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Abstract: The Laplace operator is a differential operator which is used to detect edges of
objects in digital images. This paper presents the properties of the most commonly used
fifth-order pixels Laplace filters including the difference schemes used to derive them (finite
difference method – FDM and finite element method – FEM). The results of the research
concerning third-order pixels matrices of the convolution Laplace filters used for digital
processing of images were presented in our previous paper: The mathematical characteristic
of the Laplace contour filters used in digital image processing. The third order filters is
presented by Winnicki et al. (2022). As previously, the authors focused on the mathematical
properties of the Laplace filters: their transfer functions and modified differential equations
(MDE). The relations between the transfer function for the differential Laplace operator
and its difference operators are described and presented here in graphical form. The impact
of the corner elements of the masks on the results is also discussed. A transfer function,
is a function characterizing properties of the difference schemes applied to approximate
differential operators. Since they are relations derived in both types of spaces (continuous and
discrete), comparing them facilitates the assessment of the applied approximation method.

Keywords: finite element method, finite difference methods, modified differential equa-
tions, matrices of the fifth-order Laplace filters, Taylor expansion of the transfer function

1. Introduction

The difference methods started to develop intensively in the middle of 1940s. At that
time every new proposal of a difference scheme for the differential operator of the first
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and second order was applied mainly to numerical weather prediction. In early 1950s the
scientists from the Joint Numerical Weather Prediction Unit (U.S. Air Force): Knighting
(1955), Thompson (1955a, b) and Shuman (1956), presented proposals of nine, thirteen
and twenty-five-point difference schemes on square 5 × 5 pixels stencils – see: Ogura
(1958), Miyakoda (1960) and Gates (1961).
In this paper, using matrices induced by difference schemes approximating the

Laplace operator, the authors: derived the Π-forms of the first differential approximation
of the schemes (modified differential equations); determined the transfer functions of
the 𝑓𝑝 ( 𝑘̃ , 𝑙̃) (where 𝑝 is the matrix number explained in the paper body; 𝑘̃ = 𝑘ℎ/𝜋
and 𝑙̃ = 𝑙ℎ/𝜋 – the Nyquist wave-numbers which are the wave-numbers normalized to
the maximum wave-number that can be sampled and 𝑘 , 𝑙 – wave-numbers, 𝑘 = 2𝜋/𝜆𝑥 ,
𝑙 = 2𝜋/𝜆𝑦 , and 𝜆𝑥 and 𝜆𝑦 – the wavelengths); presented graphical interpretation of these
functions as well as the relation between the transfer function of 𝑓𝑝 ( 𝑘̃ , 𝑙̃) and 𝑓𝐿 ( 𝑘̃ , 𝑙̃) for
the differential Laplace operator, i.e. the 𝑓𝑝 ( 𝑘̃ , 𝑙̃)/ 𝑓𝐿 ( 𝑘̃ , 𝑙̃) relation.
A transfer function, is a function characterizing properties of the difference schemes

applied to approximate differential operators. Since they are relations derived in both
types of spaces (continuous and discrete), comparing them facilitates the assessment
of the applied approximation method. Therefore, the transfer operator presents spectral
properties of matrices of linear convolution filters as functions of the 𝑘̃ and 𝑙̃ Nyquist
wave-numbers. The values of 𝑓𝑝 ( 𝑘̃ , 𝑙̃) and 𝑓𝐿 ( 𝑘̃ , 𝑙̃) are indirectly generated by the lengths
of the disturbances occurring during analyses of the digital fields. More details are
available in Pitas (2000), Jähne (2002), Strikwerda (2004), Burger and Burge (2008),
Burger and Burge (2009a, b), Iserles (2009), Mallat (2009), Parker (2011), Petrou and
Petrou (2011), Gonzalez and Woods (2018). The course studies of the 𝑓𝑝 ( 𝑘̃ , 𝑙̃) functions
will be used for presenting the properties of the specific Laplace filters. The comparison
will be conducted over a test field created in the Matlab by means of the peaks.m script.
The fifth-order 5 × 5 pixels Laplace filters matrices consideration from the point

of view of numerical methods is an important aspect of the discussion presented here.
Each matrix constitutes other difference scheme applicable to computational methods.
It is a different method of obtaining approximate solutions of second order differential
equations in which the ∇2 operator occurs – see: Prewitt (1970), Jähne et al. (1999), Pitas
(2000), Scharr (2000), Scharr and Weickert (2000), Jähne (2002), Pratt (2007), Burger
and Burge (2008), Burger and Burge (2009a, b), Mallat (2009), Parker (2011), Petrou
and Petrou (2011), Krawczyk et al. (2012), Gonzalez and Woods (2018). The properties
of the analyzed matrices should be taken into account when solving selected issues of
the mathematical physics.
The paper presents the descriptions of seven selected masks of the Laplace type used

in the processing and interpretation of digital data of various origin. As we have already
mentioned in Winnicki et al. (2022) this may be navigation data (Borawski, 2004; State-
czny and Nowakowski, 2006; Burger and Burge, 2009a; Stateczny et al., 2021) radar,
sonar and satellite (Kurczynski et al., 2017; Fryskowska et al., 2019; Stateczny et al.,
2020), geodetic and cartographic (called remotely sensed in Kupidura and Kupidura
(2009), Kupidura et al. (2010)), meteorological (Jasinski et al. (1999) – information
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about clouds including its shape, size, internal structure, as well as the relationship of the
location of different types of clouds). These may also be digital images of building infras-
tructure elements (Burger and Burge, 2009a; Reda and Kedzierski, 2020; Wojtkowska
et al., 2021) and technical devices (Pokonieczny and Moscicka, 2018). A common goal
appears in each of the listed here areas of photogrammetric research: correct edge and
vertex detection of the analyzed objects.
The contextual filter is primarily a multi-element mask described by an odd order

square matrix. For this reason, the final forms of most of the used fifth-order Laplace
filter masks together with theirΠ-forms of the first differential approximation are derived
here. In Section 2 we discuss the origin of some filter masks built on the basis of the
finite difference method (FDM) and of the finite element method (FEM). In Section 3
we discuss the numerical test and in Section 4 the final conclusions are presented. The
authors alsowant to highlight the development of the difference scheme for the differential
Laplace operator built on the 5 × 5 pixels square grid. In Part I (Winnicki et al., 2022),
we presented the spectral characteristic of the third order filters of the Laplace type.

