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Coupled Thermomechanical Eulerian-Lagrangian Analysis  
of the KOBO Extrusion Process

Numerical simulations of the KOBO extrusion process are presented in this paper. The coupled thermomechanical Eulerian-
Lagrangian approach was applied for the three-dimensional finite element model. The dynamic explicit Euler forward method was 
used in numerical calculations. The elastic-plastic Chaboche model assuming isotropic and kinematic hardening under variable 
temperature conditions was applied to describe the behaviour of the material under cyclic loading. In numerical computations 
Chaboche material model implemented in commercial software, as well as the proprietary one written as FORTRAN procedure 
were tested. The numerical results present the stress and strain distributions in the extruded material, as well as an increase of tem-
perature due to the plastic work and friction. The shape of plastic strain zones was verified experimentally. The approach presented 
in the paper is a promising numerical tool to simulate the KOBO process.
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1. Introduction

The extrusion is one of the most commonly used con-
ventional forming processes that determines the possibility to 
obtain complex products with beneficial structure and proper-
ties. Compared to other metal-forming processes, the extrusion 
enables to obtain high elongation up to several hundred percent. 
Therefore, the method has attracted increasing attention in an 
industry, including the automotive and aviation sectors. However, 
the conventional extrusion takes disadvantages associated with 
the high forces necessary to deform the material and with the 
accelerated tools wear. The KOBO process was introduced to 
minimize or even eliminate disadvantages of the conventional 
extrusion.

The KOBO method is an unconventional elastic-plastic 
deformation process classified to cyclic severe plastic defor-
mation (SPD) methods assisted by a cyclic rotation of the die 
with a given frequency and by a certain angle that results in the 
change of a material structure [1]. The reduction of a strain work 
and a decrease of the temperature of the process are the main 
technological advantages of the KOBO extrusion. It determines 
the cold forming of heavily deformed materials and the produc-
tion of goods with a complex geometry with a decrease of the 

tools wear, simultaneously. Theoretical basics of the process are 
described in [2-5].

Numerical simulations of the extrusion process were carried 
out previously, and there are a lot of papers concerning this sub-
ject in the literature. In [6], the results of numerical calculations 
of the aluminum profile extrusion are presented. The changes 
of the isothermal temperature, as well as the stress and strain 
distribution are shown. The mesh distortion, the field of mate-
rial flow and distributions of the stress and strain for sheet metal 
extrusion are analyzed in [7]. The experimental and numerical 
results of the extrusion of metallic composite materials using 
the updated Lagrangian and the coupled Eulerian-Lagrangian 
(CEL) approaches are described in [8]. The CEL method was 
also applied in the modelling of the backward extrusion in [9].

Only some efforts are available to model the KOBO ex-
trusion process. At present, most of them are focused on the 
modelling of the change of microstructure in the wake of the 
rotation of the die. The evolution of crystallographic texture in 
the KOBO extrusion process was modelled in [10]. The model-
ling of microstructural changes in metals in the wake of a large 
plastic deformation in the KOBO process is shown in [11]. The 
numerical analysis of the axisymmetric extrusion assisted by 
cyclic torsion was presented in [12]. In authors’ previous research 
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[13], numerical calculations of the KOBO extrusion using the 
coupled Eulerian-Lagrangian (CEL) analysis without taking into 
account the temperature were done. 

In this paper the thermomechanical coupled Eulerian-
Lagrangian approach was used to simulate the KOBO extrusion 
process.The elastic-plastic Chaboche material model, includ-
ing both kinematic and isotropic strain hardening, was applied 
here. The proprietary material model written in a FORTRAN 
procedure was used in the commercial ABAQUS program. The 
correctness of the procedure applied was verified on the selected 
elastic-plastic problems. The distribution of stress, strain and 
temperature in the extruded material was analyzed. The change 
of the material behaviour during cyclic loading associated with 
the hardening was also examined. The results were also veri-
fied with experiments. The numerical simulations of the KOBO 
extrusion can contribute to the optimization of the process as-
sociated with the proper selection of the die rotation angle and 
frequency, and can lead to the minimization of the damage of 
tools (Fig. 1). Additionally, the application of the proprietary 
material model in numerical calculations enables to obtain bet-
ter knowledge about the phenomena in the material during the 
KOBO extrusion process.

