



**ORIGINAL ARTICLE** 

# First record of a novel begomovirus and satellites associated with leaf curl disease of passion fruit from India

Venkataravanappa Venkataravanappa<sup>1</sup>\*<sup>©</sup>, Lakshminarayana Reddy Cheegatagere Narasimha Reddy<sup>3</sup>\*, Shridhar Hiremath<sup>3</sup>, Bommanahalli Munivenkategowda Muralidhara<sup>4</sup> Suryanarayana Vishweswarasastry<sup>5</sup>, Virendra K. Baranwal<sup>6</sup>, Krishna Reddy Manem<sup>2</sup>

<sup>1</sup> Central Horticultural Experimental Station, Indian Council of Agricultural Research – Indian Institute of Horticultural Research, Chettalli, Madikeri, Karnataka, India

<sup>2</sup> Indian Council of Agricultural Research – Indian Institute of Horticultural Research, Hessaraghatta Lake, Bangalore, Karnataka, India

<sup>3</sup> Department of Plant Pathology, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra, Bangalore, Karnataka, India

<sup>4</sup> Indian Council of Agricultural Research – Directorate of Cashew Research, Puttur, Karnataka, India

<sup>5</sup>Department of Forest Biology and Tree Improvement, University of Agricultural Science, Dharwad, Sirsi, Karnataka, India

<sup>6</sup> Division of Plant Pathology, Indian Council of Agricultural Research – Indian Agricultural Research Institute, New Delhi, India

#### Vol. 62, No. 1: 78-92, 2022

DOI: 10.24425/jppr.2022.140303

Received: August 11, 2021 Accepted: November 19, 2021 Online publication: March 17, 2022

\*Corresponding address: venkatrajani@gmail.com; cnlreddy@gmail.com

Responsible Editor: Julia Minicka

#### Abstract

Passion fruit is an important fruit crop grown in parts of southern and north-eastern states of India. Leaf curl symptoms typical to begomovirus infection were observed on passion fruit plants at three locations of Madikeri District, Karnataka State, India. The disease incidence ranged from 10-20% in all the locations. In order to determine if the begomovirus was associated with leaf curl disease of passion fruit, 20 infected samples collected from different locations were subjected to PCR analysis using primers specific to begomovirus. This resulted in an expected PCR product of ~1.2 kb. Sequence analysis of these products revealed that they have more than 98% similarity among them and have similarity with other begomoviruses. Complete genome sequencing of begomovirus associated with one sample (PF1 collected from CHES, Madikeri) was done using RCA. Further, sequencing of betasatellite and alphasatellite was done after PCR amplification using specific primers. Complete DNA-A sequence of PF-isolate with other begomoviruses revealed that it shared nucleotide (nt) identity of 87.8 to 88.8% with Ageratum enation virus. This indicated the association of a novel begomovirus with leaf curl disease of passion fruit in India, for which we propose the name, Passion fruit leaf curl virus (PFLCuV) [IN-Kar-18]. PFLCuV associated betasatellite shared 98.3% sequence identity with Tomato leaf curl Bangladesh betasatellite, while alphasatellite had 95.7% sequence identity with Cotton leaf curl Multan alphasatellite. Recombinant analysis indicated a major component of PFLCuV DNA-A may have originated from a recombination of earlier reported begomoviruses. Recombination as well as GC plot analysis showed that the recombination occurred in the genome regions having low GC content regions of PFLCuV. However, there is no evidence of recombination in alphasatellite and betasatellite associated with leaf curl disease of passion fruit. This is the first record of a novel begomovirus and satellites associated with leaf curl disease of passion fruit from India.

**Keywords:** begomovirus, passion fruit, phylogenetic analysis, recombination, sequence demarcation tool (SDT)

#### Introduction

Passion fruit (*Passiflora edulis* Sims) is an important fruit crop originally from Brazil. The crop is grown in different locations of the world. In India, passion fruit is cultivated in Kerala, Tamil Nadu (Nilgiri hills and Kodai Kanal), Karnataka (Coorg) and northeastern states (Manipur Sikkim, Mizoram and Nagaland) on an area of 911 ha with the production of 458 t (Joy 2010).

Passion fruit cultivation was first started in Nilgiris, Coorg and Malabar regions of South India. Its productivity in India is 5.02 t  $\cdot$  ha<sup>-1</sup>, which is very low compared to countries like Colombia, Australia and Brazil, etc. where it is about  $32-35 \text{ t} \cdot \text{ha}^{-1}$ . This may be due to the attack of many pests and diseases, of which viruses are a major threat for passion fruit production. In addition to three different potyviruses associated with passion fruit woodiness disease (Sithole--Niang et al. 1996; Iwai et al. 2006), begomovirus infecting passion fruit was also reported from Puerto Rico (Brown et al. 1993). Later co-infection of both DNA and RNA viruses in passion fruit was recorded from Brazil (Novaes et al. 2003). Recently, a passion fruit-infecting novel begomovirus virus was also recorded from Alagoas State (Silva et al. 2006), Colombia (Vaca-Vaca et al. 2017) and Brazil (Ferreira et al. 2010; Fontenele et al. 2018).

The family Geminiviridae is classified into 14 genera, based on the genomic structure, vector involved in transmission and their host range, which includes more than 525 species (Walker et al. 2021). Of these, genus begomovirus is a highly pathogenic group of plant viruses threatening cultivation of many crops across the world. The members of viruses in the genus are known to be transmitted by whitefly, Bemisia tabaci and have been further divided into bipartite (having two genome components, DNA-A and DNA-B) and monopartite (single genome component known as a homologue of the DNA-A of bipartite begomoviruses) based on the presence of one or two genomic components (Zaidi et al. 2016). The open reading frames (ORFs) are aligned in both strands overlapping one another. DNA-A harbors two ORFs (AV1 and AV2) in the sense viral strand and five to six ORFs (AC1, AC2, AC3, AC4 and AC5) on the antisense strand required for expression and activation of different genes in the viral genome. DNA-B consists of two ORFs (BV1 and BC1) which are present in the sense and antisense of viral strands, respectively. The coding region of sense and antisense of strands of DNA-A and DNA-B components are separated by a non-coding DNA sequence known as an intergenic/common region. This contains cis-acting elements required for gene expression and

a predicted hairpin structure (~200 nts), referred to as the 'common region' (CR) which contains conserved nonanucleotide TAATATTAC sequence, where viral DNA replication is initiated (Hanley-Bowdoin *et al.* 2013).

The majority of begomoviruses are associated with DNA satellites known as alphasatellite (Briddon et al. 2004), betasatellite (Briddon et al. 2002) and deltasatellite (Fiallo-Olive et al. 2016). Beta and deltasatellites are true satellites, dependent on the helper virus for replication, movement and transmission, whereas alphasatellites replicate on their own and are not true satellites. However, they depend on the helper virus for movement and transmission. A literature survey showed that begomoviruses are co-evolving with their host plants, resulting in more genetic diversity via the recombination, pseudo-recombination and exchange of genomes among themselves. This phenomenon has led to the emergence of novel viral strains having more virulence with an extended host range (Seal et al. 2006a, b). Leaf curl disease with symptoms typical to begomovirus infection was observed on passion fruit vines at three locations of Madikari, Karnataka State, India. The present study was undertaken to characterize begomovirus and DNA-satellite molecules associated with leaf curl disease of passion fruit in India.

### **Materials and Methods**

#### Virus infected samples source

During 2017-2018, 20 virus infected passion fruit samples (Fig. 1) and one asymptomatic sample were collected from Kushal Nagar, Gonikoppa and the Central Horticulture Experiment Station (CHES) of Madikeri District, Karnataka State, India. These places are mainly located in Western Ghats (12.5°N latitude; 75.8°E longitude), which receives more than 1,500 mm annual rainfall over a period of 100 days (July to September). Disease incidence assessed by observing 100 plants in each location and the per cent of incidence was calculated by the number of infected plants divided by the number of plants observed multiplied by 100. Due to the creeping growth habit of passion fruit, care was taken not to sample the same plant more than once. The collected samples were brought to the Plant Pathology laboratory, CHES, Chettalli, Madikeri, Karnataka, India and underwent molecular characterization. Twenty infected passion fruit leaf samples collected from different locations were designated as PF1 to 20.