2. The difference Laplace filters of the fifth order

Laplace filtermasks are induced by the two-dimensional difference operator for the partial
differential equation (PDE):

A𝑢 = Δ𝑢 = ∇2𝑢 =
𝜕2𝑢

𝜕𝑥2
+ 𝜕

2𝑢

𝜕𝑦2
, (1)

where: 𝑢(𝑥, 𝑦) – any scalar function. Assuming that the solution of (1) may be presented
as an individual Fourier mode:

𝑢(𝑥𝑚, 𝑦𝑛) = 𝑢𝑚,𝑛 = 𝑢̂𝑒𝑖 ( 𝑘̃ 𝑥𝑚+𝑙̃𝑦𝑛) . (2)

We obtain the transfer function for the Laplace equation (1):

∇2𝑢𝑚,𝑛 = −𝜋2
(
𝑘̃2 + 𝑙̃2

)
𝑢̂𝑒𝑖 𝜋 ( 𝑘̃ 𝑥𝑚+𝑙̃𝑦𝑛) = 𝑓𝐿 ( 𝑘̃ , 𝑙̃)𝐿𝑢𝑚,𝑛 (3)

depends on the Nyquist wave-numbers ( 𝑘̃ , 𝑙̃); 𝑓𝐿 ( 𝑘̃ , 𝑙̃) = −𝜋2( 𝑘̃2 + 𝑙̃2) – transfer function
for the Laplace operator (see Fig. 1). We can also call it the transfer function of the
derived filter (see Jähne (2002)).
The forms of the Laplace masks depend on the method of discretization of the

differential operator (1). The finite difference method and the finite element method are
commonly applied in practice. The finite difference discretization of operator A (in the
former method) and the approximation of the solution (in the latter) are provided on the
mesh of equidistant grid nodes.
In the FEM the sought after solution 𝑢(𝑥, 𝑦) in A𝑢 is approximated by the following

series:
𝑢(𝑥, 𝑦) =

∑︁
𝑖, 𝑗

𝑢𝑖, 𝑗𝜑𝑖 (𝑥)𝜓 𝑗 (𝑦) , (4)
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Fig. 1. The transfer function 𝑓𝐿 ( 𝑘̃ , 𝑙̃) for the differential Laplace equation – negative
in the range of ( 𝑘̃ , 𝑙̃) = [−1÷1] × [−1÷1]

where: 𝑢𝑖, 𝑗 values of the function 𝑢(𝑥, 𝑦) in the grid nodes (𝑖, 𝑗); 𝜑𝑖 (𝑥), 𝜓 𝑗 (𝑦) basic
functions of one variable, often called the Lagrange elements. In this paper these functions
are the polynomials of the second degree (parabolas).
In most cases the discussed difference schemes are different although they approxi-

mate the same differential operator. They differ in the forms – in the case of FEM they
strictly depend on the basic functions degree (see Subsection 2.2) – and they have differ-
ent characteristics. In both cases, sets of the multi-point filters in the form of 5× 5 pixels
matrices are obtained.
The forms of the MDEs are very useful in the detailed analysis of the dispersive

and dissipative features of the difference schemes (see: Appadu et al. (2008), Appadu
and Dauhoo (2011), Appadu (2014)). For the elliptic partial differential equations we
always obtain theirΠ-forms. More work on the MDE can be found inWarming and Hyett
(1974), Peyret and Taylor (1983), Li and Yang (2011), Winnicki et al. (2019), Shokin et
al. (2020a, b).

2.1. The difference Laplace filters of the fifth order

Let us start the discussion on the influence of the Laplace difference scheme form on
the accuracy of various numerical solutions from the fifth-order Laplacian presented and
discussed by: Knighting (1955), Thompson (1955a, b), Ogura (1958), Miyakoda (1960)
and Torre and Poggio (1984). It is the classical sum of the fourth-order finite difference
equation (FDE) with respect to 𝑥 and 𝑦:

A51𝑢ℎ =
16(𝑢𝑖−1, 𝑗 + 𝑢𝑖, 𝑗+1 + 𝑢𝑖+1, 𝑗 + 𝑢𝑖, 𝑗−1)

12ℎ2

−
60𝑢𝑖, 𝑗 + 𝑢𝑖−2, 𝑗 + 𝑢𝑖, 𝑗+2 + 𝑢𝑖+2, 𝑗 + 𝑢𝑖, 𝑗−2

12ℎ2
, (5)

which leads to the Laplace filter mask (𝑢ℎ – the approximated solution, ℎ – spatial step of
the regular square mesh, in this case – the distance between pixels). It is always assumed
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that ℎ𝑥 = ℎ𝑦 = ℎ = 1 in both directions of 𝑥 and 𝑦. Therefore the filter mask can be
written in the following form:

Lap51 =
1
12


0 0 −1 0 0
0 0 16 0 0
−1 16 −60 16 −1
0 0 16 0 0
0 0 −1 0 0


. (6)

