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Disturbance-Kalman state for linear offset free MPC

Truong Thanh TUAN, Haslinda ZABIRI, Mohamed Ibrahim Abdul MUTALIB and Dai-Viet N. VO

In model predictive control (MPC), methods of linear offset free MPC are well established
such as the disturbance model, the observer method and the state disturbance observer method.
However, the observer gain in those methods is difficult to define. Based on the drawbacks
observed in those methods, a novel algorithm is proposed to guarantee offset-free MPC under
model-plant mismatches and disturbances by combining the two proposed methods which are
the proposed Recursive Kalman estimated state method and the proposed Disturbance-Kalman
state method. A comparison is made from existing methods to assess the ability of providing
offset-free MPC on Wood-Berry distillation column. Results shows that the proposed offset free
MPC algorithm has better disturbance rejection performance than the existing algorithms.
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1. Introduction

When dealing with highly interactive multivariable processes such as distilla-
tion column,MPC is highly recommended as a controller [1]. The essence ofMPC
is to optimize a control problem based on a dynamic forecast model to obtain the
control move, which is sent as manipulated variable into the plant [2–7]. As any
model-based controller, MPC relies on an accurate dynamic model, which is usu-
ally a linear state space model [5,8]. The model uses to predict the plant behavior
is central to the computation and implementation of MPC [2,4,6]. Therefore, the
MPC performance is directly associated with the accuracy of model. However,
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the model is expected to differ from the plant [9–11] because of model-plant
mismatch caused by changes in plant characteristics with time and disturbances.
This leads to an error between the predicted and measured output and thereby
results in offset MPC.
The first method to achieve offset free MPC is obtained by adding a distur-

bance model to the plant model. An observer is used to estimate the state of the
process using the resulting plant-disturbance model. Offset free MPC algorithms
augmented with disturbance models under persistent disturbances and set-point
changes are reported [12–17]. The offset-free MPC is extended to deal with ar-
bitrary disturbances and references such as sines and ramps [18]. The second
method to achieve offset free MPC is the so-called state disturbance method [19].
This method does not require a disturbance model; however, the state of the
process should be measurable [20]. When the state of the process cannot be
measured, the method is altered by adding an output bias term to get offset free
MPC for the linear model in [20] and extended for nonlinear ones in [21–23].
An alternative offset-free MPC is based on a velocity form, in which the input
change and state change are used instead of the input value and the state value,
respectively [19, 24, 25].
The drawback of the disturbance method is difficult to obtain the disturbance

model in real industrial problems. In addition, the disturbance state and output
methods use the output error term to compensate the model-plant mismatches
which does not fully capture the dynamic behavior of the process comparing to
the state error.
The general goal of this paper is to develop a linear offset freemodel predictive

control with the proposed Disturbance-Kalman state method. The MPC with the
proposed Disturbance-Kalman for dealing with model-plant mismatches will
perform better in terms of disturbance rejection and tracking setpoint than other
existing offset-free MPC algorithms.

2. Problem statement

In this work, a linear discreate state space model is used by MPC.
A common linear discrete state space model that describes a process is con-

sidered, and it is given in model (1) as follows:

𝑥𝑘+1|𝑘 = 𝐴𝑥𝑘 |𝑘 + 𝐵𝑢𝑘 ,
𝑦𝑘+1|𝑘 = 𝐶𝑥𝑘+1|𝑘 ,

(1)

where subscript 𝑘 is the sampling time instant (𝑘 = integer); subscript 𝑘 + 1|𝑘
represents the 1-step ahead prediction at time instant 𝑘; 𝑘 |𝑘 represents estimated
variables at time instant 𝑘 such as: 𝑥𝑘 |𝑘 is the estimated state at time instant 𝑘 ,
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𝑥𝑘+1|𝑘 is state prediction with 1-step ahead prediction at time instant 𝑘+1, 𝑥 ∈ 𝑅𝑛𝑥
denotes the state vector, 𝑢 ∈ 𝑅𝑛𝑢 denotes the manipulated variable vector, and
𝑦 ∈ 𝑅𝑛𝑦 denotes the algebraic controlled vector. The discrete state space model
corresponds to a one step ahead prediction model. The matrices 𝐴, 𝐵, and 𝐶
are typically termed as a process matrix, an input matrix, and an output matrix,
respectively, and are determined by system identification. We assume the model
is controllable and observable. Note that matrices 𝐴, 𝐵, and 𝐶 in model (1) are
fixed once identification of the model of the MPC is accomplished.
There are two problems leading to offset in predicted output, 𝑦𝑘+1|𝑘 in

model (1):

• If 𝑥𝑘 |𝑘 in model (1) is wrong, it will make 𝑦𝑘+1|𝑘 wrong even model (1) is
correct;

• In the presence of a plant-model mismatch, it will make the output predic-
tive, 𝑦𝑘+1|𝑘 wrong even the state of the process, 𝑥𝑘 |𝑘 is correct.

Therefore, our research will focus on two points below to attain offset-free
MPC by eliminating the offset between the predicted output and the measured
output.

• Attainment of the corrected state estimate, 𝑥𝑚
𝑘 |𝑘 of the plant to replace 𝑥𝑘 |𝑘

in model (1) will be presented in section 3.2 with the proposed Recursive
Kalman estimated state;

• Addition of the compensated term to model (1), which is equal to the
difference between the predicted and measured output, will be presented in
section 4.2 with the proposed Disturbance-Kalman state method.