79



Fig. 1. Passion fruit plants: A - healthy, B - severe leaf curling symptoms under natural conditions

### Genomic DNA isolation, polymerase chain reaction and sequencing

Total DNA was isolated from 20 virus infected and one healthy passion fruit leaf samples using the cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle 1990). Association of begomovirus with DNA isolated from passion fruit samples was assessed by PCR amplification using primers specific to the begomovirus and subsequent sequencing of the PCR product obtained as described by Venkataravanappa et al. (2012). The complete genomic DNA of begomovirus was amplified by rolling circle amplification (RCA) from the passion fruit isolate (PF1) sample collected from CHES, Madikeri (Venkataravanappa et al. 2016). In order to isolate monomeric circular genome (DNA-A), 2 µl of RCA product was digested with BamH1 and cloned into the BamH1 linearised plasmid (pUC19) (Venkataravanappa et al. 2016). The recombinant clones were confirmed by restriction digestion and colony PCR using virus specific primers. To identify satellite genomes in infected passion fruit samples, the total DNA of infected passion fruit was subjected to PCR amplification using DNA satellites (alpha and beta) specific primers (Briddon et al. 2002; Kumar et al. 2010). The DNA satellites amplified through PCR were cloned into the pTZ57R/T vector as per the manufacturer's instructions (Thermo Fisher Scientific Inc., PA). The transformed recombinant clones were confirmed by PCR using specific primers and restriction endonuclease digestion. Ten selected positive clones were sequenced.

#### Sequence analysis

The sequence similarity search for viral genome and satellites was performed by BLASTn Program (http://www.ncbi.nlm.nih.gov/BLAST) and the selected begomovirus sequences and DNA satellites (Tables 1, 2, 3)

accessions displaying the highest percentage of nucleotide (nt) identity with the passion fruit infecting begomovirus were retrieved from the NCBI database for analysis. The per cent pairwise nt identities between PF1 and selected begomoviruses were calculated using SDT version 1.2 (Muhire et al. 2014). Neighbor-joining method analysis was carried out to determine the evolutionary relationship between begomovirus associated with passion fruit leaf curl using MEGA X software by 1,000 bootstrapped replications (Kumar et al. 2018). Recombination break point analysis was carried out between PF1 isolate of begomovirus and other selected begomoviruses using RDP4 with RDP settings with p value of 0.05 (Martin *et al.* 2015). The guanine-cytosine (GC) content in the viral genome (DNA-A) of the PF1 isolate and their associated DNA satellites (alphasatellite and betasatellite) with passion fruit leaf curl disease was analyzed using per cent GC-plot graph generated through Artemis DNA plotter analysis tool v18.1.0 (Carver et al. 2009).

#### Results

### Per cent incidence of leaf curl disease on passion fruit

The survey for the incidence of leaf curl disease in passion fruit plants in three locations of Madikeri District, Karnataka State, India revealed symptoms *viz.*, severe leaf curl, very brittle vines and fewer flowers, which became unproductive and/or produced shriveled fruits typical of begomovirus infection (Fig. 1). The incidence of passion fruit plants showing these symptoms ranged from 10–20% in the surveyed fields.

Table 1. GenBank accession numbers of selected begomovirus sequences used in this study for analysis

| Begomoviruses                                                             | Accession<br>numbers | Abbreviation                           |
|---------------------------------------------------------------------------|----------------------|----------------------------------------|
| Ageratum yellow vein Sri Lanka virus [Sri Lanka: 1999]                    | AF314144             | AYVSLV [LK : 99]                       |
| Ageratum enation virus – India [India : Pantnagar : TC357 : 2012]         | JX436472             | AEV-IN [IN : Pan : TC357 : 12]         |
| Ageratum enation virus – [India : Lucknow : Amaranthus : 2011]            | JF682242             | AEV-IN [IN : Luc : Ama : 11]           |
| Ageratum enation virus – India [India : Palampur : 2011]                  | HE861940             | AEV-IN [IN : Pal : 11]                 |
| Ageratum enation virus – India [India : Lucknow : AS-Poppy3 : 2012]       | JQ911765             | AEV-IN [IN : Luc : AS–P3 : 12]         |
| Ageratum enation virus – India [India : Lucknow : Ageratum : 2012]        | JQ911767             | AEV-IN [IN : Luc : Age : 12]           |
| Ageratum enation virus – India [India : Mohali : Age10 : 2010]            | JF728866             | AEV-IN [IN : Moh : Ag10 : 10]          |
| Ageratum enation virus – India [India : Mohali : Age6 : 2010]             | JF728864             | AEV-IN [IN : Moh : Ag6 : 10]           |
| Ageratum enation virus – India [India : Mohali : Age4 : 2010]             | JF728862             | AEV-IN [IN : Moh : Ag4 : 10]           |
| Ageratum enation virus – Nepal [India : Gomtinagar : Cleome : 2008]       | FJ177031             | AEV-NP [IN : Gom : Cle : 08]           |
| Ageratum enation virus – Nepal [India : Gorakhpur : Trichosanthes : 2008] | GQ268327             | AEV-NP [IN : Gor : Tri : 08]           |
| Ageratum enation virus – Nepal [India : Lucknow : 2007]                   | EU867513             | AEV-NP [IN : Luc : 07]                 |
| Ageratum enation virus – Nepal [Pakistan : Lahore : 2006]                 | AM698011             | AEV-NP [PK : Lah : 06]                 |
| Ageratum enation virus – Nepal [Pakistan : Faisalabad : Turnip : 2007]    | AM701770             | AEV-NP [PK : Fai : Tur : 07]           |
| Ageratum enation virus – India [India : Kangra : 2008]                    | FN543099             | AEV-IN [IN : Kan : 08]                 |
| Ageratum enation virus – Nepal [Pakistan : Lahore : 2004]                 | AM261836             | AEV-NP [PK : Lah : 04]                 |
| Ageratum enation virus – India [India : Pantnagar : TC364 : 2012]         | KC818421             | AEV-IN [IN : Pan : TC364 : 12]         |
| Papaya leaf curl virus – Crotonn [India : Bang : Cr2 : Croton : 2007]     | JN831446             | PaLCuV-Cro [IN : Ban : Cr2 : Cro : 07] |
| Papaya leaf curl virus – Lucknow [India : Lucknow]                        | Y15934               | PaLCuV-Luc [IN : Luc]                  |
| Tobacco curly shoot virus [India : Agartala : 2010]                       | JN387045             | TbCSV [IN : Aga : 10]                  |
| Tomato leaf curl Bangalore virus – C [India : Bangalore 4 : 1997]         | AF165098             | ToLCBaV – C [IN : Ban4 : 97]           |
| Chilli leaf curl virus [India : Phaseolus aureus : HJP3 : 2011]           | JQ654460             | ChiLCV [IN : Pau : HJP3 : 11]          |
| Tomato leaf curl virus – Bangalore [India : Bangalore : 1993]             | U38239               | ToLCKaV-Ban [IN : Ban : 93]            |
| Tomato leaf curl Kerala virus [India : Kerala 3 : 2007]                   | EU910141             | ToLCKeV [IN : Ker3 : 07]               |
| Papaya leaf curl Guangdong virus [Taiwan : Passiflora : 2011]             | KC161184             | PaLCuGdV [TW : Pas : 11]               |
| Euphorbia leaf curl virus [Taiwan : PF1 : 2011]                           | KC161185             | EuLCuV [TW : PF1 : 11]                 |
| Passion fruit chlorotic mottle virus [Brazil : Passiflora edulis : 2014   | MG696802             | PCMoV [BR : CDSMS : 14]                |