Equation (5) is the first commonly used in numerical weather prediction nine-point
FDE based on the “cross” 25-point stencil with 9 non-zero coefficients. In our opinion,
(6) should be recognized as the first 5 × 5 pixels filter mask of the Laplace type applied
in the digital image processing. The remaining 16 coefficients in the mask (6) are equal
to zero and they are ignored in the computations. The MDE for (5) is presented below:

Π51 = ∇2𝑢 − ℎ4

90

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
− ℎ6

1008

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+𝑂 (ℎ8). (7)

In equation (7), we have only the unmixed even-order partial derivatives. The mixed
derivatives are associated with the coefficients lying outside the “cross” (see for example
equation (11) and the next masks).
In Winnicki et al. (2022) three terms were defined: convergence, order of accuracy

and consistency with reference to the difference scheme and to the MDE. We do not

repeat them here. However, as ℎ → 0 equation (7) approaches ∇2𝑢 =
𝜕2𝑢

𝜕𝑥2
+ 𝜕

2𝑢

𝜕𝑦2
. So the

FDE (5) is a consistent approximation of the Laplace equation and its solution 𝑢ℎ (𝑥𝑖 , 𝑦 𝑗)
converges to the exact solution 𝑢(𝑥, 𝑦). The accuracy of the difference equation (5) is of the
fourth order. However, according to the spectral theory the coefficient in front of the sum(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
should be equal to+ℎ6/1008 (wemarked in red all the terms of themodified

differential equations and transfer functions in Taylor expansion which coefficients have
incorrect signs – it is, of course, the feature of the FDEs and, consequently, of the filter
masks and their MDEs).
The transfer function for (5) has the form:

𝑓 51 ( 𝑘̃ , 𝑙̃) =
−64 sin2 𝜋𝑘̃

2
− 64 sin2 𝜋𝑙̃

2
+ 4 sin2(𝜋𝑘̃) + 4 sin2(𝜋𝑙̃)

12
. (8)

The Taylor expansion of (8) for the Nyquist wave-numbers 𝑘̃ and 𝑙̃ up to the eighth
order yields the approximation:

𝑓 51𝑇 ( 𝑘̃ , 𝑙̃) = −𝜋2
(
𝑘̃2 + 𝑙̃2

)
− 𝜋6

90

(
𝑘̃6 + 𝑙̃6

)
− 𝜋8

1008

(
𝑘̃8 + 𝑙̃8

)
+𝑂 ( 𝑘̃10, 𝑙̃10). (9)
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Figure 2 is a graphical presentation of the transfer function (8) for the difference

scheme (5) (Fig. 2a) and for the relation
𝑓 51 ( 𝑘̃ , 𝑙̃)
𝑓𝐿 ( 𝑘̃ , 𝑙̃)

(Fig. 2b). Thompson (1955b) (see also:

Miyakoda (1960), p. 97 and Ogura (1958), p. 477) proposed another difference scheme
for the discretization of the operator (1):

A52𝑢ℎ =
24(𝑢𝑖−1, 𝑗 + 𝑢𝑖, 𝑗+1 + 𝑢𝑖+1, 𝑗 + 𝑢𝑖, 𝑗−1) − 84𝑢𝑖, 𝑗

16ℎ2

−
𝑢𝑖−2, 𝑗 + 𝑢𝑖, 𝑗+2 + 𝑢𝑖+2, 𝑗 + 𝑢𝑖, 𝑗−2

16ℎ2

−
2(𝑢𝑖−1, 𝑗+1 + 𝑢𝑖+1, 𝑗+1 + 𝑢𝑖+1, 𝑗−1 + 𝑢𝑖−1, 𝑗−1)

16ℎ2
, (10)

which also leads to the 5 × 5 pixels filter mask of the Laplace type:

Lap52 =
1
16



0 0 −1 0 0
0 −2 24 −2 0

−1 24 −84 24 −1
0 −2 24 −2 0
0 0 −1 0 0


. (11)

(a) (b)

Fig. 2. The transfer function 𝑓 51 ( 𝑘̃ , 𝑙̃) for the mask (6) – negative in the entire range of ( 𝑘̃ , 𝑙̃) (a)

and the graph of
𝑓 51 ( 𝑘̃ , 𝑙̃)
𝑓𝐿 ( 𝑘̃ , 𝑙̃)

(b)

The MDE for the difference scheme (10) has the form:

Π52 = ∇2𝑢 + ℎ
2

48

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
−ℎ
2

8
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
+ 11ℎ

4

1440

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
− ℎ4

96

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
− ℎ6

1152
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
− 59ℎ

6

80640

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+𝑂 (ℎ8). (12)
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The transfer functions for the scheme (10) are as follows (Fig. 3a):

𝑓 52 ( 𝑘̃ , 𝑙̃) = −5 sin2 𝜋𝑘̃
2

− 5 sin2 𝜋𝑙̃
2

− 2 sin2 𝜋𝑘̃
2
sin2

𝜋𝑙̃

2
+ sin

2 𝜋𝑘̃ + sin2 𝜋𝑙̃
4

, (13)

𝑓 52𝑇 ( 𝑘̃ , 𝑙̃) = −𝜋2
(
𝑘̃2 + 𝑙̃2

)
+ 𝜋

4

48

(
𝑘̃4 + 𝑙̃4

)
−𝜋
4

8
𝑘̃2 𝑙̃2 + 11𝜋

6

1440

(
𝑘̃6 + 𝑙̃6

)
− 𝜋6

96

(
𝑘̃4 𝑙̃2 + 𝑘̃2 𝑙̃4

)
− 𝜋8

1152
𝑘̃4 𝑙̃4 − 59𝜋

8

80640

(
𝑘̃8 + 𝑙̃8

)
+𝑂 ( 𝑘̃10, 𝑙̃10). (14)

The mixed partial derivatives in (12) and the products of 𝑘̃ and 𝑙̃ in (14) are the
consequence of the non-zero elements (here equal to −2) that appeared in the corners of

the nine-point square stencil in the red boxes of the matrix (11). The sum: −ℎ
2

8
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
+

11ℎ4

1440

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
− ℎ6

1152
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
− 59ℎ

6

80640

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
in (12) describes the effects

of anti-dissipation (see Shokin et al. (2020b)), also called backward diffusion. It follows
the exponential growth of the amplitude of the elementary solution and presents the
amplification features of this scheme.