In summary, the method proposed for offset-free MPC will consist of the
following steps:

a) obtaining the corrected state of the process (the proposed Recursive Kalman
estimated state, 𝑥𝑚

𝑘 |𝑘 );

b) combining the corrected state with the proposed state prediction vector (the
proposed Disturbance-Kalman state method);

c) integrating the predictive state vector into MPC cost function;

d) comparing studies between the proposed method with other existing meth-
ods using the appropriate case studies.
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3. State observer

This work will propose the method to obtain the corrected state of the process
in the presence of a plant-model mismatch without an explicit disturbance model.
The proposed method is developed from Kalman filter method.

3.1. Kalman filter

The discrete-time Kalman filter equations in [26] are summarized as follows:

State prediction is as follows:

𝑥𝑘 |𝑘−1 = 𝐴𝑥𝑘−1|𝑘−1 + 𝐵𝑢𝑘−1 . (2)

Predictive error covariance is as follows:

𝑃𝑘 |𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴
′ +𝑄 . (3)

Kalman gain is as follows:

𝐾𝑘 = 𝑃𝑘 |𝑘−1𝐶
′ (𝐶𝑃𝑘 |𝑘−1𝐶′ + 𝑅

)−1
. (4)

Estimated state is as follows:

𝑥𝑘 |𝑘 = 𝑥𝑘 |𝑘−1 + 𝐾𝑘
(
𝑦𝑘 |𝑚 − 𝐶𝑥𝑘 |𝑘−1

)
. (5)

Estimated error covariance is as follows:

𝑃𝑘 |𝑘 = (𝐼 − 𝐾𝑘𝐶) 𝑃𝑘 |𝑘−1 , (6)

where 𝑦𝑘 |𝑚 is the measured plant output at time instant 𝑘 , 𝑄 denotes the process
noise covariance matrix, and 𝑅 denotes the measurement covariance matrix, the
transpose of a matrix or vector is denoted by the prime.
There may still be a problem that prevents the Kalman Filter from producing

the corrected state estimation as a faulty or an inaccurate mathematical model.

3.2. The proposed Recursive Kalman estimated state, xm
k under model-plant

mismatches and disturbances

Kalman filter reduces errors from inaccurate mathematical models based
on the correction term 𝐾𝑘

(
𝑦𝑘 |𝑚 − 𝐶𝑥𝑘 |𝑘−1

)
in equation (5). The model-plant

mismatch (MPM) is large such as big differential gain between a real plant and
a model, Kalman filter may lead to large state estimation error [26], it just helps
to reduce a part of the error. In this research, we propose a Recursive Kalman
estimated state to obtain the corrected state of the plant.
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Equation (5) is used recursively to find the 𝑛-steps estimated state, 𝑥+...𝑛
𝑘 |𝑘 as

follows:

𝑥𝑘 |𝑘 = 𝑥𝑘 |𝑘−1 + 𝐾𝑘
(
𝑦𝑘 |𝑚 − 𝐶𝑥𝑘 |𝑘−1

)
,

𝑥+
𝑘 |𝑘 = 𝑥𝑘 |𝑘 + 𝐾𝑘

(
𝑦𝑘 |𝑚 − 𝐶𝑥𝑘 |𝑘

)
,

𝑥++
𝑘 |𝑘 = 𝑥

+
𝑘 |𝑘 + 𝐾𝑘

(
𝑦𝑘 |𝑚 − 𝐶𝑥+

𝑘 |𝑘

)
,

𝑥+...𝑛
𝑘 |𝑘 = 𝑥+...𝑛−1

𝑘 |𝑘 + 𝐾𝑘
(
𝑦𝑘 |𝑚 − 𝐶𝑥+...𝑛−1

𝑘 |𝑘

)
,

(7)

𝐶𝑥𝑘 |𝑘 = 𝐶𝑥𝑘 |𝑘−1 + 𝐶𝐾𝑘 (𝑦𝑘 |𝑚 − 𝐶𝑥𝑘 |𝑘−1)
𝐶𝑥+

𝑘 |𝑘 = 𝐶𝑥𝑘 |𝑘 + 𝐶𝐾𝑘 (𝑦𝑘 |𝑚 − 𝐶𝑥𝑘 |𝑘 )
𝐶𝑥++

𝑘 |𝑘 = 𝐶𝑥
+
𝑘 |𝑘 + 𝐶𝐾𝑘 (𝑦𝑘 |𝑚 − 𝐶𝑥+

𝑘 |𝑘 )

𝐶𝑥+...𝑛
𝑘 |𝑘 = 𝐶𝑥+...𝑛−1

𝑘 |𝑘 + 𝐶𝐾𝑘 (𝑦𝑘 |𝑚 − 𝐶𝑥+...𝑛−1
𝑘 |𝑘 )

⇔

𝑦𝑘 |𝑘 = 𝑦𝑘 |𝑘−1 + 𝐶𝐾𝑘 (𝑦𝑘 |𝑚 − 𝐶𝑥𝑘 |𝑘−1)
𝑦+
𝑘 |𝑘 = 𝑦𝑘 |𝑘 + 𝐶𝐾𝑘 (𝑦𝑘 |𝑚 − 𝐶𝑥𝑘 |𝑘 )
𝑦++
𝑘 |𝑘 = 𝑦

+
𝑘 |𝑘 + 𝐶𝐾𝑘 (𝑦𝑘 |𝑚 − 𝐶𝑥+

𝑘 |𝑘 )

𝑦+...𝑛
𝑘 |𝑘 = 𝑦+...𝑛−1

𝑘 |𝑘 + 𝐶𝐾𝑘
(
𝑦𝑘 |𝑚 − 𝐶𝑥+...𝑛−1

𝑘 |𝑘

)
,

(8)

where 𝑛 denotes the 𝑛-steps of recursive Kalman filter, 𝑥+...𝑛
𝑘 |𝑘 denotes the 𝑛-steps

estimated state at time instant 𝑘 .