Fig. 1. Damage of dies and handles during the KOBO extrusion

2. Theory section

2.1. Continuum mechanics and the large strain theory

In SPD processes, including the KOBO extrusion, the 
extruded material is subjected to large plastic deformation. 
The large strain theory used in the user material procedures is 
presented here. In continuum mechanics, two material configu-
rations – the reference, undeformed (Ɓ0) and current, deformed 
(Ɓ) configurations are compared to describe the kinematics of 
a deformation of a material body [14]. If x0 ∈ Ɓ0 is the initial 
position of a particle in the reference configuration at time t = t0  
and x ∈ Ɓ is the current position in the deformed configuration, 
the motion and the deformation of a continuum body will be de-
scribed by a smooth time-dependent mapping function x∨t (Eq. 1):

 x∨t : Ɓ0 → Ɓ ; x = x∨(x0, t)	 (1)

where: x is the position of a material particle at current time t. 

The deformation of a continuum body in a large strain 
theory is characterized by the deformation gradient tensor 
(F ) (Eq. 2) which transforms the infinitesimal material vector  
dx0 ∈ Ɓ0 in the reference configuration into the corresponding 
spatial vector dx ∈ Ɓ in the current configuration (Eq. 3). 

 0
0


  


xF x
x

	 (2)

 dx = F dx0	 (3)

where: ∇0 is the left, material gradient operator and 0
0


 

x
.

The displacement (u) and velocity (v) vectors of a material 
point are as follows (Eq. 4-5):

 u = x∨(x0, t) – x0 ≡ x – x0	 (4)

 
t t

 
 
 
u xv 	 (5)

The plasticity models are usually written in a rate form for 
implementation of the finite elements code rather than to deal 
with increments of stress and strains. The spatial derivative of 
the velocity vector is a velocity gradient tensor (L) (Eq. 6) [13]:

 
  


vL v
x

	 (6)

where: ∇ is the spatial gradient operator and 
 

x
.

The L tensor might be expressed using the deformation 
gradient and its material time derivative (F· ) in line with the 
following formula (Eq. 7):

 L = F·  · F –1	 (7)

The velocity gradient tensor might be decomposed into 
symmetric deformation tensor (D) and skew-symmetric spin 
tensor (W) (Eq. 8-10).

 L = D + W	 ,4(8)

      11 1
2 2

T T Tsym         D L L L F F F F 	 (9)

      1 1
2 2

T T Tskew       W L L L F F F F 	 (10)

The gradient deformation tensor (F) provides the complete 
information about the deformation including both the stretch 
and the rigid body rotation. The polar decomposition theory, 
which is one of the fundamental theorems of a large strain 
description, assumes that the F might be decomposed into an 
orthogonal rotation tensor (R) and a symmetric stretch tensor  
(Eq. 11) [15].

 F = RU = VR	 (11)

where: U and V are right and left symmetric, stretch tensors, 
respectively. 
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Based on the polar decomposition theorem, the right (C) 
and left (B) Cauchy-Green deformation tensors can be expressed 
as follows (Eq. 12-13).

 FF T = V 2 = B	 (12)

 F TF = U 2 = C	 (13)

The deformation gradient can be decomposed into elastic 
(Fe) and plastic (Fp) parts (Eq. 14):

 F = Fe Fp ; det (Fp) = 1 and det(Fe) > 0	 (14)

The rigid body rotation is contained in the plastic defor-
mation gradient and therefore, the elastic deformation gradient 
includes only stretch (Eq. 15).

 F e = V e and F p = V pR	 (15)

Similarly, the L velocity gradient tensor is decomposed 
into elastic (Le) and plastic parts (Lp) (Eq. 16), that can be ad-
ditively decomposed to symmetric and skew-symmetric parts 
(Eq. 17-18): 

 L = Le + Fe Lp Fe
–1 ; Le = F·e Fe

–1 and Lp = F·p Fp
–1	 (16)

 Le = De + We ; De = sym(Le) and We = skew (Le)	 (17)

 Lp = Dp + Wp ; Dp = sym(Lp) and Wp = skew (Lp)	 (18)

where: De and Dp are rates of elastic and plastic deformation 
gradient tensors; We and Wp are elastic and plastic spin ten-
sors, respectively. For metallic materials in which εp >> εe and 
Fe ≈ Ve ≈ Ue ≈ I (Eq. 19-21) [13, 17]:

 L = Le + Lp	 (19)

 D = De + Dp 	 (20)

 W = We + Wp 	 (21)

The strain rate measure is the power conjugate of a Cauchy 
stress tensor and therefore, it is a rate of the deformation gradient 
tensor (Eq. 22-23) [13].