(a) (b)

Fig. 3. The transfer function 𝑓 52 ( 𝑘̃ , 𝑙̃) for the mask (11) – negative in the entire range of ( 𝑘̃ , 𝑙̃) (a)

and the graph of
𝑓 52 ( 𝑘̃ , 𝑙̃)
𝑓𝐿 ( 𝑘̃ , 𝑙̃)

(b)

Despite these features, FDE (10) is consistent and convergent as ℎ → 0 and its
accuracy is of the second order. For medium values of the Nyquist wave-numbers the
relation 𝑓 52 ( 𝑘̃ , 𝑙̃)/ 𝑓𝐿 ( 𝑘̃ , 𝑙̃) exceeds 1 (Fig. 3b and Fig. 4).
Comparing Figure 2b and Figure 3b we conclude that, although the accuracy of the

filter (11) is of the second order, its conformity to the transfer function of the Laplace
operator for the large Nyquist wave-numbers is better than of the mask (6) with the
accuracy of the fourth order.
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Fig. 4. The graph of
𝑓 52 ( 𝑘̃ , 𝑙̃)
𝑓𝐿 ( 𝑘̃ , 𝑙̃)

. The white areas in the shape of teardrops indicate the areas

where the function
𝑓 52 ( 𝑘̃ , 𝑙̃)
𝑓𝐿 ( 𝑘̃ , 𝑙̃)

exceeds 1

The accuracy of the next difference scheme for the Laplace operator (1) proposed by
Gates (1956) (see Burger and Burge, 2009a, 2009b):

A53𝑢ℎ = −
𝑢𝑖−2, 𝑗 + 𝑢𝑖, 𝑗+2 + 𝑢𝑖+2, 𝑗 + 𝑢𝑖, 𝑗−2

36ℎ2
−
60𝑢𝑖, 𝑗
36ℎ2

−
14(𝑢𝑖−1, 𝑗 + 𝑢𝑖, 𝑗+1 + 𝑢𝑖+1, 𝑗 + 𝑢𝑖, 𝑗−1)

36ℎ2

+
32(𝑢𝑖−1, 𝑗+1 + 𝑢𝑖+1, 𝑗+1 + 𝑢𝑖−1, 𝑗−1 + 𝑢𝑖+1, 𝑗−1)

36ℎ2

−
𝑢𝑖−2, 𝑗+1 + 𝑢𝑖+2, 𝑗+1 + 𝑢𝑖−2, 𝑗−1 + 𝑢𝑖+2, 𝑗−1

36ℎ2

−
𝑢𝑖−1, 𝑗+2 + 𝑢𝑖+1, 𝑗+2 + 𝑢𝑖−1, 𝑗−2 + 𝑢𝑖+1, 𝑗−2

36ℎ2
(15)

is of the second order. This scheme leads to the filter mask:

Lap53 =
1
36


0 −1 −1 −1 0
−1 32 −14 32 −1
−1 −14 −60 −14 −1
−1 32 −14 32 −1
0 −1 −1 −1 0


. (16)

The construction of the filter (16) is rather simple. The approximation of the accuracy

of the fourth order for one term of the Laplace operator is:
𝜕2𝑢

𝜕𝑥2
→

[
−1 16 −30 16 −1

]
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and the same for
𝜕2𝑢

𝜕𝑦2
(see (6)). The 5 × 5 pixels matrix (16) is the sum of the two 5 × 5

matrices with the same three rows and three columns:

1
36


0 0 0 0 0
−1 16 −30 16 −1
−1 16 −30 16 −1
−1 16 −30 16 −1
0 0 0 0 0


+ 1
36


0 −1 −1 −1 0
0 16 16 16 0
0 −30 −30 −30 0
0 16 16 16 0
0 −1 −1 −1 0


=
1
36


0 −1 −1 −1 0
−1 32 −14 32 −1
−1 −14 −60 −14 −1
−1 32 −14 32 −1
0 −1 −1 −1 0


. (17)

In Gates (1961) the value of the coefficient in (16) is equal to
1
24
. After detailed

analysis of the MDE for (15) (see (18)) we conclude that it is incorrect, and its correct
value is 1/36.
Thismodification of the filtermask (6) did not improve its spectral features. Analyzing

Fig. 5b one can say that the spectral features of (16) are evidently worse than those of
(6), especially for medium and large Nyquist wave-numbers.