𝐶𝐾𝑘 = 𝐶𝑃
−
𝑘𝐶

′ (𝐶𝑃−
𝑘𝐶

′ + 𝑅
)−1

. (9)

𝑃 is symmetric and positive definite [26], implying 𝐶𝑃−
𝑘
𝐶′ ­ 0. 𝑅 is positive

definite [26]. Because of this, the 𝐶𝐾𝑘 of equation (9) has all eigenvalues which
are positive and less than 1.

Definition 1 𝑥𝑚
𝑘 |𝑘 is the corrected state estimate of the process if and only if there

exists 𝑥𝑚
𝑘 |𝑘 = 𝑥

+...𝑛
𝑘 |𝑘 such that 𝑦𝑘 |𝑚 = 𝐶𝑥𝑚

𝑘 |𝑘 .

If the difference between the predictive output, 𝑦𝑘 |𝑘−1 and the measured plant
output, 𝑦𝑘 |𝑚 is large, therewill always be a deviation between the estimated output,
𝑦𝑘 |𝑘 and the measured plant output, 𝑦𝑘 |𝑚. Because eigenvalues of 𝐶𝐾𝑘 are less
than 1, 𝐶𝐾𝑘will make 𝑦𝑘 |𝑘 go to 𝑦𝑘 |𝑚. However, 𝑦𝑘 |𝑘 cannot be asymptotically
equal to 𝑦𝑘 |𝑚 in one step. Therefore, at each recursive step, a part of the error
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will be reduced. This means, for a sufficiently large value of n-steps, the error
will vanish, and the 𝑛-steps estimated state, 𝑥+...𝑛

𝑘 |𝑘 will asymptotically converge to
the corrected state of real plant, 𝑥𝑚

𝑘 |𝑘 . The step-by-step description for obtaining
the corrected state of the plant, 𝑥𝑚

𝑘 |𝑘 is given in Algorithm 1 which is also shown
in the flowchart form in Figure 1. The measured output, 𝑦𝑘 |𝑚 is filtered noise,
and then the output without noise is sent to Recursive Kalman estimated state
to obtain the corrected state, 𝑥𝑚

𝑘 |𝑘 . If the deviation between the measured plant
output, 𝑦𝑘 |𝑚 and the 𝑛-steps estimated output, 𝑦+...𝑛𝑘 |𝑘 is less than or equal to the
value, 𝜀, the 𝑥+...𝑛

𝑘 |𝑘 at n recursive steps will be used as the corrected state, 𝑥
𝑚
𝑘 |𝑘 and

sent to MPC cost function.

Figure 1: Recursive Kalman estimated state algorithm

Algorithm 1 Recursive Kalman estimated state
Step 1: Measure the output.
Step 2: Pass the measured output through the noise filter.
Step 3: Choose 𝜀 (a small positive number).
Step 4: Set 𝑛 = 𝛽.
Step 5: Calculate 𝑥+...𝑛

𝑘 |𝑘 using equation (7).

Step 6: Calculate 𝛼 =




𝑦𝑘 |𝑚 − 𝑦+...𝑛
𝑘 |𝑘




.
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Step 7: Check 𝑎 ¬ 𝜀.
Step 8: If step 7 is satisfied, 𝑥𝑚

𝑘 |𝑘 = 𝑥
+...𝑛
𝑘 |𝑘 . If step 7 is not satisfied, repeat step 5

with 𝑛 = 𝑛 + 1.

In Algorithm 1, 𝜀 represents the accuracy of 𝑛-steps estimated output, 𝑦+...𝑛
𝑘 |𝑘 ,

𝛽 is chosen to satisfy 𝑎 ≈ 𝜀. Step 7 and step 8 in Algorithm 1 are to ensure 𝑎 ¬ 𝜀.

4. The proposed MPC

In this section, the proposed offset-free MPC approach and related algorithms
are presented. The proposed method requires both estimation of the corrected
state in section 4.1 and the corrected predicted output vector in section 4.2.
In section 4.1, MPC uses the corrected state from recursive Kalman filter

as the initial state. However, in the presence of MPM, i.e. large differential in
gain or large disturbances or both, the predicted output will be equal to the set
point but will not match with the measured output. This problem can be solved to
obtain offset free MPC by using the proposed Disturbance-Kalman state method
in section 4.2.

4.1. MPC with Recursive Kalman estimated state algorithm

MPC is used to determine the approximate input based on the prediction
model (discrete state space model) by minimizing control law function (10) as
follows:

𝐽 = min
𝑢,𝑦

𝐻𝑝∑︁
𝑙=1

𝑄𝑦



𝑦𝑘+𝑙 |𝑘 − 𝑦̄

2 + 𝐻𝑐∑︁
𝑗=0
𝑄𝑢



𝑢𝑘+ 𝑗 |𝑘 − 𝑢𝑘 |𝑚

2 + 𝑅𝑦 

𝑦𝑘+1|𝑘 − 𝑦̄

2 (10)
subject to:
discrete state space model (1)

𝑢min ¬ 𝑢𝑘+ 𝑗 |𝑘 ¬ 𝑢max, ∀ 𝑗 ∈ {1, . . . , 𝐻𝑐} ,��𝑢𝑘+ 𝑗 |𝑘 − 𝑢𝑘+ 𝑗−1|𝑘 �� ¬ Δ𝑢,

𝑦min ¬ 𝑦𝑘+𝑙 |𝑘 ¬ 𝑦max, ∀𝑙 ∈
{
1, . . . , 𝐻𝑝

}
,

where 𝑢𝑘 |𝑚 is the recorded controller output at time instant 𝑘; 𝑦̄ and 𝑢̄ are the
target output and input, respectively; 𝑄𝑢, 𝑄𝑦 and 𝑅𝑦 are weighting parameters;
Δ𝑢 is the allowable input change during two consecutive time instants; 𝐻𝑝 and
𝐻𝑐 are prediction and control horizons, respectively; (𝑘 + 𝑙 |𝑘) represents the
𝑙-step ahead prediction at time instant 𝑘; lower bound, 𝑢min and upper bound,
𝑢max form the admissible input set 𝑈. Additionally, ‖ . ‖2 is the square of the
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two-norm of a vector formulated with diagonal matrix and is defined as follows:
‖𝑥‖2 = 𝑥21 + 𝑥

2
2 + . . . + 𝑥

2
𝑛.

