+ Z,,,(1 - YILX XIL)+

2
+Z,; (L= XILXYIL)+ Z 5 (XILXYIL)

Similarly, in the image space, the horizontal parallax p, of the normalised image point A
(x, y) can be expressed by the parallaxes py, pis1j, Pi j+1, Pist, j+1 Of its surrounding grid points
Pi(i, J); Po(i+l, j); Pa(i, j+l); Ps(i+l, j+1) according to the following equation [10]:

Pa= [Pi : xi+1 —x)(yjﬂ - )+P1+1 ](x—x )(}Qn _.y)+pi,j+l(xi+l —x)(}/_)’j)+
+ Din, ]+1(x X )(7 )’x ] Xivl T X; )(.7]+1 )’J)

3)

where: x; (x(x,, 5 2y P
If the spacing between neighbour nodes of grid is equal to 1, thus, the equation 3 should be
in the form

- [(1 N x)(l )Px] + x( )Px+1 j (1 - x)}' D ¥ "?’Pi+1,j+1] “4)

If the distances from the point A on the normalised image to node (i, j) are marked by d, = x
and d, = y (where 0 < d;; d; <1) we obtain (4) indentycal to the formula in [9].

Assuming the parallax of left epipolar line point A[g,(x, y)] is p°. Thus, g,(x+p° , y) is the
corresponding point of g,(x, y) in the right epipolar line. The least squares multi — point
matching is [9]:

U(XA):nl(x’)’)_”z(x = PO’}’>
=g2|(1—x)(1—)’)d]’ij+g2'x(1_}’)d]’i+1,,‘+ &)
+g2’(1_x).ydpi,j+l +g2'("9,)dpi+l,j+l -Ag

where: nj, n, —the noises of the left and right image, respectively;
Ag = gi(x, y) — galx +p’, y);
g.' — the differential in x-direction in the right epipolar line;
dpi, j; dpia, j; dp; j+1; dpis1, jq+ — the correction values to initial parallaxes p0 of
corresponding nodes P, P, Py, P;.
The observation and solution of LSMM can be expressed in the matrix form:
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v=AX-L with weight W

X=(ATWAJ' ATWL ©

where: A — the coefficient matrix of unknown,
X - the unknown vector of parallaxes corrections dp;j,
W - the weight matrix.

In the following section we should discuss about the weight matrix for computing the
system (6).

The weight models

The weight model plays an important role in computing LSMM. The ideal weight model
should reflect both the terrain feature and image intensity function. In practice it is difficult to
choose the ideal weight model. For practical usage the variance, differential, gradient of grey
level value or entropy can be considered to determine the weights. According to [6] the main
factor which affects the least squares single point matching is the image texture information in

the image. While estimating the variance of parallax p, there is a term O ; , which indicates that

it is related to the texture of the image. According to [10] the value of O ; can be determined

from following Parseval equation:
2 _ 2 —
O'g—jg (x)dx—J.Sg(s)ds 7

where: S,(s) — the power spectrum with s representing the frequency expressed by number of
point per 1 mm.

According to the definition of weight we can calculate uniform weight for observation
system (5) as follows:

W=t/0§ (8)

where: ¢ — constant (on dependancy of terrain texture).

Or, by array relaxation technique for solution system (6) which is transformed to following
system under the first (or second) order differential constraint [9]:

v=AX-L
U, = c,(p° + dp) with weight w,
v, = cy(p° + dp) with weight w,

where:
c1, co — the new special matrices;
wy, wy— the x, y direction weights.
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The wy, w, may be the uniform weight model or variable one. Determining the variable weight
model w,; and w,,; for each grid node point (i, j) as follows:

=6 +(manx "hxij)wl /(manX _ming“)

xij

yijzcz+(many_hyij)wz/(many_mingy) v

where:

w1, Wy, €1, ¢ — experimental constants (we recommend) w; = w, = 100, ¢; = ¢; =10;

max g,, min g, max g, min g, — the mean maximum and mean minimum values of
differentials at x and y direction, respectively.