Table 2. GenBank accession numbers of selected betasatellites sequences used in this study for analysis

| Betasatellites                                                                | Accession<br>numbers | Abbreviation                    |
|-------------------------------------------------------------------------------|----------------------|---------------------------------|
| Tomato leaf curl Bangladesh betasatellite [India : Ahmedabad : Chilli : 2014] | KM880104             | ToLCBDB [IN: Ahm: Chi: 2014]    |
| Tomato leaf curl Bangladesh betasatellite [India : Kanpur : chilli : 08]      | HM007107             | ToLCBDB [IN : Kanr : Chi : 08]  |
| Tomato leaf curl Bangladesh betasatellite [India : Patna : Chilli : 08]       | HM007118             | ToLCBDB [IN : Pat : Chi : 08]   |
| Tomato leaf curl Bangladesh betasatellite [India : Jodhpur : Chilli : 09]     | HM007105             | ToLCBDB [IN : Jodhr : Chi : 09] |
| Tomato leaf curl Bangladesh betasatellite [India : Vararanasi : 06]           | EF190215             | ToLCBDB [IN : Var : 06]         |
| Tomato leaf curl Bangladesh betasatellite [India : Ghazipur : Chill : 07]     | HM007099             | ToLCBDB [IN : Ghazr : Chi : 07] |
| Tomato leaf curl Bangladesh betasatellite [India : Vellanad : 11]             | JN663876             | ToLCBDB [IN : Vell : 11]        |
| Tomato leaf curl Bangladesh betasatellite [India : Nar : Chilli : 04]         | JF706231             | ToLCBDB [IN : Nar : Chi : 04]   |
| Tomato leaf curl Bangladesh betasatellite [India : Noida : chilli : 07]       | HM007115             | ToLCBDB [IN : Noi : Chi : 07]   |
| Tomato leaf curl Bangladesh betasatellite [India : Lucknow : 2005]            | DQ343289             | ToLCBDB [IN : Luk : 05]         |
| Tomato leaf curl Bangladesh betasatellite [India : Rajasthan : 03]            | AY438558             | ToLCBDB [IN : Raj : 03]         |
| Tomato leaf curl Bangladesh betasatellite [India : PUSA3 : 10]                | HQ180395             | ToLCBDB [IN : PUSA3 : 10]       |
| Tomato leaf curl Bangladesh betasatellite [India : New Delhi : PUSA5 : 10]    | HQ180397             | ToLCBDB [IN : PUSA5 : 10]       |
| Tomato leaf curl Bangladesh betasatellite [India : Bihar09 : 2010]            | HQ257376             | ToLCBDB [IN : Bih09 : 10]       |

81



#### Table 2. GenBank accession numbers of selected betasatellites sequences used in this study for analysis - continuation

| Betasatellites                                                               | Accession<br>numbers | Abbreviation                   |
|------------------------------------------------------------------------------|----------------------|--------------------------------|
| Tomato leaf curl Bangladesh betasatellite [India : Bihar9 : 2010]            | GU732208             | ToLCBB [IN : Bih9 : 10]        |
| Tomato leaf curl Bangladesh betasatellite [India : Bihar12 : 2010]           | GU732207             | ToLCBDB [IN : Bih12 : 10]      |
| Tomato leaf curl betasatellite [India : Panipat2 : Papaya : 08]              | HM143902             | ToLCB [IN : Pani2 : Pap : 08]  |
| Tomato leaf curl betasatellite [India : Panipat7 : Papaya : 08]              | HM143907             | ToLCB [IN : Pani7 : Pap : 08]  |
| Cotton leaf curl Multan betasatellite – CLCuMB [India : Raigunj : 08]        | FJ159274             | CLCuMB [IN : Rai : 08]         |
| Cotton leaf curl Multan betasatellite [India : Haringhata 19 : Kenaf : 2006] | EF614159             | CLCuMB [IN : Har05 : Ken : 06] |
| Chilli leaf curl betasatellite [India : Panipat4 : Papaya : 08]              | HM143904             | ChLCB [IN : Pani4 : Pap : 08]  |
| Papaya leaf curl betasatellite [India : New Delhi : Papaya : 07]             | EU126826             | PaLCuB [IN : ND : Pap : 07]    |

Table 3. GenBank accession numbers of selected alphasatellites sequences used in this study for analysis

| Alphasatellites                                                                                  | Accession<br>numbers | Abbreviation                      |
|--------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|
| Cotton leaf curl Multan alphasatellite [Pakistan : cotton : 2011]                                | HE966423             | CLCuMuA [PK : Cot : 11]           |
| Cotton leaf curl Multan alphasatellite [Pakistan : cotton : 2011]                                | HE966422             | CLCuMuA [PK : Cot : 11]           |
| Cotton leaf curl Multan alphasatellite [Pakistan : cotton : Multan : 2015]                       | LN831970             | CLCuMuD1 [PK : Cot : Multan : 15] |
| Ageratum yellow vein India alphasatellite [India : Luc : <i>Parthenium hysterophorus</i> : 2012] | JX570736             | AYVIA [IN : Luc : Par : 12]       |
| Cotton leaf curl Multan alphasatellite [India : Punjab : wheat : 2011]                           | KC305094             | CLCuMuA [IN : Pun : wheat : 11]   |
| Ageratum enation alphasatellite [Pakistan : Faisalabd : Sonchus arvensis : 2007]                 | AM930245             | AEA [PK : Fai : Son : 07]         |
| Ageratum enation alphasatellite [China : Yunnan : 10]                                            | FN678899             | AEA [CN : Yun : 10]               |
| Bhendi yellow vein alphasatellite [India : Haryana : okra : 07]                                  | FN658718             | BhYVA [IN : HR : OK : 07]         |
| Bhendi yellow vein alphasatellite [India : Haryana : okra : 09]                                  | FN658716             | BhYVA [IN : HR : OK : 09]         |
| Ageratum enation alphasatellite [Japan : tomato : 11]                                            | KC677736             | AEA [JP : Tom : 11]               |
| Cotton leaf curl Multan alphasatellite [India : Pan : cotton : 12]                               | KF584012             | CLCuMuA [IN : Pan : Cot : 12]     |
| Ageratum enation alphasatellite [India : Luck : poppy : 12]                                      | JX913532             | AEA [IN : Luck : Poppy : 12]      |
| Ageratum enation alphasatellite [India : Luck : Guar : 10]                                       | GU385877             | AEA [IN : Luck : Guar : 10]       |
| Gossypium darwinii symptomless alphasatellite [India : Pap : 10]                                 | JQ322970             | GDarSLA [IN : Pap : 10]           |
| Tomato yellow leaf curl Thailand alphasatellite [China : Yunnan : Tom : 03]                      | AJ579357             | TYLCuTHA [CN : Yunnan : Tom : 03] |
| Sunflower leaf curl Karnataka alphasatellite [India : KTK : SnF : 11]                            | JX569789             | SLCuKaA [IN : KTK : SnF : 11]     |
| Malvastrum yellow mosaic alphasatellite [Viet Nam : Thanhhoa : Abutilon indicum : 06]            | DQ641717             | MaYA [VN : Than : Abu : 06]       |

## Genome structure of begomovirus associated with leaf curl disease of passion fruit

All of the 20 infected leaf samples collected from the different passion fruit growing farmers' fields gave positive PCR amplification for begomovirus using specific primers with the expected amplicon product of 1.2 kb in size. No amplification was noticed in the healthy sample. The analysis of nucleotide sequences obtained from this amplicon revealed that sequences from the 20 samples shared more than 98% identity among them and were closely related to other begomovirus sequences retrieved from the GenBank database which indicated that they belonged to a single

species, as per the classification of begomoviruses (Adams *et al.* 2017). Therefore, one sample, PF1 was subjected to amplification of complete genome (2.7 kb) of begomovirus and the nucleotide sequence obtained was submitted to NCBI GenBank.

### Sequence identities of DNA-A component with other begomoviruses

The length of the complete genome of begomovirus (PF1 isolate) associated with leaf curl diseases of passion fruit was 2753 nt (Acc. No. MK087124) and exhibited a genomic structure similar to other

monopartite begomoviruses from Old Word (OW), which codes for six conserved ORFs (V2, V2, C1, C2, C3 and C4) required for gene expression and infection. The intergenic region (IR) (was present between OR-FV2 and C1 of sense and antisense strands. The Rep gene (encoded by C1) consisted of all conserved motifs described by Vadivukarasi et al. (2006) except the GRS motif (RFFDLVSPTRSAHFHPNIQGAKSS), which was identified in this new begomovirus.