Function (10) is re-expressed as follows:

𝐽 = 𝑄𝑦




𝑣𝑠𝑣( 𝑦̄, 𝐻𝑝) − ®𝑦𝐻𝑝

𝑘+1




2 +𝑄𝑢 


®𝑢𝐻𝑐

𝑘
− 𝑣𝑠𝑣

(
𝑢𝑘 |𝑚, 𝐻𝑐

)


2
+ 𝑅𝑦



𝑦𝑘+1|𝑘 − 𝑦̄

2 , (11)

where vsv( 𝑦̄, 𝐻𝑝) vertically stacks vector 𝑦̄ with 𝐻𝑝 times; vsv(𝑢𝑘 |𝑚, 𝐻𝑐) verti-
cally stacks vector 𝑢𝑘 |𝑚 with 𝐻𝑐 times.

®𝑦𝐻𝑝

𝑘+1 =


𝑦𝑘+1|𝑘
𝑦𝑘+2|𝑘
...

𝑦𝑘+𝐻𝑝 |𝑘

 ; ®𝑢𝐻𝑐

𝑘
=


𝑢𝑘
𝑢𝑘+1
...

𝑢𝑘+𝐻𝑢−1

 ;
𝑣𝑠𝑣

(
𝑦, 𝐻𝑝

)
=


𝑦
...

𝑦

 ; 𝑣𝑠𝑣
(
𝑢𝑘 |𝑚, 𝐻𝑐

)
=


𝑢𝑘 |𝑚
...

𝑢𝑘 |𝑚


The predictive output vector is as follows:

®𝑦𝐻𝑝

𝑘+1 = 𝑃𝑥
𝑚
𝑘 |𝑘 + 𝐻 ®𝑢𝐻𝑝

𝑘
, (12)

where:

𝑃 =


𝐶 × 𝐴
𝐶 × 𝐴2

...

𝐶 × 𝐴𝐻𝑝

 ; 𝐻 =


𝐶 × 𝐵 0 · · · 0

𝐶 × 𝐴 × 𝐵 𝐶 × 𝐵 · · · 0
...

...
. . .

...

𝐶 × 𝐴𝐻𝑝−1 × 𝐵 𝐶 × 𝐴𝐻𝑝−2 × 𝐵 · · · 𝐶 × 𝐵

 .
The predictive output vector in equation (12) is derived from model (1).

The corrected state, 𝑥𝑚
𝑘 |𝑘 in equation (12) is obtained by the proposed Recursive

Kalman estimated state.
The MPC controller optimizes 𝐽 function (11) and obtains vector ®𝑢𝐻𝑝

𝑘
as

a root. However, only 𝑢𝑘 is considered in the vector and sent as manipulated
variables to a real plant.

4.2. Offset free MPC with the proposed Disturbance-Kalman state method

The main objective of this section is to correct model (1) in the presence of
plant-model mismatches. Plant-model mismatches can be solved by modifying
model (1) with the proposed Disturbance-Kalman state (DKS) method.



DISTURBANCE-KALMAN STATE FOR LINEAR OFFSET FREE MPC 161

The state prediction in model (1), 𝑥𝑘+1|𝑘 will be different from the corrected
state, 𝑥𝑚

𝑘 |𝑘 of the process in the presence of MPM or/and disturbances. The
difference is named as the state disturbance vector which is added to the state
prediction, 𝑥𝑘+1|𝑘 in model (1), then the error correction model after being added
the state disturbance vector is as follows:

𝑥𝑚𝑘+1 = 𝐴𝑥
𝑚
𝑘 |𝑘 + 𝐵𝑢𝑘 +

(
𝑥𝑚
𝑘 |𝑘 − 𝑥𝑘 |𝑘−1

)
,

𝑦𝑚𝑘+1 = 𝐶𝑥
𝑚
𝑘+1 ,

(13)

where 𝑥𝑒 |𝑘 = 𝑥𝑚
𝑘 |𝑘 − 𝑥𝑘 |𝑘−1 is called as the state disturbance estimate at time

instant 𝑘 .

𝑥𝑚𝑘+1 = 𝐴𝑥
𝑚
𝑘 |𝑘 + 𝐵𝑢𝑘 + 𝑥𝑒 |𝑘 ,

𝑦𝑚𝑘+1 = 𝐶𝑥
𝑚
𝑘+1 .

(14)

𝑥𝑒 |𝑘 is the term to correct the state prediction of the model under MPM and
disturbances.
Using model (14), recursively, it is easy to obtain an 𝐻𝑝-step ahead output

prediction as follows:

®𝑦𝐻𝑝

𝑘+1 = 𝑃𝑥
𝑚
𝑘 |𝑘 + 𝐻 ®𝑢𝐻𝑝

𝑘
+ 𝐿 × 𝑣𝑠𝑣(𝑥𝑒 |𝑘 , 𝐻𝑝), (15)

where 𝑣𝑠𝑣(𝑥𝑒 |𝑘 , 𝐻𝑝) vertically stacks vector (𝑥𝑒 |𝑘 ) with𝐻𝑝 times; 𝑥𝑚𝑘 |𝑘 is obtained
by Recursive Kalman estimated state algorithm.