(a) (b)

Fig. 5. The function 𝑓 53 ( 𝑘̃ , 𝑙̃) for the mask (16) – negative for small and medium wave-numbers ( 𝑘̃ , 𝑙̃) (a)

and the graph of 𝑓
5
3 ( 𝑘̃ ,̃𝑙)
𝑓𝐿 ( 𝑘̃ ,̃𝑙)

(b)

The FDE (15) is a consistent approximation of the Laplace equation and if ℎ → 0 its
solution 𝑢ℎ (𝑥𝑖 , 𝑦 𝑗) converges to the exact solution 𝑢(𝑥, 𝑦). The MDE for the difference
scheme (15) has the form:

Π53 = ∇2𝑢 + 2ℎ
2

3
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
+ ℎ
4

90

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
− ℎ6

1008

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
− ℎ4

36

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+𝑂 (ℎ8). (18)
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In (18) we can also find the mixed even-order partial derivatives. However, for large
Nyquist wave-numbers ( 𝑘̃ , 𝑙̃), | 𝑘̃ | → 1 and |̃𝑙 | → 1 the transfer function 𝑓 53 ( 𝑘̃ , 𝑙̃) rapidly
grows and achieves values nearly 4 while the relation 𝑓 53 ( 𝑘̃ , 𝑙̃)/ 𝑓𝐿 ( 𝑘̃ , 𝑙̃) rapidly decreases.
For | 𝑘̃ | > 0.6 and |̃𝑙 | > 0.6 it is negative (see Fig. 5b). We should also notice that in (17)

the coefficient at the mixed eighth-order derivatives
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
is equal to 0.

The transfer function for (15) has the form (see Fig. 5a):

𝑓 53 ( 𝑘̃ , 𝑙̃) =
−192 sin2 𝜋𝑘̃

2
− 192 sin2 𝜋𝑙̃

2
+ 512 sin2 𝜋𝑘̃

2
sin2

𝜋𝑙̃

2
+ 12 sin2 𝜋𝑘̃ + 12 sin2 𝜋𝑙̃

36

−
16 sin2 𝜋𝑘̃ sin2

𝜋𝑙̃

2
+ 16 sin2 𝜋𝑙̃ sin2 𝜋𝑘̃

2
36

(19)

and its Taylor expansion containing the products of the wave-numbers 𝑘̃ and 𝑙̃ is presented
below:

𝑓 53𝑇 ( 𝑘̃ , 𝑙̃) = −𝜋2
(
𝑘̃2 + 𝑙̃2

)
+ 2𝜋

4

3
𝑘̃2 𝑙̃2 + 𝜋

6

90

(
𝑘̃6 + 𝑙̃6

)
− 𝜋8

1008

(
𝑘̃8 + 𝑙̃8

)
− 𝜋6

36

(
𝑘̃4 𝑙̃2 + 𝑘̃2 𝑙̃4

)
+𝑂 ( 𝑘̃10, 𝑙̃10). (20)

In the BlueNote software package added to Kupidura et al. (2010) – is presented the
following rather strange mask (the Authors call it the morphological Laplacian):

Lap54 =
1
25


1 1 1 1 1
1 1 1 1 1
1 1 −24 1 1
1 1 1 1 1
1 1 1 1 1


. (21)

It is a dense matrix with no zero elements. In (21) the center pixel with the weight of
−24/25 is surrounded by 24 pixels with the same weights equal to 1/25.
This mask satisfies the necessary condition to be of the Laplace type: the sum of

all its elements is equal to zero. The mathematical features of (21) were still unknown.
Below we present the difference scheme which leads to (21):

A54𝑢ℎ =
𝑢𝑖−2, 𝑗+𝑢𝑖, 𝑗+2+𝑢𝑖+2, 𝑗+𝑢𝑖, 𝑗−2

25ℎ2
−
24𝑢𝑖, 𝑗
25ℎ2

+
𝑢𝑖−1, 𝑗+𝑢𝑖, 𝑗+1+𝑢𝑖+1, 𝑗+𝑢𝑖, 𝑗−1

25ℎ2

+
𝑢𝑖−1, 𝑗+1+𝑢𝑖+1, 𝑗+1+𝑢𝑖−1, 𝑗−1+𝑢𝑖+1, 𝑗−1

25ℎ2
+
𝑢𝑖−2, 𝑗+1+𝑢𝑖+2, 𝑗+1+𝑢𝑖−2, 𝑗−1+𝑢𝑖+2, 𝑗−1

25ℎ2

+
𝑢𝑖−1, 𝑗+2+𝑢𝑖+1, 𝑗+2+𝑢𝑖−1, 𝑗−2+𝑢𝑖+1, 𝑗−2

25ℎ2
+
𝑢𝑖−2, 𝑗−2+𝑢𝑖−2, 𝑗+2+𝑢𝑖+2, 𝑗−2+𝑢𝑖+2, 𝑗+2

25ℎ2
. (22)
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We shall show that the filter mask (21) leads to the modified differential equation in
which all coefficients at the mixed and unmixed even-order derivatives have the correct
signs. The MDE for (22) has the form:

Π54 = ∇2𝑢 + 17ℎ
2

60

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
+ ℎ2 𝜕4𝑢

𝜕𝑥2𝜕𝑦2
− 13ℎ

4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
+ 257ℎ6

100800

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
− 17ℎ

4

60

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ 289ℎ

6

3600
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8). (23)

The FDE (22) is a consistent approximation of the Laplace equation and its solution
𝑢ℎ (𝑥𝑖 , 𝑦 𝑗) converges to the exact solution 𝑢(𝑥, 𝑦). The accuracy of the difference equation
(22) is of the second order. According to the spectral theory, the coefficients in front of

the sums:
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6
and

𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8
are correct. It is the first known twenty-five-point

filter mask which satisfies this condition.
The transfer function for (20) (see Fig. 6a) and its Taylor expansion are presented

below:

𝑓 54 ( 𝑘̃ , 𝑙̃) =
16

(
sin2 𝜋𝑘̃ + sin2 𝜋𝑘̃

2

) (
sin2 𝜋𝑙̃ + sin2 𝜋𝑙̃

2

)
25

−
20

(
sin2 𝜋𝑘̃ + sin2 𝜋𝑙̃ + sin2 𝜋𝑘̃

2
+ sin2 𝜋𝑙̃

2

)
25

, (24)