Sequence denaturation tool (SDT) tool was used for pairwise sequence comparison between begomovirus PF1 isolate from passion fruit and begomoviruses retrieved from NCBI database. The analysis showed that the DNA-A component of the PF1 isolate from passion fruit showed nt identity of 87.8 to 88.8% with the isolates of Ageratum enation virus (AEV) infecting different crops in Indian subcontinents and Sri Lanka, in which sequences are available in the database (Table 4) and only 57.7 to 82.6% identity with Passion fruit chlorotic mottle virus (MG696802), Passion severe leaf distortion virus (FJ972767), Papaya leaf curl Guangdong virus (KC161184), Passion fruit leaf distortion virus (KT899302) and Euphorbia leaf curl virus (KC161185) identified in infected passion fruit in Sri Lanka, Taiwan and Brazil, respectively. For the classification of begomoviruses, the threshold value was set at 91% nt

Table 4. Pairwise per cent nucleotide sequence identities between DNA-A and intergenic region (IR) of begomovirus associated with leaf curl disease of passion with other selected begomoviruses from the NCBI database

|                | Accession | Creat         | Country   | C           | me IR Ge    | Gene (percentage amino acid sequence identity) |             |             |             |             |             |
|----------------|-----------|---------------|-----------|-------------|-------------|------------------------------------------------|-------------|-------------|-------------|-------------|-------------|
| Begomoviruses* | numbers   | Crop          | Country   | Genome      |             | AV2                                            | CP (AV1)    | Rep (C1)    | TrAP (C2)   | REn (C3)    | C4          |
| AYVSLV         | AF314144  |               | Sri Lanka | 88.4        | <u>86.5</u> | <u>91.3</u>                                    | <u>98.0</u> | 83.3        | <u>89.5</u> | <u>91.7</u> | 49.4        |
| AEV            | JX436472  | tomato        | India     | <u>88.8</u> | 82.5        | 78.8                                           | 94.1        | 95.5        | 82.0        | 86.5        | 87.0        |
| AEV            | JF682242  | amaranthus    | India     | 88.4        | 80.7        | 78.8                                           | 93.3        | 93.6        | 79.8        | 82.0        | 85.8        |
| AEV            | HE861940  | soybean       | India     | 88.4        | 81.4        | 79.6                                           | 93.7        | 94.4        | 82.8        | 85.8        | 84.7        |
| AEV            | JQ911765  | рорру         | India     | 87.5        | 81.1        | 79.1                                           | 91.7        | 93.6        | 82.8        | 85.8        | 87.0        |
| AEV            | JQ911767  | ageratum      | India     | 88.3        | 81.1        | 77.1                                           | 94.1        | 93.6        | 81.3        | 86.5        | 87.0        |
| AEV            | JF728866  | ageratum      | India     | 88.4        | 81.1        | 80.8                                           | 94.1        | 94.7        | 81.3        | 86.5        | <u>88.2</u> |
| AEV            | JF728864  | ageratum      | India     | 88.6        | 81.1        | 80.1                                           | 94.2        | 95.5        | 81.3        | 86.5        | <u>88.2</u> |
| AEV            | JF728862  | ageratum      | India     | 88.1        | 81.1        | 80.8                                           | 94.1        | 94.1        | 81.3        | 86.5        | <u>88.2</u> |
| AEV            | AM698011  | ageratum      | India     | 87.2        | 74.0        | 79.1                                           | 93.7        | 93.6        | 79.8        | 82.0        | 84.7        |
| AEV            | FJ177031  | stinkweed     | India     | 87.1        | 75.0        | 79.1                                           | 94.1        | 92.5        | 80.5        | 82.8        | 81.1        |
| AEV            | GQ268327  | parwal        | India     | 87.1        | 75.0        | 80.0                                           | 93.7        | 93.6        | 79.8        | 82.0        | 84.7        |
| AEV            | EU867513  | amaranthus    | India     | 87.1        | 75.0        | 81.7                                           | 93.7        | 92.5        | 80.5        | 85.8        | 83.5        |
| AEV            | AM701770  | turnip        | India     | 87.0        | 76.2        | 78.2                                           | 93.7        | 93.9        | 80.5        | 83.5        | 80.0        |
| AEV            | FN543099  | zinnia sp     | Pakistan  | 88.7        | 81.1        | 79.6                                           | 94.1        | 95.2        | 82.8        | 87.3        | 87.0        |
| AEV            | AM261836  | milk thistle  | India     | 87.1        | 73.7        | 79.1                                           | 91.7        | 94.1        | 76.9        | 85.8        | 83.5        |
| AEV            | KC818421  | tomato        | India     | 87.8        | 75.2        | 77.1                                           | 93.7        | <u>95.8</u> | 82.0        | 87.3        | 83.5        |
| PaLCuV         | JN831446  | croton        | India     | 79.8        | 80.7        | 72.8                                           | 79.2        | 78.9        | 80.5        | 82.8        | 42.8        |
| PaLCuV         | Y15934    | рарауа        | India     | 81.5        | 74.6        | 76.2                                           | 92.9        | 78.1        | 80.5        | 63.0        | 51.7        |
| TbCSV          | JN387045  | tomato        | India     | 82.2        | 79.0        | 77.1                                           | 92.5        | 85.5        | 81.3        | 84.3        | 32.8        |
| ToLCBaV        | AF165098  | tomato        | India     | 78.9        | 68.6        | 74.7                                           | 85.2        | 80.3        | 79.1        | 81.3        | 46.3        |
| ChiLCV         | JQ654460  | french bean   | India     | 82.0        | 85.0        | 65.2                                           | 82.0        | 84.2        | 79.8        | 76.8        | 45.4        |
| ToLCKaV        | U38239    | tomato        | India     | 82.9        | 76.8        | 81.3                                           | 92.6        | 84.2        | 81.3        | 85.8        | 49.4        |
| ToLCKeV        | EU910141  | tomato        | India     | 83.0        | 74.8        | 79.6                                           | 93.3        | 83.6        | 82.8        | 85.8        | 56.1        |
| PLDV           | KT899302  | passion fruit | Sri Lanka | 70.0        | 64.9        | -                                              | 70.0        | 65.9        | 49.6        | 52.5        | 38.2        |
| PSLDV          | FJ972767  | passion fruit | Brazil    | 68.4        | 68.0        | -                                              | 69.2        | 64.9        | 48.8        | 51.1        | 46.3        |
| PaLCuGDV       | KC161184  | passion fruit | Taiwan    | 77.2        | 73.0        | 77.5                                           | 81.3        | 73.2        | 68.8        | 70.8        | 65.8        |
| EuLCV          | KC161185  | passion fruit | Taiwan    | 82.6        | 78.2        | 70.3                                           | 92.5        | 85.8        | 83.5        | 84.3        | 61.4        |
| PCMoV          | MG696802  | passion fruit | Brazil    | 57.7        | 58.0        | 17.7                                           | 25.5        | 35.2        | 71.0        | 56.0        | 46.3        |

\*the species are indicated as: Ageratum yellow vein Sri Lanka virus (AYVSLV), Ageratum enation virus (AEV), Papaya leaf curl virus (PaLCuV), Tobacco curly shoot virus (TbSCV), Tomato leaf curl Bangalore virus (ToLCBaV), Chilli leaf curl virus (ChiLCV), Tomato leaf curl virus (ToLCKaV), Tomato leaf curl Kerala virus (ToLCKeV), Euphorbia leaf curl virus (EuLCV), Passion fruit leaf distortion virus (PLDV), Passion severe leaf distortion virus (PSLDV), Papaya leaf curl Guangdong virus (PaLCuGDV) and Passion fruit chlorotic mottle virus (PCMoV). For each column the highest value is underlined

83





DNA A

Fig. 2. Phylogenetic analysis of the begomovirus associated with leaf curl disease of passion fruit under study (MK087124) (A) with selected begomoviruses. The phylogeny was drawn using the neighbor-joining method by employing the MEGA7 with 1,000 bootstrap replicates. The pairwise identity for begomovirus associated with leaf curl disease of passion fruit (B) with other selected begomoviruses under study was calculated using Sequence Demarcation Tool. The putative recombination events of begomovirus (MK087124) associated with leaf curl disease of passion fruit were identified by RDP analysis (C). A genomic map of begomovirus and arrangement of genes along with their coding direction nucleotide scale (1 to 2753). The acronyms of begomoviruses were given as Ageratum enation virus (AEV) and Chilli leaf curl virus (ChiLCV). The indeterminate sequence origin indicated as "unknown". The recombination position in the genome of the begomovirus indicated as a box below, at the top of the diagram. The details of the sequences used for this study are listed in Table 1. The abbreviations indicate an intergenic region (IR), AV2-Pre-coat protein, CP/AV1 – coat protein, Rep/AC1 – replication-associated protein, REn/AC3 – replication enhancer protein, TrAP/AC2 – transcriptional activator protein







Venkataravanappa Venkataravanappa et al.: First record of a novel begomovirus and satellites ...

identity for demarcation of species (Adams *et al.* 2017). PF1 isolate from passion fruit from the Karnataka State, India showed less than 91% nt sequence identity with other known viruses and can be considered as a new species, for which we propose the name, *Passion fruit leaf curl virus* (PFLCuV) [IN-Kar-18]. This result was also supported by phylogenetic analyses showing that PF1isolate from passion fruit closely clustered with AEV infecting diverse crops on Indian subcontinents and Sri Lanka (Figs. 2A, B).