𝐿 =


𝐶 0 · · · 0

𝐶 × 𝐴 𝐶 · · · 0
...

...
. . .

...

𝐶 × 𝐴𝐻𝑝−1 𝐶 × 𝐴𝐻𝑝−2 · · · 𝐶

 .
Algorithm 2 Offset-free MPC with Disturbance-Kalman state

Step 1: The process state, 𝑥𝑚
𝑘 |𝑘 is obtained from Algorithm 1;

Step 2: The state disturbance vector is calculated as 𝑥𝑒 |𝑘 = 𝑥𝑚𝑘 |𝑘 − 𝑥𝑘 |𝑘−1 with
𝑥𝑚
𝑘 |𝑘 from step 1;

Step 3: The optimization problem (11) is solved with predictive output vector
calculated by equation (15);

Step 4: After the optimal trajectory ®𝑢𝐻𝑝

𝑘
is found by the optimization, its first

element 𝑢𝑘 is sent to the process actuators.
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Proposition 1 After long enough steps, the predicted output and MPC actions
will reach steady state before time instant 𝑘 . Namely, 𝑢𝑘− 𝑗 |𝑘 = 𝑢𝑠𝑠; 𝑦𝑚𝑘− 𝑗 |𝑘 = 𝑦𝑠𝑠,
∀ 𝑗; 𝑥𝑚

𝑘 |𝑘 = 𝑥𝑠𝑠, ∀𝑘 > 0. Using the Algorithm 2 will guarantee the offset-free
setpoint tracking if and only if 𝑦𝑚

𝑘+1 = 𝑦𝑠𝑠.

Proof. Assume that the output and input of a process have already reach the
desired value {𝑦𝑠𝑠, 𝑢𝑠𝑠} before time instant 𝑘 . Under the proposed Algorithm 2,
we will show that the predicted output, 𝑦𝑚

𝑘+1 = 𝑦𝑠𝑠 at a steady state.
At steady state, 𝑢𝑘− 𝑗 |𝑘 = 𝑢𝑠𝑠; 𝑦𝑚𝑘− 𝑗 |𝑘 = 𝑦𝑠𝑠; 𝑥

𝑚
𝑘 |𝑘 = 𝑥𝑠𝑠.

Substituting 𝑥𝑠𝑠, 𝑢𝑠𝑠 for 𝑥𝑚𝑘 |𝑘 , 𝑢𝑘 in Eq. (13);

𝑥𝑚𝑘+1 = 𝐴𝑥𝑠𝑠 + 𝐵𝑢𝑠𝑠 +
(
𝑥𝑠𝑠 − 𝑥𝑘 |𝑘−1

)
.

Substituting 𝐴𝑥𝑚
𝑘−1|𝑘−1 + 𝐵𝑢𝑘−1 for 𝑥𝑘 |𝑘−1

𝑥𝑚𝑘+1 = 𝐴𝑥𝑠𝑠 + 𝐵𝑢𝑠𝑠 +
(
𝑥𝑠𝑠 −

(
𝐴𝑥𝑚

𝑘−1|𝑘−1 + 𝐵𝑢𝑘−1
))
.

Substituting 𝑥𝑠𝑠, 𝑢𝑠𝑠 for 𝑥𝑚𝑘−1|𝑘−1, 𝑢𝑘−1

𝑥𝑚𝑘+1 = 𝐴𝑥𝑠𝑠 + 𝐵𝑢𝑠𝑠 + (𝑥𝑠𝑠 − (𝐴𝑥𝑠𝑠 + 𝐵𝑢𝑠𝑠)) .

By the commutativity of addition

𝑥𝑚𝑘+1 = 𝐴𝑥𝑠𝑠 + 𝐵𝑢𝑠𝑠 + (− (𝐴𝑥𝑠𝑠 + 𝐵𝑢𝑠𝑠)) + 𝑥𝑠𝑠 ,
𝑥𝑚𝑘+1 = 𝑥𝑠𝑠 .

Multiplied by 𝐶
𝐶𝑥𝑚

𝑘+1 = 𝐶𝑥𝑠𝑠 ,

𝑦𝑚
𝑘+1 = 𝑦𝑠𝑠 .

2

5. Case study

Case study is presented in the following sections to demonstrate the efficacy
of the proposed offset-free MPC algorithm. The Wood-Berry distillation model
is used to represent the plant to be controlled. The Wood-Berry model is a
2 × 2 transfer function model of a pilot plant distillation column that separates
methanol and water. The reason for this choice is because the amount of mismatch
introduced can be easily shown. This case study will be used to demonstrate the
advantage of the proposed offset free MPC with two other offset free methods.
The other offset free methods will be presented in section 5.1 and section 5.2.
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5.1. Disturbance model and observer method

The main concept of this method is to augment the disturbance model with
the nominal model, accounting for MPM and disturbances. The model (1) is
augmented with a disturbance model as follows:[

𝑥𝑘+1|𝑘
𝑑𝑘+1

]
=

[
𝐴 𝐵𝑑
0 𝐴𝑑

] [
𝑥𝑘 |𝑘
𝑑𝑘

]
+
[
𝐵

0

]
𝑢𝑘 ,

𝑦𝑘+1|𝑘 =
[
𝐶 𝐶𝑑

] [𝑥𝑘+1|𝑘
𝑑𝑘+1

]
,

(16)

where 𝐴𝑑 , 𝐵𝑑 , and𝐶𝑑 are disturbancemodelmatrices, 𝑑𝑘 is disturbance; 𝑑𝑘 ∈ 𝑅𝑛𝑑 ,
𝐴𝑑 ∈ 𝑅𝑛𝑑×𝑛𝑑 , 𝐵𝑑 ∈ 𝑅𝑛𝑥×𝑛𝑑 , 𝐶𝑑 ∈ 𝑅𝑛𝑦×𝑛𝑑 .
The disturbance model matrices (𝐴𝑑 , 𝐵𝑑 , and𝐶𝑑) have appropriate dimension

and satisfy the following: rank

[
𝐴 − 𝜆𝐼 𝐵𝑑
0 𝐴𝑑 − 𝜆𝑑 𝐼
𝐶 𝐶𝑑

]
= 𝑛𝑥 + 𝑛𝑑 which ensures that

model (16) is observable.