On the base of adjustment calculus theory, root mean squares error (RMSE) of unknowns
dp depend on the free terms Ag; (i — number of point) whereas Ag; are the differences of grey
observations g, (in the left image) and g,, (in the right image). It means that Ag; is the function
of observations. Therefore Ag; are the dependent magnitudes [7]. Next, we consider that the
matching point within square Py, P,, P, P4, of which the size of terrain squares net is equal
10 m. The size of squares in the image scale 1:10000 will be equal 1mm. Several points located
in the area of Imm? should be potentially correlated under the light coherence phenomenon
known from physics. The correlation of neighbouring pixels in image was also confirmed in
another publication [4]. For solution of observation system (6) we must substitute the weights
W by covariance matrix C. The adjustment of (6) will be calculated under the condition
v'C" = min. On the power of [7] we can determine C, first, writing the system of differences
Ag;:

Ag, =g, — 8y
Ag, =81~ 8x
Agy =813~ 8 (10)
Agn :gln _g2n

The covariance C, for observation system (6) will be:

C=J,CJ, (11

Ag g

Assuming the variances of grey values of pixels in the left and right image are
2

equalO’lzJIn = g, = O'z we have
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-1 « . . B,
G, = o,

symmetr. part

s=]

where:

pii (i = 1 ...n) are the correlation coefficients of corresponding points homologous in
the left and right image,

pji=1.nj=1.mi # J) are the correlation coefficients of neighbouring points in
the left image.

o ; is according to (7).

Determining the correlation coefficients p; and p;; can be done in the following mainer: the
correlation coefficients p;; is to be obtained on bases of:

Pii =Cov(gli’g2i)/o-gli 0,2 (13a)
where gi;, g2, and Oyy;, 0Oy are the measured grey values of the pixel i in the left and right

image with their corresponding error, respectively.
Whereby, p; can be computed from the following formula:
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Ll (13b)

P =P;e
where:
d; — the distance from point i to point j on the image;
k — experimental coefficient.
After substituting the equation (12a) and (12b) to the equation (11) we can determine the
covariance matrix for solution of observation system (6) under the condition v"C™'v = min.
Marking W = C’', thus, the system (6) can be solved under the condition v W v = min. The
problem of dependent observation adjustment transformed to the independent observation
adjustment have been presented in [7].

Influence of the terrain height differences

In least squares matching the exact matching takes part only for the centre of matching
window. An error due to the height differences appears for pixels near the boundaries of a
window. To analyse the error of matching due to the relief, the four typical points lying at the
corner of matching window are to be examined. We assume that the size of window matching
is equal to size of a square of the rectangular grid. In this case we can examine the error of
matching for establishing DEM. The horizontal difference between two point P; (X;, Y;, Z;,) and
P; (X;, Y}, Z;,) of the corresponding epipolar line in the matching window has the form:

Ap=p,—p; z(xu'"xzi)_(xlj_xzj):

If‘zn(Xi_XB)+”21(Yi—YB)+”31(Zi_ZB)_in__ (14)
alB(Xi_XB)+a23()/i—YB)+433(Zi_ZB) Z
ay (X, - X, an V-V, v a(2,-2,) %,
“13(Xj_XB)+”23(Y;’_YB)+433(ZJ‘_ZB)+f_

-f

where:

f— principle distance of camera,

a;; — the coefficients of the rotation matrix for the right image ,

(X, Y, Z);;; — the model coordinates of points P;, and P;,

Xs, Y, Zp— coordinates of exposure station of the right image to left one (see Fig .1).
In order for established DEM to be absolutely oriented and right image have to be transformed
to epipolar lines, the parallax difference takes the following form for points that differ in X
direction (points P, P,).

X, - X X,
AP:Pi_Pj:fZ‘—Z:—fZ. fZ Z f_=
i i J
(15)
DZ X,D,tgo (X,.—XB)DXcga—D,(Z,—ZB)

o e +f

'+ Z.D,ge (Z,-z,) +Dagalz, - Z,)
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where:
D, — distance between points, P}, P, in X direction;
o — the angle of terrain slope in X direction, between P, and P,.
Assuming there is not difference between Z coordinates of projective centres of images, the
expression (15) takes now the form:

- XD g

Ap = (16)
=1 Z}+Z,D,go

Similarly, for those points P;, P; that differ in Y direction (points Py, P,). In case Zz = 0 we
have:

- XD, 1gf

Ap= Bl
e fZi2+Z,.Dyth

17

where:
D, — distance between points P, P, in Y direction;
B — the angle of terrain slope in Y direction.