 ε· = D	 (22)

 ε· = ε·e + ε·p → ε·e = De and ε·p = Dp	 (23)

where: ε·, ε·e and ε·p are total, elastic and plastic strain rates, 
respectively.

2.2. Corotational formulation

The constitutive equations of large-strain plasticity are 
formulated in a rotation-neutralized configuration where the 
coordinate system located at each point of a continuum body 
is rotated with the material. The rotation of a material point is 
described by the orthogonal rotation tensor R which is subjected 
to the following evolutionary equation (Eq. 24):

 R· = ΩR	 (24)

where: Ω is a spatial skew-symmetric second-order tensor asso-
ciated with the orthogonal rotation tensor R as follows (Eq. 25):

 Ω = R· RT ; R –1 = RT and Ω = –ΩT	 (25)

The Cauchy stress tensor (σ) is rotated as follows (Eq. 26) 
[18]:

 σ– = RTσR	 (26)

where: σ– is a corotational representation of a Cauchy stress 
tensor.

The material rotation should be described by objective rates 

of the stress tensor. The Jaumann 
J 

 
 
σ  and Green-Naghdi 

G 
 
 
σ  

rates of the Cauchy stress are defined as follows (Eq. 27-28):

 
J
  σ σ σW Wσ 	 (27)

 
G
  Ω Ωσ σ σ σ 	 (28)

where: σ· is time derivative of a Cauchy stress tensor and the 
other terms are corrections resulting from the finite rotations. 

Materials models implemented in ABAQUS commercial 
software use Jaumann stress rate, while materials models written 
in the form of the user procedures employ Green-Naghdi stress 
rate. Thus, the results obtained by Jaumann and Green-Naghdi 
stress rates may differ, especially for large shearing deformations 
associated by large rotations. Unlike as in the Green-Naghdi 
stress rate an application of the Jaumann objective stress rate 
causes stress oscillations for large shear deformations in both 
elastic and plastic regimes. Thus, the material user procedure, 
which involves Green-Naghdi stress rate, takes the advan-
tage over material commercial implementation in solving the 
problems with large shear deformations (in KOBO extrusion  
process large shears appear in processed material next to the 
rotating die). 

2.3. Corotational representation of constitutive equations 
for the plasticity theory

Including the relationships: R–1 = RT, σ = σT and C– = C, 
the constitutive equations of the classical plasticity in the coro-
tational form can be written as follows (the underscore means 
writing in a corotational form):
–	T he additive decomposition of the total strain (ε·– ) into elastic 

(ε·– e) and plastic parts (ε·– p) (Eq. 29):

 ε·–  = ε·– e + ε·– p	 (29)

–	T he Hooke’s law (Eq. 30):

 σ·– = C : ε·e–	 (30)

where: C is the constitutive matrix.
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–	T he yield condition assuming the kinematic and isotropic 
hardening (Eq. 31):

 

 2 ,

0  
where:  

0  

yJ r

elastic response
plastic response

    

 
 

σ x

	 (31)

where: x is a backstress and r is isotropic hardening.
–	T he effective plastic strain (Eq. 32):

 2  
3p  pε 	 (32)

	 where: ε–·p is the effective plastic strain and ε·
—p is the rate of 

plastic strain in a corotational form.
–	T he consistency condition assuming both isotopic and 

kinematic hardening (Eq. 33):

 : : : 0p
p




  
     

  


σ x
σ x

	 (33)

–	T he normal vector N– (Eq. 34):

 
3
2




dσ xN
σ

	 (34)

–	T he plastic strain increment ε·
—p (Eq. 35):

 3
2

d



p
pεε σ
σ

	 (35)

where: σ d is a deviatoric stress.
–	T he stress increment σ·– (Eq. 36):