𝑓 54𝑇 ( 𝑘̃ , 𝑙̃) = −𝜋2
(
𝑘̃2 + 𝑙̃2

)
+ 17𝜋

4

60

(
𝑘̃4 + 𝑙̃4

)
+ 𝜋4 𝑘̃2 𝑙̃2 − 13𝜋

6

360

(
𝑘̃6 + 𝑙̃6

)
− 17𝜋

6

60

(
𝑘̃4 𝑙̃2 + 𝑘̃2 𝑙̃4

)
+ 257𝜋

8

100800

(
𝑘̃8 + 𝑙̃8

)
+ 289𝜋

8

3600
𝑘̃4 𝑙̃4 +𝑂 ( 𝑘̃10, 𝑙̃10). (25)

In the numerical methods and in the digital image processing there is a very well
known similar but nine-point filter mask which is obtained on the basis of the finite
elements method with the piecewise linear approximating functions P1 with a small
support. Its form we present below (see Winnicki et al. (2022)):

K =
1
3


1 1 1
1 −8 1
1 1 1

 . (26)
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(a) (b)

Fig. 6. The transfer function 𝑓 54 ( 𝑘̃ , 𝑙̃) for the mask (21) – classicalMexican hat (negative in the entire range
of ( 𝑘̃ , 𝑙̃)) (a) and the graph of 𝑓 54 ( 𝑘̃ , 𝑙̃)/ 𝑓𝐿 ( 𝑘̃ , 𝑙̃) (b)

In the MDE for (26) all coefficients at the derivatives also have correct signs:

ΠK = ∇2𝑢 + ℎ
4

12

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
+ ℎ

2

3
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
− ℎ4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
− ℎ4

36

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ ℎ6

20160

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+ ℎ6

432
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8). (27)

The mask (26) is also presented e.g. in Burger and Burge (2008) (page 132, with no
coefficient), Lynch (2010) (page 234), Gonzalez and Woods (2018) (page 161). Prewitt
(1970) and Pratt (2007) present this filter with the coefficient equal to −1/8.
The masks of the type (21) and (26) with one dominated center pixel react most

strongly to local intensity peaks (see Section 4 – the final conclusions, conclusion 5).
Another 25-point mask is published for example in Tadeusiewicz and Korohoda

(1997). It is constructed on the basis of the difference scheme:

A55𝑢ℎ =
𝑢𝑖−2, 𝑗+𝑢𝑖, 𝑗+2+𝑢𝑖+2, 𝑗+𝑢𝑖, 𝑗−2

15ℎ2
−
4𝑢𝑖, 𝑗
15ℎ2

−
2(𝑢𝑖−1, 𝑗+𝑢𝑖, 𝑗+1+𝑢𝑖+1, 𝑗+𝑢𝑖, 𝑗−1)

15ℎ2

+
𝑢𝑖−2, 𝑗+1+𝑢𝑖+2, 𝑗+1+𝑢𝑖−2, 𝑗−1+𝑢𝑖+2, 𝑗−1

15ℎ2
+
𝑢𝑖−1, 𝑗+2+𝑢𝑖+1, 𝑗+2+𝑢𝑖−1, 𝑗−2+𝑢𝑖+1, 𝑗−2

15ℎ2

−
𝑢𝑖−1, 𝑗+1+𝑢𝑖+1, 𝑗+1+𝑢𝑖−1, 𝑗−1+𝑢𝑖+1, 𝑗−1

30ℎ2
+
𝑢𝑖−2, 𝑗−2+𝑢𝑖−2, 𝑗+2+𝑢𝑖+2, 𝑗−2+𝑢𝑖+2, 𝑗+2

30ℎ2
. (28)

We present it below:

Lap55 =
1
30


1 2 2 2 1
2 −1 −4 −1 2
2 −4 −8 −4 2
2 −1 −4 −1 2
1 2 2 2 1


. (29)



The mathematical characteristic of the fifth order Laplace contour filters used in digital image processing 13

The MDE for the difference scheme (28) is also correct and has the form:

Π55 = ∇2𝑢 + 7ℎ
4

20

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
+ 31ℎ

2

30
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
− 17ℎ

4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
− 103ℎ

4

360

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ 341ℎ

6

100800

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+ 319ℎ

6

4320
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8). (30)

The transfer function for (28) is as follows (Fig. 7a):

𝑓 55 ( 𝑘̃ , 𝑙̃) =
16 sin2 𝜋𝑘̃ sin2 𝜋𝑙̃ − 32(sin2 𝜋𝑘̃ + sin2 𝜋𝑙̃)

30

+
32

(
sin2

𝜋𝑘̃

2
sin2 𝜋𝑙̃ + sin2 𝜋𝑘̃ sin2 𝜋𝑙̃

2

)
30

+
8

(
sin2

𝜋𝑘̃

2
+ sin2 𝜋𝑙̃

2

)
− 16 sin2 𝜋𝑘̃

2
sin2

𝜋𝑙̃

2

30
(31)

and its Taylor expansion:

𝑓 55𝑇 ( 𝑘̃ , 𝑙̃) = −𝜋2
(
𝑘̃2 + 𝑙̃2

)
+ 7𝜋

4

20

(
𝑘̃4 + 𝑙̃4

)
+ 31𝜋

4

30
𝑘̃2 𝑙̃2

− 17𝜋
6

360

(
𝑘̃6 + 𝑙̃6

)
− 103𝜋

6

360

(
𝑘̃4 𝑙̃2 + 𝑘̃2 𝑙̃4

)
+ 341𝜋8

100800

(
𝑘̃8 + 𝑙̃8

)
+ 319𝜋

8

4320
𝑘̃4 𝑙̃4 +𝑂 ( 𝑘̃10, 𝑙̃10). (32)