The amino acid (aa) sequence identities of different ORF were compared with other closely related begomviruses. The results revealed that PFLCuV associated with the passion fruit shared maximum aa identities in AV2, CP, C2 and C3 regions with ORFs of *Ageratum yellow vein Sri Lanka virus* (AYVSLV) and in Rep (C1) and C4 regions with AEV infecting tomato and *Ageratum conyzoides* (Table 4). The nt identity of the IR region of PFLCuV from passion fruit (isolate PF1) had more than 86.5% identity with IR of reported AYVSLV (Table 4). The length of IR in PFLCuV was 287 nt, which is similar to other begomoviruses reported so far.

Attempts were made to amplify a second component (DNA-B) in symptomatic passion fruit plant samples using primers specific to the DNA-B molecule. No amplification was detected in any of the samples indicating that the PFLCuV under study is probably a monopartite begomovirus.

#### Genome organization of DNA satellites of passion fruit

Since OW begomoviruses are commonly encountered with satellite molecules, the PCR assay was performed using universal primers specific for alpha and betasatellites (Briddon et al. 2002; Kumar et al. 2010). The PCR product of 1.3 kb and 1.2 kb size products specific to beta and alpha satellites, respectively, were obtained. This indicates the presence of alphasatellite (DNA D1) and betasatellite (DNA  $\beta$ 1) in leaf curl disease affected passion fruit plants. The length of DNA D1 and DNA  $\beta$ 1 amplified from the infected passion fruit were 1375 nt (Acc No. MK087126) and 1369 nt (Acc. No. MK087125) and were submitted to the NCBI, GenBank. The alphasatellites have a one single ORF in sense (coordinates 89-1036) strand with a coding capacity of 315 aa. The DNA D1 sequence associated with the begomovirus isolate from passion fruit showed high nt identity (95.7%) with Cotton

**Table 5.** Comparison of nucleotide or amino acid sequence identities between alphasatellite with *Passion fruit leaf curl virus* (PFLCuV) from passion fruit with other selected alphasatellite sequences retrieved from NCBI database

| Alphasatellites* | Accession numbers | Crop         | Complete sequence of DNAD1<br>(percentage NSI) | Percentage amino acid sequence identity of Rep gene |
|------------------|-------------------|--------------|------------------------------------------------|-----------------------------------------------------|
| CLCuMuA          | HE966423          | cotton       | <u>95.7</u>                                    | <u>97.1</u>                                         |
| CLCuMuA          | HE966422          | cotton       | 95.4                                           | 96.1                                                |
| CLCuMuA          | LN831970          | cotton       | 78.9                                           | 85.9                                                |
| AYVIA            | JX570736          | parthenium   | 82.9                                           | 90.1                                                |
| CLCuMuA          | KC305094          | wheat        | 84.4                                           | 92.6                                                |
| AEA              | AM930245          | milk thistle | 83.9                                           | 91.7                                                |
| AEA              | FN678899          | _            | 83.5                                           | 92.3                                                |
| BhYVA            | FN658718          | okra         | 80.3                                           | 88.5                                                |
| BhYVA            | FN658716          | okra         | 80.3                                           | 88.5                                                |
| AEA              | KC677736          | tomato       | 85.2                                           | 90.1                                                |
| CLCuMuA          | KF584012          | cotton       | 79.9                                           | 84.4                                                |
| AEA              | JX913532          | pepper       | 84.9                                           | 91.1                                                |
| AEA              | GU385877          | cluster bean | 85.0                                           | 91.7                                                |
| GDarSLA          | JQ322970          | рарауа       | 78.9                                           | 93.3                                                |
| TYLCuTHA         | AJ579357          | tomato       | 81.6                                           | 87.3                                                |
| SLCuKaA          | JX569789          | sunflower    | 81.2                                           | 87.9                                                |
| MaYA             | DQ641717          | monkey Bush  | 78.8                                           | 86.9                                                |

\*the species are indicated as: Cotton leaf curl Multan alphasatellite (CLCuMuA), Ageratum yellow vein India alphasatellite (AYVIA), Ageratum enation alphasatellite (AEA), Bendhi yellow vein mosaic alphasatellite (BhYVA), Gossypium darwinii symptomless alphasatellite (GDarSLA), Tomato yellow leaf curl Thailand alphasatellite (TYLCuTHA), Sunflower leaf curl Karnataka alphasatellite (SLCuKaA), Malvastrum yellow mosaic alphasatellite (MaYA). For each column the highest value is underlined



*leaf curl Multan alphasatellite* (HE966423) (Table 5) isolates originating from the Indian subcontinent infecting cotton. As per the recent classification, the threshold level of alphasatellites was set at 88% (Briddon *et al.* 2018) and the identified satellite was similar

to an isolate of *Cotton leaf curl Multan alphasatellite* infecting cotton which belongs to family *Alphasatellitidae*, subfamily *Geminialphasatellitinae* and genus *Colecusatellite*. These results were well supported in phylogenetic analysis (Figs. 3A, B).



**Fig. 3.** Phylogenetic relationships of the alphasatellite (MK087126) (A) associated with *Passion fruit leaf curl virus* (PFLCuV) isolated from passion fruit with selected alphasatellites. The phylogeny was drawn using neighbor-joining method by employing the MEGA7 with 1,000 bootstrap replicates. The pairwise identity scores of the alphasatellite were calculated (B) using sequence demarcation tool (SDT). The details of the sequences used for this study are listed in Table 2. The abbreviation indicates a Rep/AC1 – replication-associated protein

Betasatellite isolated from the passion fruit sample associated with begomovirus had characteristics similar to other betasatellites reported so far (Briddon *et al.* 2002; Venkataravanappa *et al.* 2011) and showed maximum nt identity (98.3%) with *Tomato leaf curl Bangladesh betasatellite* (ToLCBDB) infecting chilli crops on the Indian subcontinent (Table 6). As per the classification of betasatellites (Adams *et al.* 2017), the identified betasatellite is closely related to ToLCBDB infecting chilli, which is supported by a phylogenetic tree (Figs. 4A, B).