 22
3

vG K G     
 

  d
eσ ε I 	 (36)

where: G and K are bulk and shear modulus, respectively.
–	T he evolution of the backstress for the Chaboche model is 

described as follows (Eq. 37):

 
1

,2
3

n

i i p
i

c 


      i p ix ε x x 	 (37)

where: ci and γi are material constants. 
The previous authors’ tests [13,22] showed that two harden-

ing rules were sufficient in simulations of hysteresis curves in 
symmetrical cyclic loading/unloading tests. The introduction of 
the third backstress is recommended in numerical calculations 
of asymmetrical cyclic phenomena, e.g. the ratcheting and the 
stress relaxation. The Chaboche model with two backstresses x1 
and x2 is used in numerical simulations presented in this paper.
–	T he evolution of isotropic hardening      p pr b Q r     is determined 

by the Voce isotropic law (Eq. 38):

      p pr b Q r     	 (38)

	 where: Q is a saturated value of the isotropic hardening 
component and b determines the rate where the saturation 
is achieved.

–	 During the plastic deformation of a material, the heat is 
released. The heat generation caused is calculated as follows 
(Eq. 39):

 q = η(σ – x) : ε· p	 (39)

	 where: q is a heat volume rate, σ is the Cauchy stress, x is 
a backstress associated with the kinematic hardening and 
η is a Taylor-Quinney coefficient (usually η = 0.9).

2.4. The Coupled Eulerian-Lagrangian method

The Lagrangian and Eulerian formulations are mainly used 
in FEM problems of the continuum mechanics. In the Lagrangian 
approach, the equations are written in terms of the referential 
configuration and the material point moves in a space in time. 
The equations in the Eulerian description are defined in terms 
of the current position. 

The main difference between Lagrangian and Eulerian 
formulations concerns the elements mesh. The Lagrangian mesh 
deforms with the material during the deformation while the Eu-
lerian mesh is fixed in a space and the material flows through it. 
The Eulerian meshes can be used in large deformation analyses 
without remeshing while the Lagrangian ones cannot due to 
their large distortions.

For the FEM analysis of the KOBO extrusion process, the 
Coupled Eulerian-Lagrangian (CEL) approach is used here. The 
method includes advantages of both Lagrangian and Eulerian 
formulations. The main equations associated with the CEL 
method are the following [19]:
–	T he relation between material (Lagrangian) and spatial 

(Eulerian) time derivatives (Eq. 40):

  D
Dt t


   


Φ Φ v Φ 	 (40)

	 where: Φ is the arbitrary solution variable, v is the material 

velocity, andD
Dt t




Φ Φ  are material and spatial derivatives.

–	T he Lagrangian mass, momentum and energy conservation 
laws in the Eulerian spatial formulation (Eq. 41-43):

   0
t
  
      


v v 	 (41)

    1
t 


       


v v v σ b 	 (42)

   :e e
t


   


v σ D 	 (43)

	 where: ρ is density, σ is the Cauchy stress, b is the vector 
of body forces, e is the strain energy and D is a velocity 
strain.

–	T he Eulerian mass, momentum and energy conservation 
laws (Eq. 44-46):

   0
t
 
  


v 	 (44)
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  
t
  

      

v v v σ b	 (45)

   :e e
t


  


v σ D 	 (46)

The general form of Eq. 44-46 (Eq. 47):

 
t

  


Φ S 	 (47)

where: Φ is the flux function and S is the source term.
–	T he division of Eq. 47 into two separate problems is made 

using the splitting operator (Eq. 48-49):

 
t




S 	 (48)

 0
t

  


Φ 	 (49)

The Eq. (48) contains the source term represents the La-
grangian step and the Eq. (49) contains the convective one which 
represents the Eulerian step [20]. It is worth noting that Eq. (47) 
is not the superposition of Eq. (48) and Eq. (49). In the CEL 
approach Eq. (47) is solved in two steps which represent two 
separated problems: Lagrangian (Eq. 48) following the Eulerian 
(Eq. 49) one. The Lagrangian mesh which deforms in time, is 
used to fill the Eulerian mesh with the processed material. It is 
also important that the Lagrangian mesh, which is not available 
for the ABAQUS user, deforms under the load and from time to 
time after becoming too distorted, requires remeshing.