Consider: 𝑋𝑘+1|𝑘 =

[
𝑥𝑘+1|𝑘
𝑑𝑘+1

]
; 𝑋𝑘 |𝑘 =

[
𝑥𝑘 |𝑘
𝑑𝑘

]
; 𝐴𝐴 =

[
𝐴 𝐵𝑑
0 𝐴𝑑

]
; 𝐵𝐵 =

[
𝐵

0

]
;

𝐶𝐶 =
[
𝐶 𝐶𝑑

]
.

Therefore, model (16) becomes:

𝑋𝑘+1|𝑘 = 𝐴𝐴 × 𝑋𝑘 |𝑘 + 𝐵𝐵 × 𝑢𝑘 ,
𝑦𝑘+1|𝑘 = 𝐶𝐶 × 𝑋𝑘+1|𝑘 .

(17)

Model (17) is considered as the model (1). Hence, the state estimate, 𝑋𝑘 |𝑘 is
obtained by equation (5).
The predictive output vector is as follows:

®𝑦𝐻𝑝

𝑘+1 = 𝑃𝑃 × 𝑋𝑘 |𝑘 + 𝐻𝐻 × ®𝑢𝐻𝑝

𝑘
, (18)

where:

𝑃𝑃 =


𝐶𝐶 × 𝐴𝐴
𝐶𝐶 × 𝐴𝐴2

...

𝐶𝐶 × 𝐴𝐴𝐻𝑝

 ;
𝐻𝐻 =


𝐶𝐶 × 𝐵𝐵 0 · · · 0

𝐶𝐶 × 𝐴𝐴 × 𝐵𝐵 𝐶𝐶 × 𝐵𝐵 · · · 0
...

...
. . .

...

𝐶𝐶 × 𝐴𝐴𝐻𝑝−1 × 𝐵𝐵 𝐶𝐶 × 𝐴𝐴𝐻𝑝−2 × 𝐵𝐵 · · · 𝐶𝐶 × 𝐵𝐵

 .
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5.2. Piotr Tatjewski’s method

The work in [20] uses a normal state estimate method which is not the
Recursive Kalman estimated state method. Hence, the corrected state of the
process cannot be obtained in the presence of plant-modelmismatches. Therefore,
equation (15) is added a biased output term to compensate the error in the output
prediction.
Inserting 𝑥𝑘 |𝑘 into constant state disturbance model in [20] to get state distur-

bance vector 𝑣𝑘 .
𝑣𝑘 = 𝑥𝑘 |𝑘 −

(
𝐴𝑥𝑘−1|𝑘−1 + 𝐵𝑢𝑘−1

)
. (19)

By substituting 𝑥𝑘 |𝑘 , 𝑣𝑘 for 𝑥𝑚𝑘 |𝑘 , 𝑥𝑒 |𝑘 in equation (15) respectively, we get the
predictive output trajectory:

®𝑦𝐻𝑝

𝑘+1 = 𝑃 × 𝑥𝑘 |𝑘 + 𝐻 × 𝑢𝑘 + 𝐿 × 𝑣𝑠𝑣(𝑣𝑘 , 𝐻𝑝), (20)

where 𝑣𝑠𝑣(𝑣𝑘 ,𝐻𝑝) vertically stacks vector (𝑣𝑘 ) with 𝐻𝑝 times; 𝑥𝑘 |𝑘 is obtained
from Kalman filter from equation (5).
Because state estimate 𝑥𝑘 |𝑘 will not be equal to the real process state 𝑥𝑚𝑘 |𝑘 in

the presence of plant-model mismatches, the predicted output trajectory in [20]
is extended to:

®𝑦𝐻𝑝

𝑘+1 = 𝑃 × 𝑥𝑘 |𝑘 + 𝐻 × 𝑢𝑘 + 𝐿 × 𝑣𝑠𝑣(𝑣𝑘 , 𝐻𝑝) + 𝑣𝑠𝑣((𝑦𝑘 |𝑚 − 𝐶𝑥𝑘 |𝑘 ), 𝐻𝑝), (21)

where 𝑦𝑘 |𝑚 −𝐶𝑥𝑘 |𝑘 is the biased output term, 𝑣𝑠𝑣((𝑦𝑘 |𝑚 −𝐶𝑥𝑘 |𝑘 ), 𝐻𝑝) vertically
stacks the biased output term 𝐻𝑝 times.
The work in [20] cannot identify the corrected state of the process to obtain

the exact state deviation. Therefore, an output deviation is added to compensate
the error of the state deviation as shown in equation (21). Our proposed DKS
method is able to obtain the corrected state deviation, where the prediction model
is only added the state deviation as seen in equation (15).