For largeNyquist wave-numbers ( 𝑘̃ , 𝑙̃), | 𝑘̃ | → 1 and |̃𝑙 | → 1 the relation 𝑓 55 ( 𝑘̃ , 𝑙̃)/ 𝑓𝐿 ( 𝑘̃ , 𝑙̃)
is negative.
The FDE (28) is consistent and convergent as ℎ → 0 and its accuracy is of the second

order. Burger and Burge (2008, p. 97) proposed another linear 5 × 5 pixels filter of the
Laplace type:

LapBB =


0 0 −1 0 0
0 −1 −2 −1 0
−1 −2 16 −2 −1
0 −1 −2 −1 0
0 0 −1 0 0


(∗)

and called it Laplace or Mexican hat filter. They also – rightly – used the formula:
difference filter. But the problem is that the MDE for the difference scheme which
induces this filter is incorrect:
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(a)
(b)

Fig. 7. The transfer function 𝑓 55 ( 𝑘̃ , 𝑙̃) for the mask (29) (a) and the graph of 𝑓
5
5 ( 𝑘̃ , 𝑙̃)/ 𝑓𝐿 ( 𝑘̃ , 𝑙̃) (b)

ΠBB = −8∇2𝑢 − 5ℎ
2

3

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
− ℎ2 𝜕4𝑢

𝜕𝑥2𝜕𝑦2

+ 17ℎ
4

90

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
+ ℎ

4

12

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
− 13ℎ

6

1008

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
− ℎ6

144
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8). (**)

The transfer function for (*) is graphically presented in Figure 8. The Burger and
Burge Mexican hat filter should be modified to the following form:

Lap56 =
1
8


0 0 1 0 0
0 1 2 1 0
1 2 −16 2 1
0 1 2 1 0
0 0 1 0 0


. (33)

Fig. 8. The transfer function for Burger and Burge filter (*) – it is always positive
in the range of ( 𝑘̃ , 𝑙̃) = [−1÷1] × [−1÷1]
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The mask (33) is induced by the below presented difference scheme:

A55𝑢ℎ =
𝑢𝑖−2, 𝑗 + 𝑢𝑖, 𝑗+2 + 𝑢𝑖+2, 𝑗 + 𝑢𝑖, 𝑗−2

8ℎ2
−
2𝑢𝑖, 𝑗
ℎ2

+
𝑢𝑖−1, 𝑗 + 𝑢𝑖, 𝑗+1 + 𝑢𝑖+1, 𝑗 + 𝑢𝑖, 𝑗−1

4ℎ2

+
𝑢𝑖−1, 𝑗+1 + 𝑢𝑖+1, 𝑗+1 + 𝑢𝑖−1, 𝑗−1 + 𝑢𝑖+1, 𝑗−1

8ℎ2
. (34)

In order to achieve the conformity of the mask (33) with the differential Laplace
operator (1) we added the coefficient −1/8 to the difference scheme. Then the MDE for
(34) takes the form:

Π56 = ∇2𝑢 + 5ℎ
2

24

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
+ ℎ

2

8
𝜕4𝑢

𝜕𝑥2𝜕𝑦2

− 17ℎ
4

720

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
− ℎ4

96

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ 13ℎ

6

8064

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+ ℎ6

1152
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8) (35)

and corresponds to (33) and (34).
The next step of our analysis is to present for (33) the forms of the transfer function:

𝑓 56 ( 𝑘̃ , 𝑙̃) = 2 sin
2 𝜋𝑘̃

2
sin2

𝜋𝑙̃

2
− 2 sin2 𝜋𝑘̃

2
− 2 sin2 𝜋𝑙̃

2
+ sin

2 𝜋𝑘̃ + sin2 𝜋𝑙̃
2

. (36)

(Fig. 9a) and its expansion in the Taylor series form:

𝑓 56𝑇 ( 𝑘̃ , 𝑙̃) = −𝜋2
(
𝑘̃2 + 𝑙̃2

)
+ 5𝜋

4

24

(
𝑘̃4 + 𝑙̃4

)
+ 𝜋

4

8
𝑘̃2 𝑙̃2 − 17𝜋

6

720

(
𝑘̃6 + 𝑙̃6

)
− 𝜋6

96

(
𝑘̃4 𝑙̃2 + 𝑘̃2 𝑙̃4

)
+ 13𝜋

8

8064

(
𝑘̃8 + 𝑙̃8

)
+ 𝜋8

1152
𝑘̃4 𝑙̃4 +𝑂 ( 𝑘̃10, 𝑙̃10). (37)

(a) (b)

Fig. 9. The transfer function 𝑓 56 ( 𝑘̃ , 𝑙̃) for the modified Burger and Burge mask (33) (negative in the entire
range of ( 𝑘̃ , 𝑙̃)) (a) and the graph of 𝑓 56 ( 𝑘̃ , 𝑙̃)/ 𝑓𝐿 ( 𝑘̃ , 𝑙̃) (b)
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The FDE (32) is also a consistent approximation of the Laplace equation and if
ℎ → 0 its solution 𝑢ℎ (𝑥𝑖 , 𝑦 𝑗) converges to the exact solution 𝑢(𝑥, 𝑦). The accuracy of the
difference scheme (32) is of the second order.
The relation 𝑓 56 ( 𝑘̃ , 𝑙̃)/ 𝑓𝐿 ( 𝑘̃ , 𝑙̃) for the modified Burger and Burge Mexican hat filter

mask (31) is never negative.