The main advantages of the CEL formulation used in 
numerical simulations of the KOBO extrusion are a very good 
convergence and the stability of the solution. On the other hand, 
the CEL approach used in Abaqus program, is based on the condi-
tionally stable dynamic explicit method and therefore takes very 
small stable time increments [13]. It extents the time of computa-
tions. In the dynamic explicit approach, the nodal displacements 
for the time t + Δt are calculated for displacements known from 
the last two integration steps (time t and t – Δt ). The damping is 
neglected and the lumped mass matrix (diagonal form) is used. 
It causes that equations which update nodal displacement for the 
time t + Δt are independent. In the dynamic explicit procedure 
there is even no need to form the global stiffness matrix and its 
factorization which for a large problems requires a lot of com-
putations and introduces round-off errors.

3. Results and discussion

In order to perform the numerical calculations of the KOBO 
extrusion process, the first step of this research was an identifi-
cation of hardening parameters for Chaboche and Voce models. 
They can be determined on the basis of experimental research 
e.g. cyclic tension-compression tests carried out for various 
temperature. Here, we use the results available in literature for 
an alternative elastic-plastic material model – namely Bodner-
Partom (B-P) material model. The numerically generated curves 
for the B-P model parameters contained in [21] are applied 
in this study with the aim of obtaining pseudo-experimental 
hysteresis curves for a AMG-6 alloy at different temperatures 
(Fig. 2). They were then used as pseudo-experimental curves 
for initial selection of hardening parameters with the use of the 
ABAQUS program (TABLE 1). The good convergence between 
pseudo-experimental and numerical hysteresis curves was  
achieved. 

TABLE 1

Hardening Parameters for different temperatures

Hardening parameters
Temperature [°C]

20 300 400
c1 [MPa]Pa] 34382.0 166.4 47.3

γ1 [-] 980.3 18.6 0
c2 [MPa] 37195.0 28016.0 13013.0
λ2 [-] 2970.3 849.7 401.8

Q [MPa] 180.0 140.0 65.0
b [-] 39.0 48.0 90.0

In order to enhance hardening parameters, the proprietary 
original methodology was developed. The detailed informa-
tion about the procedure is contained in [22]. The optimization 
formulation using the least-square method was applied to get 
a better agreement of the pseudo-experimental and numerical 
curves. The error norm between pseudo-experimental and ap-
proximated stress values is defined using Eq. (50):

  2exp appB d


    	 (50)

where: σexp and σapp are pseudo-experimental and approximated 
stress values.

(a) (b) (c)
Fig. 2. Pseudo-experimental and numerical hysteresis stress-strain curves for different temperatures; 20°C (a), 300°C (b) and 400°C (c). Experi-
mental data based on [21]
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TABLE 2

Hardening Parameters for different temperatures determined  
using the optimization approach

Hardening 
parameters

20°C
Set 1 Set 2 Set 3 Set 4 Set 5

c1 [MPa]Pa] 21230.4 20602.2 20935.4 29937.2 29570.4
γ1 [-] 654.8 1077.6 778.0 901.1 1137.6

c2 [MPa] 22889.2 24989.7 37408.6 23186.3 26447.0
γ2 [-] 2617.8 1410.5 3442.3 3140.0 2625.8

Q [MPa] 142.4 139.9 144.9 141.2 137.4
b [-] 32.2 42,4 33.6 34.6 45.1

300°C
c1 [MPa]Pa] 94.0 59.8 152.4 122.3 177.9

γ1 [-] 11.4 17.5 14.6 18.3 17.9
c2 [MPa] 24253.4 14207.8 19035.4 17236.3 12034.3
γ2 [-] 797.4 583.4 606.3 645.3 601.2

Q [MPa] 128.9 133.1 126.5 130.7 135.9
b [-] 39.6 44.7 44.0 42.2 44.3

400°C
c1 [MPa]Pa] 51.5 39.4 35.8 53.1 33.2

γ1 [-] 0 0 0 0 0
c2 [MPa] 7943.6 11344.2 13031.03 9384.7 10879.6
γ2 [-] 269.5 321.2 364.3 300.5 334.9