For the given image (X;) and the terrain (a, ) formulas (16) and (17) allow to project
rationally sizes of regular grid (D,, D,) so the values Ap in two directions (X, ¥) have to be
equal (the same scale for two directions). As conclusion, in case of transformation by epipolar
lines, the terrain influence could be estimated by affine transformation [2]. For examining the
influence of height differences in LSMM to establishing DEM the formulas (16) and (17) can
be treated as the function of the height differences. For example, the equation (16) can be now
written in the new form:

~X,AZ, _ f AZ, _, -AZ,

X

2 ==Xy =
Z2+ZANZ. Z P Z +AZ. T T Z +AZ,

Ap=f

f (18a)

where AZ =D tgo; and 4, =7XB

Creating ratio A Z/Z;, the parallax difference A p will be in the following form:
AZX'

Z AZ |

Ap=-b, i ={b,. Z"] s (18b)
L i ¥ ==
Z. 2,

Considering the ratio A Z/Z, is smaller than 1. Thus, second term of (18b) could be
expanded into numerical series.
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AZ AZ2 -AZ AZ* A7
Ap = AZ, 1- +..)=b S — =S 18
p =—(b, ) - Zz )=06,( = 2z ) (18¢)

13 1 1 1

I

Assuming AZ, = 50 m; Z; = 500 m (height flight) the terms (AZ, 1Z)%, (AZ, 1Z;)* are the

infinitely small number. Where from we have

Ap=p,~p; =—(b,/Z )AZ, (19)

The equation (18a) can be written in following form:

-X,AZ —X K7
FA+————— e Fee R ) 20
p+ f Y ZAZ, (p, p,) fZi2+ZiAZX (20)

Linearizing the above equation, we obtain the following equation when the elements of

orientation are known
(20a)

oF 0, A0
dp. —dp . X _d(AZ F +Ap =0
pz pj+a(!zx> ( x)+ .\'+ pX
where:

F° -
dp;, dp; — the correction to parallaxes p; and p;;
d(AZ,) - correction unknown to height difference AZ, between points P, P

the initial value calculated on the base (20);

(X-direction)
Apg — initial value computed from (19).
Looking at the equation (5) and Fig.1, we can change the index i, j from equation (20a) for

points P, and P, lying in the X direction as follows:

oF
dp;.; —dp;., ; +md(AZi+l,j >+ Fro +Ap2x =0

21)

In the similar way, the equation (17) could be transformed into form (in Y-direction)

oF
2 a,(AZi,jH )+ F)'O + A]’Sy =0 (22)

dpi;j . dpi,jﬂ + 5(A7)
y

Relating the equation (21) and (22) to equation (5) we have observation system for

adjustment by indirect method with condition on the unknown:
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v=g,1-x)(1- )a’p,j + gox(1- )de]
+g,2(1_x)}'dpi.j+l +g§(xy)dpi+1,j+x —Ag; given C
APij = Apin +5(B£Z"—)d (8Z,,,, )+ E* +Apt =0 (23)

PR d(AZ,.. J+ F* +Ap%, =0
Pt;j px,]+l S(E) 41+l y PxY
J

We can change two unknowns d(AZ,, ), d(AZ; ;,,) presented in the conditional equations
(23) by unknowns da, df the terrain slopes in X and Y direction on the basis of (16), (17). The
form of the equation system (23) will take on the form

v=g,(1-x) (= y)dp,; + gx(1= y)dp,.,;

+ g3 (U= x)yedp, o1 + 85 () dp ju — Ags given C
dp,; —dp,., ; +Gdo+ E} +Apg, =0

dp,; ~dp, o, +GpdB + F +Apg =0

(24)

where the G, ; Gg are the differentionals caculated from (16) and (17).

Systems (23) and (24) can be solved simultaneously by the method of least squares. In the
solution, it would be more convenient to write two last equations at (23) and (24) into the form
of error equations instead of using them as conditional equations.

The equation system (23) or (24) serves for establishing DEM with taking into account the
terrain height differences (AZ) between the node points of regular grid.

CONCLUSION

The development of digital image process in the automatic creation of DEM. The technical
basic of DEM is provided by image matching methods of witch least squares multi-points
matching is of immediate and which have been realised in software program on digital image
workstation. The accuracy of a DEM is simply the average vertical error of all points
interpolated within the DEM grid. Choosing the rational weight model is the important task for
solution of equation system (5). The grey level differences in (5) have been treated as the
dependent observations. Therefore in this paper the covariance matrix proposed by author is
related to the problem of correlated pixels located within square unit. The accuracy of a DEM
depends also on terrain features as slope (height differences of points), breakline etc. the terrain
property in the matching process. Two conditional equations on the unknown of height
differences of grid nodes in the form (21) and (22) introduced by author are related to the
equation (5). It makes new equation system in the form (23) for simultaneous solution of DEM.
In this way the reliability of establishing DEM should be better than the conventional least
square multi-point matching, especially for mountainous area.
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The system (23) and (24) have also important sense to detecting and filtering objects (as
buildings; trees etc) covering on flat terrain surface for accurated DEM.