5.3. Summary of offset free MPC methods using in the case study

The performances of the MPC1, MPC2 and MPC3 in Table 1 are measured
using the Overall Integral Error (OIE).
The OIE is defined as follow:

𝑂𝐼𝐸 =

√︂
𝑟 𝐼 𝐴𝐸2 + 𝑟 𝐼𝑆𝐸2 + 𝑟 𝐼𝑇 𝐴𝐸2

3
. (22)

It should be noted that, the maximum of OIE is 1 because the maximum of rIAE,
rISE and rITAE is 1.

where rIAE =
IAE
IAE0

; rISE =
ISE
ISE0

; rITAE =
ITAE
ITAE0

. (23)
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Table 1: Recursive Kalman estimated state

MPC1 MPC2 MPC3
Offset free MPC
with

the proposed Disturbance-
Kalman state method

Piotr Tatjewski’s
method

disturbance model and
observer method

The predictive
output vector equation (15) equation (21) equation (18)

State estimation
method

Recursive Kalman estimated
state algorithm in section 3.2 Kalman filter Kalman filter

IAE0, ISE0 and ITAE0 are the maximum values of IAE, ISE and ITAE of
MPC1, MPC2, MPC3, respectively. The definitions of the Integral absolute error
(IAE), Integral squared error (ISE) and Integral time absolute error (ITAE) are
available in [27].

5.4. Wood-Berry distillation column

Distillation column is a common process for separation of liquid mixtures.
Figure 2 shows a simple specific distillation column scheme with Wood-Berry
setting [28]. The feed stream enters at the middle tray. The target is to separate
methanol from the methanol-water mixture. The methanol composition in top
product, 𝑥𝐷 and bottom product, 𝑥𝐵 is controlled by manipulating the reflux
flowrate, 𝑅 and steam flowrate, 𝑆. The model used in MPC will be chosen to be
different from the process, i.e. it will have plant-model mismatches.

Figure 2: Wood-Berry distillation column
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The Wood-Berry linear model was introduced in [28] and used to represent
the plant and disturbance as given by

[
𝑥𝐷 (𝑠)
𝑥𝐵 (𝑠)

]
=


12.8𝑒−1𝑠

16.7𝑠 + 1
−18.9𝑒−3𝑠
21.0𝑠 + 1

6.6𝑒−7𝑠

10.9𝑠 + 1
−19.4𝑒−3𝑠
14.4𝑠 + 1


[
𝑅(𝑠)
𝑆(𝑠)

]
+


3.8𝑒−8𝑠

14.9𝑠 + 1
4.9𝑒−30𝑠

13.2𝑠 + 1

 𝐷 (𝑠), (24)

where 𝑅 is the reflux flowrate, 𝑆 is the steam flowrate, 𝐷 is the disturbance, 𝑥𝐷
is the top product purity, 𝑥𝐵 is the bottom product purity.
This linear model is valid around a typical steady state condition: 𝑥𝐷 = 0.96

and 𝑥𝐵 = 0.05.
The theoretical possibilities of mismatch parameters are the gain (𝐾), the time

constant (𝜏) and time delay (𝜃). Δ𝐾 , Δ𝜏, and Δ𝜃 are gain, time constant and time
delay mismatches respectively, as shown in equation (25):

𝐺 𝑝 =
(𝐾 + Δ𝐾)𝑒−(𝜃+Δ𝜃)𝑠
(𝜏 + Δ𝜏) 𝑠 + 1 . (25)

The model used in MPC in the presence of plant-model mismatches is given
by (26). The gain, time delay and time constant mismatches introduced in (26)
are given by (27):

[
𝑥𝐷 (𝑠)
𝑥𝐵 (𝑠)

]
=


6.4

25.05𝑠 + 1
−12.6
42.0𝑠 + 1

13.2
7.267𝑠 + 1

−29.1
7.2𝑠 + 1


[
𝑅(𝑠)
𝑆(𝑠)

]
, (26)

Δ𝐾 (%) =
[
−50% −33.33%
+100% +50%

]
;

Δ𝜃 =

[
−1 −3
−7 −3

]
; Δ𝜏(%) =

[
+50% +100%

−33.33% −50%

]
.

(27)

The transfer function model (26) is converted to discrete state space formwith
sampling time, Ts = 1 s using Matlab as given by (28).

𝑥𝑘+1|𝑘 =


0.9609 0 0 0
0 0.8714 0 0
0 0 0.9765 0
0 0 0 0.8703

 𝑥𝑘 |𝑘 +

0.4902 0
0.9342 0
0 0.4941
0 1.8673


[
𝑅

𝑆

]
𝑘

,

[
𝑥𝐷
𝑥𝐵

]
𝑘+1|𝑘

=

[
0.5110 0 −0.6 0
0 1.8165 0 −2.0208

]
𝑥𝑘+1|𝑘 .

(28)
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The choice of disturbance model:

𝐴𝑑 =

[
1 0
0 1

]
; 𝐶𝑑 =

[
1 0
0 1

]
; 𝐵𝑑 =


0 0
0 0
0 0
0 0

 . (29)

According to model (17), the model (28) augmented with the disturbance
model (29) becomes:

𝑋𝑘+1|𝑘 =



0.9609 0 0 0 00
0 0.8714 0 0 00
0 0 0.9765 0 00
0 0 0 0.870300
0 0 0 0 10
0 0 0 0 01


𝑋𝑘 |𝑘 +



0.4902 0
0.9342 0
0 0.4941
0 1.8673
0 0
0 0


[
𝑅

𝑆

]
𝑘

,

[
𝑥𝐷
𝑥𝐵

]
𝑘+1|𝑘

=

[
0.5110 0 −0.6 0 1 0
0 1.8165 0 −2.0208 0 1

]
𝑋𝑘+1|𝑘 ,

(30)

MPC1 and MPC2 use model (28); MPC3 uses model (30).
The MPC cost functions with tuning parameters is presented as in equa-

tion (31):

𝐽 =


𝑣𝑠𝑣( 𝑦̄, 10) − ®𝑦10𝑘+1



2 + 20 

®𝑢6𝑘 − 𝑣𝑠𝑣 (𝑢𝑘 |𝑚, 6)