Q [MPa] 43.5 35.8 33.2 40.8 38.2
b [-] 75.2 93.5 69.9 82.1 84.9

The optimization procedure improved the convergence of 
hysteresis curves, but a similar small error norm can be obtained 
for different sets of hardening parameters (see Table 2). Thus, 
the important question arises: which set of the hardening pa-
rameters gives the best approximation? For the selection of this 
optimal set, the authors’ method based on the fuzzy logic was 
applied. This approach assumes some uncertainty of the hard-
ening data. The hardening parameters for Chaboche and Voce 
models are assumed to be fuzzy input. After the fuzzy analysis 
is performed, the fuzzy output variable (the error norm B), as 
well as its membership function are obtained. The discrete (crisp) 
value (B) of the error norms is found in the defuzzification step 
with by means of the mass center method (Eq. 51):

 
 

 
B B dz

B
B dz






 


	 (51)

where μ(B) is the membership function of B variable. The set 
of hardening parameters for which the crisp value of the fuzzy 
error is the smallest, is assumed as the most reliable solution 
(TABLE 3). Hardening parameters of Chaboche model calibrated 
this way were then used in numerical simulations of the KOBO 
extrusion as material data.

For solving dynamic problems, a user material model writ-
ten using the FORTRAN language was applied as a VUMAT 
procedure. It comprises constitutive equations contained in 
Section 2 and works both for small and large displacements. In 
the VUMAT procedure for given strain increments, the plastic 
strain increments should be determined and after that, the stress 
increments in the corotational frame should be computed. The 

stress transformation to the global coordinate system is automati-
cally made by Abaqus (Eq. 28). All internal state variables must 
be updated at the end of the integrations step (yield stress, back 
stress components, effective plastic strain).

The following integration schemes were derived and imple-
mented in the user routine: explicit, implicit and semi-implicit. 
The explicit procedure which is conditionally stable uses de-
rivatives taken from the beginning of the integration step. The 
unconditionally stable and more accurate implicit integration 
which consists of two steps: elastic predictor and plastic corrector 
uses derivatives computed at the end of the integration step. The 
third type of integration which is called semi-implicit, is based 
on the assumption that for a very small time (load) increment 
both isotropic and kinematic hardenings are locally linear. It al-
lows for an analytical derivation of the plastic multiplier (with 
the assumption that normal to the yield surface does not change 
during the integration step). This approach is less computation-
ally expensive than others. All integration approaches of con-
stitutive equations provide similar results due to the very small 
time increment used by ABAQUS program – 10–6 (few orders 
below the stable time increment required by explicit integration 
of the constitutive equations).

The correctness of procedure written was tested on sev-
eral boundary value problems. As an example in Fig. 3 a plate 
with holes restrained at one end and subjected to a tension is 
presented. Similar results are obtained for both Chaboche user 
material procedure and for Chaboche material model available in 
a ABAQUS program. The comparison of H-M-H stress and the 
effective plastic strain for a user material and the ABAQUS one 
is shown in Fig. 3 and 4. In both cases, an excellent convergence 
between Abaqus material model and user-defined material one 
has been obtained. A noticeable difference in effective plastic 
strain plots is that the minimum plastic strain for the user material 
is slightly below zero. It is caused by the extrapolation of the 
results from the Gaussian points to nodes (negative equivalent 
plastic strains in Gaussian points have been never computed). 

The numerical simulation of the KOBO extrusion were 
done using the 3-dimensional model (Fig. 5a) in which tools; 
a recipient, a die and a punch, were modelled as rigid bodies. 
The Eulerian part covers the initial position of the material and 
its location after the extrusion. The 8-node Eulerian hexahedral 
elements considering thermomechanical coupling were used 
in Eulerian domain. Different meshes were tested in numerical 

TABLE 3

Hardening Parameters determined using the fuzzy  
logic method

Hardening parameters
Temperature [°C]

20 300 400
c1 [MPa]Pa] 28695.3 121.1 34.5

γ1 [-] 999.7 20.0 0
c2 [MPa] 31935.9 22862.4 8783.6
γ2 [-] 2464.5 561.6 271.2

Q [MPa] 154.0 114.6 37.5
b [-] 40.3 50.8 76.3
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simulations but finally calculations were done for cylindrical 
mesh thickening to the core (Fig. 5b). Some data concerning 
numerical model are contained in TABLE 4.