#### **Recombination analysis**

The recombination analysis using RDP4 based on the alignment of PFLCuV DNA-A sequence from passion fruit and other begomviruses indicates an intra specific of recombination in DNA-A like sequence of PFLCuV associated with passion fruit. A recombination break point of 226 nts was identified in the DNA-A molecule of PFLCuV associated with passion fruit shown to be derived from Passion severe leaf distortion virus (FJ972767) and Passion fruit leaf distortion virus (KT899302) as major and minor parents, respectively. The recombinations were determined at nucleotide positions of 160 and 386 with the probability value of  $1.243 \times 10^{-6}$ . Another recombination breakpoint of 636 nts was identified in the DNA-A molecule of PFLCuV and may be derived from Ageratum yellow vein Sri Lanka virus (AF314144), Ageratum enation virus (KC818421) as major and minor parents, respectively. Recombination break point was predicted at nucleotide, 1,733 and 2,369 with the *p*-value of  $1.208 \times 10^{-52}$ . The recombination fragment of 140 nts was identified in the DNA-A molecule of PFLCuV with the minor and major parent resembling Chilli leaf curl virus (JQ654460) and Papaya leaf curl virus (Y15934), respectively. Similarly, another breakpoint of 112 nts was detected with parents resembling Ageratum yellow vein Sri Lanka virus (AF314144), Chilli leaf curl virus (JQ654460). The breakpoints were also detected between 2,552 and 2,692 nts with

**Table 6.** Comparisons of nucleotide or amino acid sequence identities between betasatellite (PF1β) with *Passion fruit leaf curl virus* (PFLCuV) from passion fruit with other selected betasatellites sequences retrieved from NCBI data base

| Betasatellites* | Accession<br>numbers | Crop     | Complete sequence of DNAβ<br>(percentage NSI) | Percentage amino acid<br>sequence identity of βC1 gene |
|-----------------|----------------------|----------|-----------------------------------------------|--------------------------------------------------------|
| ToLCBDB         | KM880104             | chilli   | <u>98.3</u>                                   | <u>97.5</u>                                            |
| ToLCBDB         | HM007107             | chilli   | 86.9                                          | 83.8                                                   |
| ToLCBDB         | HM007118             | chilli   | 88.5                                          | 87.5                                                   |
| ToLCBDB         | HM007105             | chilli   | 89.3                                          | 85.0                                                   |
| ToLCBDB         | EF190215             | chilli   | 86.9                                          | 85.0                                                   |
| ToLCBDB         | HM007099             | chilli   | 88.1                                          | 86.6                                                   |
| ToLCBDB         | JN663876             | chilli   | 89.1                                          | 86.6                                                   |
| ToLCBDB         | JF706231             | chilli   | 89.0                                          | 86.6                                                   |
| ToLCBDB         | HM007115             | chilli   | 88.6                                          | 82.5                                                   |
| ToLCBDB         | DQ343289             | chilli   | 88.9                                          | 85.8                                                   |
| ToLCBDB         | AY438558             | tomato   | 89.9                                          | 86.6                                                   |
| ToLCBDB         | HQ180395             | tobacco  | 88.2                                          | 88.1                                                   |
| ToLCBDB         | HQ180397             | tobacco  | 88.4                                          | 86.6                                                   |
| ToLCBDB         | HQ257376             | okra     | 87.3                                          | 61.3                                                   |
| ToLCBDB         | GU732208             | okra     | 87.1                                          | 61.2                                                   |
| ToLCBDB         | GU732207             | okra     | 88.0                                          | 62.0                                                   |
| ToLCB           | HM143902             | рарауа   | 89.2                                          | 85.5                                                   |
| ToLCB           | HM143907             | рарауа   | 86.7                                          | 83.8                                                   |
| CLCuMuB         | FJ159274             | hibiscus | 63.7                                          | 27.9                                                   |
| CLCuMuB         | EF614159             | hibiscus | 65.5                                          | 27.8                                                   |
| ChLCB           | HM143904             | chilli   | 91.8                                          | 87.2                                                   |
| PaLCuB          | EU126826             | рарауа   | 88.0                                          | 83.3                                                   |

\*the species are indicated as Tomato leaf curl Bangladesh betasatellite (ToLCBDB), Tomato leaf curl betasatellite (ToLCB), Cotton leaf curl Multan betasatellite (CLCuMuB), Chilli leaf curl betasatel





**Fig. 4.** Phylogenetic relationships of the betasatellite (MK087125) (A) associated with *Passion fruit leaf curl virus* (PFLCuV) from passion fruit with selected betasatellites. The phylogeny was drawn using neighbor-joining method by employing the MEGA7 with 1,000 bootstrap replicates. The pairwise identity scores of the betasatellite were calculated (B) using Sequence Demarcation Tool. The details of the sequences used for this study are listed in Table 3. The abbreviation indicates a satellite conserved region (SCR) and Adenine-rich (A-rich) region

the probability value of  $2.853 \times 10^{-2}$  and at 257 and 2683 nts with the average probability value of  $6.723 \times 10^{-3}$  (Fig. 2C). Further RDP analysis of betasatellite and alphasatellite showed that there is no evidence of recombination in betasatellite and alphasatellite associated with begomovirus infecting passion fruit.

#### GC plot analysis

Guanine-cytosine (GC) content refers to the proportion of guanine (G) and cytosine (C) in a given stretch fragment of the genome. The GC content of DNA-A of PFLCuV from passion fruit and associated DNA satellites was analyzed using Artemis DNA plotter version 18.1.0 (Figs. 5A, B, C). The GC analysis showed

variation in GC content at different stretches of the DNA-A nucleotide sequence. The innermost circle and bar represent above-average (green) and below average (red) of the GC content in the genome of PFLCuV associated with leaf curl disease of passion fruit, with a window size of 100. However, there was no variation with respect to the GC content across the genome, except in stretches, which fell in the overlapping region of genes encoding DNA-A (AV2-AV1, AC3-AC2 and AC4-AC1). All the genes had stretches of GC rich and

GC low regions in the viral genome, except the IR region, which had completely above average GC content (Fig. 5A). Similarly, in alphastellite, the innermost circle and bar represented above-average (black) and below average (dark green) of the GC content. GC plot analysis showed that high GC content was present in the non-coding region of SCR and Rep gene coding region and low GC content was present in the A-rich region (Fig. 5C). However, in the case of betasatellite, the innermost circle and bar represent above-average



**Fig. 5.** Guanine-cytosine (GC) analysis *Passion fruit leaf curl virus* (PFLCuV) associated with passion fruit from the passion fruit plants showing leaf curl disease. The outermost ring represents the nucleotide position in DNA-A (A) of the viral genome. Inner color code represents the respective coding genes (AV2, AV1) and AC1, AC2, AC3 and AC4 encoded by the DNA-A of PFLCuV, the innermost circle and bar represent the GC-plot with above average (green) and below average (red) GC content of the genome showing the highest and lowest possible regions of recombination sites. Above-average (orange) and below average (violet) GC content of the betasatellite (B), and above-average (orange) and below average (blue) GC content of the alphasatellite (C) with window size of 100. This analysis was performed using Artemis DNA plotter version 18.1.0, (http://www.sange r.ac. uk/Softw are/Artem is)



(orange) and below average (blue) of the GC content. GC plot analysis showed that the moderate to high GC content was present in the non-coding region of sattelite conserved region (SCR) and the coding region of  $\beta$ C1 gene and low GC content was present in the A-rich region (Fig. 5B).

### Discussion

Passion fruit is an important fruit crop for small and marginal farmers that can help increase their productivity and double their incomes (TechnoServe 2010). However, diseases caused by viruses are a major constraint for passion fruit production worldwide (Moreira 2008). Important viral diseases in passion fruit are caused by potyviruses (Brand et al. 1993; Sithole-Niang et al. 1996; Iwai et al. 2006; Nascimento et al. 2006). These viral diseases are potentially major threats to passion fruit production and reduce the orchard life span to only a year resulting in 100% yield loss (Trevisan et al. 2006). In this study, passion fruit plants showing typical leaf curl symptoms were observed in the orchards and they indicated a possible association of begomovirus infection. The disease was prevalent in all the orchards surveyed indicating its economic importance for passion fruit. Complete genome sequence of begomovirus and associated satellites from passion fruit samples with leaf curl symptoms revealed the association of a novel species, Passion fruit leaf curl virus ((PFLCuV) [IN-Kar-18]) with previously reported alphasatellite (CLCuMuA) and betasatellite (ToLCBB) from other crops. Novel begomovirus associated with leaf curl disease of passion fruit fulfilled the criteria of less than 91 nt identity with other known begomoviruses reported so far.