2 + 5 

𝑦𝑘+1|𝑘 − 𝑦̄

2 (31)

All MPCs use equation (31) as a cost function. The disturbance 𝐷 is introduced to
the Wood-Berry process by equation (24), which will contribute the disturbances
𝑑𝑥𝐷 and 𝑑𝑥𝐵 to 𝑥𝐷 and 𝑥𝐵, respectively as depicted in Figure 3.
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Figure 3: Disturbances plot with respect to time
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MPC1uses 𝑥𝑚
𝑘 |𝑘 to substitute 𝑥𝑘 |𝑘 in (28),where 𝑥

𝑚
𝑘 |𝑘 is obtained byAlgorithm1

with 𝛽 = 1000 and 𝜀 = 10−12. And, the predictive output vector in MPC1 is
calculated by Equation (15).
The parameters of the Kalman filter used to test offset-free MPCs are written

in Matlab form as follows:
𝑃0|0 = diag(repmat

(
[1 1], 1, size(𝐴, 1)/2)

)
;

𝑄 = 1𝑒 − 6 · eye(size(𝐴, 1));
𝑅 = 1𝑒 − 1.

6. Results and discussion

In the methodology it is indicated that MPC1, MPC2 and MPC3 refer to
MPC1 using the proposed offset free algorithm,MPC2 using the Piotr Tatjewski’s
method and MPC3 with the augmented disturbance model, respectively. The
results of MPC1, MPC2 andMPC3 in Figures 4a and 4b show the CVs (methanol
composition in top product, 𝑥𝐷 and bottom product, 𝑥𝐵) and in Figures 4c and 4d
show the MVs (the reflux flowrate, 𝑅 and steam flowrate, 𝑆). The test includes
set-point tracking and disturbance rejection problems.
Figure 4 shows the response of the controllers in tracking set point changes

with 𝑡𝑘 from 1 (𝑘) to 500 (𝑘). It shows that MPC1 tracks set point faster than
MPC2 and MPC3 and in all cases the MVs move reasonably smoothly. Note that,
MPC3 uses an actual disturbance model which in practice might not be easy to
obtain. MPC2, which is well tuned also results in a very sluggish response and
takes a long time to remove the offset. It is observed from Figure 4, Table 2
and Table 3 and also from the algorithm that MPC1 performs better in removing
offset and requires no disturbance model.
Figure 4 shows the result of the three MPCs for the disturbance rejection

problem with 𝑡𝑘 from 501 (𝑘) to 1400 (𝑘). It is observed from the figure that
MPC1 has smaller overshoot and settles quickly removing the offset. Table 2 and
Table 3 show the overall integral errors (OIEs) of the three MPCs for tracking set
point changes and disturbance rejection, respectively. The results in Table 2 show
the comparative performance of MPC1 and MPC3 for set-point tracking which
has much smaller overall integral error (OIE) than that of MPC2. Also note that
in MPC3, the authors assume the disturbance model is available or a disturbance
model with good accuracy can be obtained. However, in practice obtaining dis-
turbance model with good accuracy is a difficult task. This is not required by the
proposed algorithm whose performance is demonstrated by MPC1.
Table 3 clearly shows that MPC1 with OIE for 𝑥𝐷 and 𝑥𝐵 equal to 0.3550 and

0.6068, respectively, has much better performance than both MPC2 and MPC3.
The second best, i.e., MPC2, has OIE for 𝑥𝐷 and 𝑥𝐵 equal to 0.7652 and 0.9253,
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Figure 4: Comparison between MPC1, MPC2 and MPC3
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respectively. Also note that in Table 3, for disturbance rejection, the performance
of MPC1 which uses the proposed algorithm is much better in all the three
performance measurements compared to MPC2 and MPC3.

Table 2: Recursive Kalman estimated state algorithm

rIAE rISE rITAE OIE

𝑥𝐷 𝑥𝐵 𝑥𝐷 𝑥𝐵 𝑥𝐷 𝑥𝐵 𝑥𝐷 𝑥𝐵

MPC1 0.4996 0.6348 0.6299 0.8028 0.4556 0.4424 0.5335 0.6437

MPC2 1 1 1 1 1 1 1 1

MPC3 0.4656 0.6486 0.5906 0.7607 0.4010 0.4746 0.4921 0.6389

Table 3: Offset free MPC Methods

rIAE rISE rITAE OIE

𝑥𝐷 𝑥𝐵 𝑥𝐷 𝑥𝐵 𝑥𝐷 𝑥𝐵 𝑥𝐷 𝑥𝐵

MPC1 0.3979 0.6991 0.1167 0.6400 0.4539 0.4544 0.3550 0.6068

MPC2 0.7762 0.9652 0.7799 0.9486 0.7389 0.8585 0.7652 0.9253

MPC3 1 1 1 1 1 1 1 1

7. Conclusion

In this study, the comparison between three offset-free MPCs is presented.
The important step in the proposed offset free MPC technique (MPC1) focuses
on attaining the corrected state, 𝑥𝑚

𝑘 |𝑘 of a plant and adding compensated term to
model (1). The corrected state is obtained by the proposed Kalman estimated state
method. In the proposed Disturbance-Kalman state method, the state disturbance
vector is added to model (1) as the compensated term.
The effectiveness of the offset free MPC algorithm is demonstrated through

Wood-Berry distillation column case study to show the effectiveness of the pro-
posed algorithm in the presence of MPM and disturbances. The result shows that
the proposed offset-free MPC algorithm with OIE for 𝑥𝐷 and 𝑥𝐵 equal to 0.3550
and 0.6068, respectively is much better in disturbance rejection performance than
other two existing offset-free MPC algorithms.
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