Exemplary results presented in this section are obtained 
by the application of Chaboche material model implemented 
commercially in Abaqus program. However, very similar results 
are reached with use of the user material procedure. The H-M-H 
stress distribution in the KOBO extrusion is shown in Fig. 6a. 
The highest stress values occur near the die hole and decrease 
towards the center of the recipient. Fig. 6b shows the distribu-
tion of equivalent plastic strain. The plastic strain occurs mostly 
in the narrow area of the extruded material. 

The temperature distribution in the extruded material is 
shown in Fig. 7. As it is not possible in the CEL procedure 
to take into account the heat flow from the material to tools, 
the temperature values might be overestimated here.

The advantage of the user material procedure over material 
model, which is commercially implemented in a FEM program, 

(a) (b)

Fig. 3. Comparison of the H-M-H stress obtained for a user material (a) and for material available in ABAQUS (b)

(a) (b)

Fig. 4. Comparison of the effective plastic strain obtained for a user material (a) and for material available in ABAQUS (b)

(a) (b)

Fig. 5. Numerical model (a) and mesh (b) applied in this work

TABLE 4
Details of the numerical model applied in this research

Feature Description
Type of model 3D
Material model Chaboche elastic-plastic

Integration procedure Dynamic explicit
Friction model Coulomb model
Type of tools Rigid bodies

Number of calculation steps 2 steps
Time of calculation step 0.5 s
Stable time increment 1.9·10–9 s

Total time of calculations 10 hours

Other material data E = 61 700 MPa, ν = 0.3,  
ρ = 2,700 kg/m3

Thermal data cp = 909 J/(kg·K),  
h = 206 W/(m·K), α = 4.5·10–6

*	 E – Young modulus, ν – Poisson’s ratio, ρ – density,  
cp – specific heat, h –thermal conductivity coefficient,  
α – linear expansion coefficient
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is the possibility to obtain more information about the material 
behaviour during the KOBO extrusion. In the wake of the die 
movement, extruded material stabilizes very quickly near the 
die hole due to its isotropic hardening (Fig. 8) which reaches its 
saturation. Such information cannot be obtained in commercial 
implementation of the Chaboche model. Large isotropic harden-
ing up to the saturation increases the yield stress and worsens 
the conditions for continuing the KOBO process by increasing 
the forces acting on the tools.

The shape of plastic zones obtained in numerical simula-
tions was confirmed in the experimental research (Fig. 9). The 
plastic strain zones have characteristic rounded shape visible 
both in numerical and experimental results. According to [23], 
the characteristic shape of plastic flow streams is associated 
with the dominant crystal orientation which follows with the 
stream of the material.

4. Summary and conclusions

Numerical simulations of the KOBO extrusion process for 
AMG-6 aluminum alloy using the thermomechanical coupled 
Lagrangian-Eulerian (CEL) formulation is presented here. 
The calculations were done with the use of the Chaboche elastic-
plastic material model with two backstresses in with material 
parameters determined for various temperature. The numerical 
simulations were done using the user material procedure whose 
correctness was verified in selected elastic-plastic problems. 
The following integration procedures of the constitutive equa-
tions were investigated: explicit, implicit and semi-implicit (local 
linearization). The heat was generated due to plastic work and 
the friction between processed material and tools.

(a) (b)

Fig. 6. The von Mises (a) and the equivalent plastic strain (b) distribution in the KOBO process

Fig. 7. The temperature distribution in the KOBO extrusion Fig. 8. The isotropic hardening in the extruded material

(a) (b)
Fig. 9. The shape of plastic zones; numerical (a) and experimental (b) results [23]
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On the basis of the results obtained, the following conclu-
sions can be drawn:
1)	T he CEL formulation enables to model the KOBO extru-

sion process and provides reliable results in stresses and 
strains. The results of temperature are slightly overestimated 
because the CEL approach does not allow modelling the 
heat flow from the processed material to the tools.

2)	T he knowledge about the hardening parameters of the 
material might have a key influence on the selection of the 
conditions of the KOBO process – materials with dominant 
isotropic hardening are hard to extrude.

3)	T he modelling of the KOBO process using the user mate-
rial procedure allow better knowledge about the extruded 
material response.
The results obtained in numerical simulations using the 

material user procedure can help to optimize the conditions of 
the KOBO extrusion and can lead to the elimination of possible 
problems associated with the life of tools. 
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