The complete nt sequence of alphasatellite associated with PFLCuV isolated from passion fruit belongs to CLCuMuA infecting cotton in Pakistan. The exact role of this satellite has not been completely shown. However, it was suggested that it has a role in attenuating disease symptoms and maintaining the low level of accumulation of betasatellite in the host (Wu and Zhou 2005). Furthermore, it was reported that rep protein of satellites plays a role in RNAi silencing of begomovirus disease complexes (Nawaz-ul-Rehman et al. 2009). However, the role of alphasatellites in passion fruit needs to be established. Tomato leaf curl Bangladesh betasatellite isolated from passion fruit associated with PFLCuV showing leaf curl symptoms is a more frequently encountered satellite molecule and has been observed with begomoviruses in tomato and chilli from India (Chattopadhyay et al. 2008; Sivalingham et al. 2010). The relationship between begomoviruses and betasatellites may be facultative or obligate,

in which a few of the begomoviruses required satellites to express the symptoms and in some cases satellite molecules were not required for begomovirus to cause the disease on a particular host (Briddon *et al.* 2001; Sattar *et al.* 2013).

The diverse methods used in the recombination analysis strongly indicated past recombination in the viral genome. The overlapping recombination in the PFLCuV genome associated with leaf curl disease of passion fruit with other begomoviruses is interesting and needs to be resolved. Such intra and inter-species recombinations play major roles in the evolution of begomoviruses (Lefeuvre *et al.* 2007), and lead to the appearance of a new virus species in the agricultural system (Garcia-Andres *et al.* 2007).

The low GC region in DNA-A of the PFLCuV associated leaf curl disease of passion fruit might serve as potential recombination sites for facilitating the evolution of a virus as documented in many viruses infecting plants and animals (Yogindran *et al.* 2021; Robinson *et al.* 2013). The sequence with high GC content has more stability due to a triple hydrogen bond, stacking interactions between the bases and is also linked with topology and orientation of DNA strands (Ninh 2013; Yogindran *et al.* 2021). A higher number of bonds between bases in a DNA strand, generally requires more energy to break the strand. Similarly, high GC content was found in the intergenic region of *Herpes simplex virus* (HSV) genome, linked with a possible role in viral evolution and pathogenesis (Brown 2007).

In the present study, GC content analysis indicates the possible recombination break points was detected in DNA-A of the PFLCuV at below average GC content. The regions of DNA-A, in which recombination is occur were identified as intergenic region (160 and 386 nt recombinations occur), replication-associated protein and AC4 protein (1,733-2,369; 2,552-2,692; 2,571–2,683 nts) respectively. Therefore, the GC plot analysis suggests that PFLCuV associated with leaf curl disease of passion fruit may undergo recombination at below average GC content regions of its genome The literature surveyed also showed similar results in regions having low GC content as potential recombination sites in plant infecting begomovirus (Yogindran et al. 2021) and human adenovirus, which may facilitate virus molecules to evolve and also allow a species to increase its host range in a new environmental niche (Robinson *et al.* 2013).

Passion fruit is mainly propagated through seed, grafting as well as stem cutting. However, propagation through seed may not be the preferred method due to lot of variability. Most growers depend on stem cutting and grafted seedlings for their commercial cultivation. The occurrence of leaf curl disease on passion fruit is alarming, signaling the need to utilize planting material free from it. The PCR based detection method

developed in this study will be useful in tackling virus infection early in clonally propagated passion fruit samples. To our knowledge, this is the first record of the novel begomovirus affecting passion fruit in India.

#### Acknowledgements

The authors are grateful to the Director, Indian Institute of Horticultural Research, Bangalore for providing research facilities.

#### References

- Adams M.J., Lefkowitz E.J., King A.M.Q., Harrach B., Harrison R.L., Knowles N.J., Kropinski A.M., Krupovic M., Kuhn J.H., Mushegian A.R. 2017. Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses. Archives of Virology 162: 2505–2538. DOI: https://doi.org/10.1007/s00705-017-3358-5
- Brand R.J., Burger J.T., Rybicki E.P. 1993. Cloning, sequencing, and expression in *Escherichia coli* of the coat protein gene of a new potyvirus infecting South African passiflora. Archives of Virology 128: 29–41. DOI: https://doi.org/10.1007/ BF01309786
- Briddon R.W., Bull S.E., Amin I., Mansoor S., Bedford I.D., Rishi N., Siwatch S.S., Zafar Y., Abdel-Salam A.M., Markham P.G. 2004. Diversity of DNA 1: A satellite-like molecule associated with monopartite begomovirus-DNA β complexes. Virology 324: 462–474. DOI: https://doi.org/10.1016/ j.virol.2004.03.041
- Briddon R.W., Bull S.E., Mansoor S., Amin I., Markham P.G. 2002. Universal primers for the PCR-mediated amplification of DNA beta: A molecule associated with some monopartite begomoviruses. Molecular Biotechnology 20: 315–318. DOI: https://doi.org/10.1385/MB:20:3:315
- Briddon R.W., Mansoor S., Bedford I.D., Pinner M.S., Saunders K., Stanley J. 2001. Identification of DNA components required for induction of cotton leaf curl disease. Virology 285: 234–243. DOI: https://doi.org/10.1006/viro.2001.0949
- Briddon R.W., Martin D.P., Roumagnac P., Navas-Castillo J., Olive E-F., Moriones E., Lett J.M., Zerbini F.M, Varsani A. 2018. Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus and nanovirus associated alphasatellites. Archives of Virology 163: 2587–2600. DOI: https://doi.org/10.1007/s00705-018-3854-2
- Brown J.C. 2007. High G + C content of herpes simplex virus DNA: proposed role in protection against retrotransposon insertion. Open Biochemistry Journal 1: 33–42. DOI: https: //doi.org/ 10.2174/1874091X00701010033
- Brown J.K., Bird J., Fletcher D.C. 1993. First report of passiflora leaf mottle disease caused by a whitefly-transmitted geminivirus in Puerto Rico. Plant Disease 77: 1264. DOI: https:// doi.org/ 10.1094/PD-77-1264C
- Carver T., Thomson N., Bleasby A., Berriman M., Parkhill J. 2009. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25 (1): 119–120. DOI: https:// doi.org/10.1093/ bioinformatics/btn578
- Chattopadhyay B., Singh A., Yadav T., Fauquet C.M., Sarin. N., Chakraborty S. 2008. Infectivity of the cloned components of a begomovirus: DNA beta complex causing chilli leaf curl disease in India. Archives of Virology 153: 533–539. DOI: https://doi.org/10.1007/s00705-007-0017-2
- Doyle J.J., Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15. DOI: https://doi.org/10.2307/ 2419362
- Ferreira S.S., Barros D.R., de Almeida M.R., Zerbini F.M. 2010. Characterization of *Passion fruit severe leaf distortion virus*,

a novel begomovirus infecting passionfruit in Brazil, reveals a close relationship with tomato-infecting begomoviruses. Plant Pathology 59: 221–230. DOI: https://doi.org/10.1111/ j.1365-3059.2009.02205.x