The strategy of choosing the constraint weight and considering the stope of terrain (height
differences) become acurrent problem in the further development of least square mult-point
matching for DEM.
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Luong Chinh Ke

Wielopunktowe spasowanie obrazéw metoda najmniejszych kwadratéw dla utworzenia DEM
z uwzglednieniem korelujgcych pikseli sagsiadujacych i réznic wysokosci terenu

Streszczenie

Jednym z probleméw w fotogrametrii cyfrowej jest pasowanie obrazéw (Image Matching Technique) dla
identyfikacji punktéw homologicznych modelu utworzonego z pary stereograméw. Technika spasowania w obszarach
danych rastrowych - ABM (Area-Based Matching) jest bardziej precyzyjna niz technika spasowania w przestrzeni cech
danych wektorowych-FBM (Future-BasedMatching). Technika wielopunktowego spasowania obrazéw metody
najmniejszych kwadratéw - LSMM (Least Squares Multi-point Matching) jest jedna z technik globalnego spasowania.
(obrazéw) - GIM (Global Image Matching), ktéra zostala zmodyfikowana na podstawie techniki pojedynczo-
punktowego spasowania obrazéw metoda najmniejszych kwadratow - LSSM (Least Squares Single-point Matching).
Technika LSMM zapewnia wyzszy stopiefi zaufania niz LSSM, poniewaz relacja pomiedzy réznymi sasiadujacymi
punktami zostaje uwzgledniona w jednoczesnym procesie obliczeniowym. Technika LSMM jest przeznaczona do
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wykonywania pomiaru paralaks podtuznych punktéw siatki regulamej z zamiarem utworzenia DEM. W pracy
przedstawiono propozycje dotyczaca uwzgledniania korelacji sasiednich pikseli i duzych réznic wysokosci punktow
terenu celem doktadnego automatycznego tworzenia DEM.

Jlyonz Yun Ke

MHororoue4Hoe coBMellleHHE H300paeHH MeTOAOM HAHMEHbIIHX IS CO3AaHHA HHPPOBOH MogeTH
MECTHOCTH € Y4ETOM COCeTHHX NMHKCeJIell U Pa3HHIl BHCOThI MECTHOCTH

Pesome

OgaHoit u3 mnpobiem uudpoBoi oTorpaMMeTpHH sBISETCS COBMellleHHe H3oOpaxenuit (Image Matching
Technique) s upeHTHOWKAUUH TPaHCHOPMHMPOBAHHBIX LEHTPAJIBHBIX TOYEK MOJENH, CO3[AaHHOH C CTepeomapsl.
TexHuKa coBMeleHust B 06acTax pacTpoBhix maHHbeIX - ABM (Area-Based Matching) ssnsercs Gonee TouHOM yeM
TEXHMKA COBMEILEHUS B MPOCTPAHCTBE OcobeHHOCTEH BeKTOpHBIX NaHHEIX - FBM (Future-Based Matching). Texnuka
MHOrOTOYEYHOTO COBMELIEHUS M300paKeHHH METOLOM HaWMeHbIUHX KBanpatoB - LSMM (Least Square Multi-point
Matching) sBisieTcs ORHOH M3 TEXHHK riobansHOro cosmemienus nsobpaxenuit - GIM (Global Image Matching),
koTopas Obula MOAMOHLMPOBaHA Ha OCHOBE TEXHHKH OJHO-TOYEYHOTO COBMEUICHHA H300pakeHHMH MeTomoM
HauMeHbluux kBagpatoB - LSSM (Least Square Single-point Matching). Texnnka LSMM o6ecneunBaer Boicinyio
creneHb goBepus deM LSMM, mnoromy 4TO CBA3b MEXIY Ppa3sHBIMH COCEAHMMM TOYKAMH YYHTHIBAE€TCA B
ONHOBPEMEHHOM mpouecce BuuucneHui. Texnnka LSMM npenxasHayeHa a1 H3MEpPEHHH NMPOJOJBHBIX Mapaijakc
TO4YEK PaBHOMEPHOMH CETKH C LENbI0 co3naHus uHdpoBoit Mogens MecTHOCTH. B pabore npencrasneno npeanoxenue,
Kacawleecs y4éra KODpENSLUHMH COCEOHHX M OONIBUIMX pa3HHLl BBICOTHI TOYEK MECTHOCTH C LEJBI TOYHOroO
aBTOMAaTHYECKOr0 CO3IaHHA MOJENH MECTHOCTH.