- Fiallo-Olive E., Tovar R., Navas-Castillo J. 2016. Deciphering the biology of deltasatellites from the New World: maintenance by New World begomoviruses and whitefly transmission. New Phytologist 212 (3): 680–692. DOI: 10.1111/ nph.14071
- Fontenele R.S., Abreu R.A., Lamas N.S., Alves-Freitas D.M.T., Vidal A.H., Poppiel R.R., Melo F.L., Lacorte C., Martin D.P., Campos M.A., Varsani A., Ribeiro S.G. 2018. *Passion fruit chlorotic mottle virus*: molecular characterization of a new divergent geminivirus in Brazil. Viruses 10: 169. https://doi.org/10.3390/v10040169
- Garcia-Andres S., Accotto G.P., Navas-Castillo J., Moriones E. 2007. Founder effect, plant host, and recombination shape the emergent population of begomoviruses that cause the tomato yellow leaf curl disease in the Mediterranean basin. Virology 15: 302–312. DOI: https://doi.org/10.1016 /j.virol.2006.09.030
- Hanley-Bowdoin L., Bejarano E.R., Robertson D., Mansoor S. 2013. Geminiviruses: masters at redirecting and reprogramming plant processes. Nature Reviews Microbiology 11 (11): 777–788. DOI: https://doi.org/10.1038/nrmicro3117
- Iwai H., Yamashita Y., Nishi N., Nakamura M. 2006. The potyvirus associated with the dappled fruit of *Passiflora edulis* in Kagoshima prefecture, Japan, is the third strain of the proposed new species *East Asian passiflora virus* (EAPV) phylogenetically distinguished from strains of *Passion fruit* woodiness virus. Archives of Virology 151: 811–818. DOI: https://doi.org/10.1007/s00705-0059-x
- Joy P.P. 2010. Passion fruit production technology (Adhoc). Pineapple Research Station (Kerala Agriculture University) Vazhakulam-686670, Muvattupuzha, Ernakulm Dirstict, Kerala, India.
- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. DOI: https://doi.org/10.1093/molbev/msy096
- Kumar J., Kumar A., Roy J.K., Tuli R., Khan J.A. 2010. Identification and molecular characterization of begomovirus and associated satellite DNA molecules infecting *Cyamopsis tetragonoloba*. Virus Genes 41: 118–125. DOI: https://doi. org/ 10.1007/s11262-010-0482-7
- Lefeuvre P., Lett J.M., Reynaud B., Martin D.P. 2007. Avoidance of protein fold disruption in natural virus recombinants. PLoS Pathogens 3: e181. DOI: https://doi.org/10.1371/journal.ppat.0030181
- Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. 2015. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution 1: vev003. DOI: 10.1093/ve/ vev003
- Moreira C.N. 2008. Viral characterization of isolates associated to yellow passion fruit woodiness disease (*Passiflora edulis* Sims f. *flavicarpa* O. Deg) from Livramento, Brazil. M.Sc. Thesis University of Vicosa, Brazil, 30 pp.
- Muhire B.M., Varsani A., Martin D.P. 2014. SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 9 (9): e108277. DOI: https://doi.org/10.1371/journal.pone.0108277
- Nascimento A.V.S., Santana E.N., Braz A.S.K. 2006. Cowpea aphid-borne mosaic virus (CABMV) is widespread in passionfruit in Brazil and causes passionfruit woodiness disease. Archives of Virology 151: 1797–809. DOI: https://doi. org/10.1007/s00705-006-0755-6
- Nawaz-ul-Rehman M.S., Mansoor S., Briddon R.W., Fauquet C.M. 2009. Maintenance of an old world betasatellite by a new world helper begomovirus and possible rapid adaptation of the betasatellite. Journal of Virology 83: 9347–9355. DOI: https://doi.org/10.1128/JVI.00795-09

- Ninh A. 2013.Correlation between GC-content and palindromes in randomly generated sequences and viral genomes. arXiv: 1302.5869v1 [q-bio.GN]
- Novaes Q.S., Freitas-Astua J., Yuki V.A., Kitajima E.W., Rezende J.A.M. 2003. Partial characterization of a bipartite begomovirus infecting yellow passion flower in Brazil. Plant Pathology 52: 648–654. DOI: https://doi.org/10.1046/j.1365-3059.2003.00878.x
- Robinson C.M., Singh G., Lee J.Y., Dehghan S., Rajaiya J., Liu E.B., Yousuf M.A., Betensky R.A., Jones M.S., Dyer D.W., Seto D., Chodosh J. 2013. Molecular evolution of human adenoviruses. Scientific Reports 3: 1812. DOI: 10.1038/ srep01812
- Sattar M.N., Kvarnheden A., Saeed M., Briddon R.W. 2013. Cotton leaf curl disease – an emerging threat to cotton production worldwide. Journal of General Virology 94 (4): 695–710. DOI: https://doi.org/10.1099/vir.0.049627-0
- Seal S.E., Jeger M.J., Van den Bosch F., Maramorosch K., Shatkin A.J., Thresh J.M. 2006a. Begomovirus evolution and disease management. Advances in Virus Research 67: 297–316. DOI: https://doi.org/10.1016/S0065-3527(06)67008-5
- Seal S.E., van den Bosch F., Jeger M.J. 2006b. Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Critical Reviews in Plant Sciences 25: 23–46. DOI: https://doi. org/10.1080/07352680500365257
- Silva S.C., Assuncao I.P., Carnauba J.P., Lima J.S., Amorim E.P.R., Lima G.A. 2006. Detection of a begomovirus in passionfruit (*Passiflora edulis* Sims) in the state of Alagoas. Revista Brasileira de Fruticultura 28: 512–513. (in Portuguese) DOI: https://doi.org/10.1590/S0100-29452006000300037
- Sithole-Niang I., Nyathi T., Maxwell D.P., Candresse T. 1996. Sequence of the 3'-terminal region of a Zimbabwe isolate of *Cowpea aphid-borne mosaic virus* (CABMV). Archives of Virology 141: 935–943. DOI: https://doi.org/10.1007/ BF01718167
- Sivalingham P.N., Malathi V.G., Varma A. 2010. Molecular diversity of the DNA-β satellites associated with tomato leaf curl disease in India. Archives of Virology 155: 757–764. DOI: https://doi.org/10.1007/s00705-010-0634-z
- TechnoServe 2010. The Coca-Cola Company, TechnoServe and The Gates Foundation Partner to Boost Incomes of 50,000 Small-Scale Farmers in East Africa. Press Release January 20, 2010. Available on: http://www.technoserve.org/ resources/press-room/2009-2010-pressreleases/tccc-gatestns.html. [Accessed: November 1, 2010]
- Trevisan F., Mendes B.M.J., Maciel S.C., Vieira M.L.C., Meletti L.M.M., Rezende J.A.M. 2006. Resistance to *Passion fruit woodiness virus* in transgenic passionflower expressing the

virus coat protein gene. Plant Disease 90: 1026–1030. DOI: https://doi.org/10.1094/PD-90-1026

- Vaca-Vaca J.C., Carrasco-Lozano E.C., Lopez K.L. 2017. Molecular identification of a new begomovirus infecting yellow passion fruit (*Passiflora edulis*) in Colombia. Archives of Virology 162: 573–576. DOI: https://doi.org/10.1007/ s00705-016-3098-y
- Vadivukarasi T., Girish, K.R., Usha R. 2006. Sequence and recombination analyses of the geminivirus replication initiator protein. Journal of Bioscience 32: 17–29. DOI: https:// doi.org/10.1007/s12038-007-0003-6
- Venkataravanappa V., Reddy C.N.L., Jalali S., Reddy M.K. 2012. Molecular characterization of distinct bipartite begomovirus infecting bhendi (*Abelmoschus esculentus* L.) in India. Virus Genes 44 (3): 522–535. DOI: https://doi.org/10.1007/ s11262-012-0732-y
- Venkataravanappa V., Reddy C.N.L., Swaranalatha P., Jalali S., Briddon R.W., Reddy M.K. 2011. Diversity and phylogeography of begomovirus-associated beta satellites of okra in India. Virology Journal 8: 555. DOI: https://doi. org/10.1186/1743-422X-8-555
- Venkataravanappa V., Swarnalatha P., Reddy C.N.L., Neha Ch., Reddy M.K. 2016. Association of recombinant *Chilli leaf curl virus* with enation leaf curl disease of tomato: a new host for chilli begomovirus in India. Phytoparasitica 44: 213–223. DOI: https://doi.org/10.1007/s12600-016-0510-9
- Wu P.J., Zhou X.P. 2005. Interaction between a nanovirus-like component and the *Tobacco curly shoot virus*/satellite complex. Acta Biochimica et Biophysica Sinica 37: 25–31. DOI: https://doi.org/10. 1093/abbs/37.1.25
- Walker P.J., Siddell S.G., Lefkowitz E.J., Mushegian A.R., Adriaenssens E.M., Alfenas-Zerbini P., Zerbini F.M. 2021. Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Archives of Virology 166 (9): 2633–2648. DOI: https://doi. org/10.1007/s00705-021-05156-1
- Yogindran S., Kumar M., Lingaraj S., Sanatombi K., Chakraborty S. 2021. Occurrence of *Cotton leaf curl Multan virus* and associated betasatellites with leaf curl disease of Bhut-Jolokia chillies (*Capsicum chinense* Jacq.) in India. Molecular Biology Reports 48: 2143–2152. DOI: https://doi. org/10.1007/s11033-021-06223-1
- Zaidi S.S.E.A., Martin D.P., Amin I., Farooq M., Mansoor S. 2016. Tomato leaf curl New Delhi virus: a widespread bipartite begomovirus in the territory of monopartite begomoviruses. Molecular Plant Pathology 18 (7): 901–911. DOI: 10.1111/mpp.12481