2.2. The finite element method and the fifth-order Laplace filters

Another method of constructing the difference schemes for the partial differential equa-
tions is called the Galerkin method in which we approximate the sought after solution
𝑢(𝑥, 𝑦)− instead of the differential operator A. The finite element method (FEM) is its
particular case.
Let us consider the Poisson equation:

A𝑢 = −Δ𝑢 = −
2∑︁
𝑘=1

𝜕2𝑢

𝜕𝑥2
𝑘

= 𝑓 (𝑥1, 𝑥2), (38)

where: 𝑥1 = 𝑥 and 𝑥2 = 𝑦; 𝑢(𝑥, 𝑦), 𝑓 (𝑥, 𝑦) are given functions on the Ω = R × R =

[0, 1] × [0, 1] domain. If 𝑓 (𝑥, 𝑦) = 0, the equation (38) becomes the Laplace equation.
We shall construct the difference scheme and then the filter mask of the Laplace

type applying the FEM with the basis functions which are polynomials of the degree
equal to 2. In this case, the functions 𝜑𝑖 (𝑥) and 𝜓 𝑗 (𝑦) have the forms of the Lagrange
polynomials (see: Pavel et al. (2003) and Strang and Fix (2008)):

𝜑𝑖 (𝑥) =


1 + 3(𝑥 − 𝑥𝑖)/ℎ + 2(𝑥 − 𝑥𝑖)2/ℎ2 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖
1 − 3(𝑥 − 𝑥𝑖)/ℎ + 2(𝑥 − 𝑥𝑖)2/ℎ2 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1
0 for 𝑥 ∉ (𝑥𝑖−1, 𝑥𝑖+1)

𝜑𝑖−1/2(𝑥) = −4(𝑥 − 𝑥𝑖)2/ℎ2 − 4(𝑥 − 𝑥𝑖)/ℎ 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖 ,
𝜑𝑖+1/2(𝑥) = −4(𝑥 − 𝑥𝑖)2/ℎ2 + 4(𝑥 − 𝑥𝑖)/ℎ 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1 .

(39)

Equations (39) describe the piecewise parabolic approximating functions with a
small support. It means that the functions vanish outside some compact subset of the Ω
– Figure 10. The functions 𝜓 𝑗 (𝑦) have the same shape as (39) but they depend on the
variable 𝑦.
The finite element method for Lagrange P2 elements involves the discrete space:

𝑉2ℎ =

{
𝑣ℎ ∈ 𝐶0 [0, 1], 𝑣ℎ

��
𝐾𝑖 𝑗

∈ P2, 0 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑁

}
and its subspace

𝑉20,ℎ =
{
𝑣ℎ ∈ 𝑉0ℎ , such that 𝑣ℎ (0) = 𝑣ℎ (1) = 0

}
,

where: 𝐾𝑖 𝑗 intervals 𝐾𝑖 𝑗 = [𝑥𝑖−1, 𝑥𝑖+1] × [𝑦 𝑗−1, 𝑗+1] forming a uniform mesh of Ω –
domain in R2.
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Fig. 10. Piecewise quadratic elements P2

These spaces are composed of continuous, piecewise parabolic functions. The P2
finite element method consists in applying the internal variational approximation ap-
proach to these spaces. The space𝑉2

ℎ
is a subspace of 𝐿2 = 𝐿2(Ω) with the scalar product

(usually integral): (𝑢, 𝑣)𝐿2 (Ω) =
∫
Ω

𝑢𝑣 d𝑥.

Lemma 1. The space𝑉2
ℎ

is a subspace of𝐻1 of dimension 2𝑁+3. Every function 𝑣ℎ ∈ 𝑉2
ℎ

is uniquely defined by its values at the mesh vertices (𝑥𝑖)0≤𝑖≤𝑁+1 and at the midpoints
(𝑥𝑖+1/2)0≤𝑖≤𝑁 :

𝑣ℎ (𝑥) =
𝑁+1∑︁
𝑖=0

𝑣ℎ (𝑥𝑖)𝜑𝑖 (𝑥) +
𝑁∑︁
𝑖=0

𝑣ℎ (𝑥𝑖+1/2)𝜑𝑖+1/2(𝑥) : ∀𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖+1],

where (𝜑𝑖) is the basis of the shape functions defined as (39).
Remark 1. Notice that we have:

𝜑𝑖 (𝑥𝑖) = 𝛿𝑖 𝑗 , 𝜑𝑖 (𝑥𝑖±1) = 0,
𝜑𝑖 (𝑥𝑖±1/2) = 0, 𝜑𝑖−1/2(𝑥𝑖−1/2) = 𝛿𝑖 𝑗 ,
𝜑𝑖±1/2(𝑥𝑖) = 0, 𝜑𝑖+1/2(𝑥𝑖+1/2) = 𝛿𝑖 𝑗 ,

𝜑𝑖−1/2(𝑥𝑖−1) = 0, 𝜑𝑖+1/2(𝑥𝑖+1) = 0.
The above functions are also called the Lagrange P2 elements. In 2-dimensional cases

the variational formulation of (43) is to find such 𝑢(𝑥, 𝑦) ∈ 𝐻10 (𝐻
1
0 Sobolev space) that

for ∀𝜉 (𝑥, 𝑦) ∈ 𝐻10 : ∫
Ω

A𝑢𝜉 dΩ = −
∫
Ω

Δ𝑢𝜉 dΩ =

∫
Ω

𝑓 𝜉 d𝜃, (40)

where: 𝜉 (𝑥, 𝑦) – so called test function. Applying the Green formula for integrating by
parts to (40) we obtain:∫

Ω

2∑︁
𝑖=1

𝐷𝑖𝑢𝐷𝑖𝜉 dΩ −
∫
𝜕Ω

𝜕𝑢

𝜕𝑛
𝜉 dΓ =

∫
Ω

𝑓 𝜉 dΩ, (41)
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where: 𝐷1 =
𝜕

𝜕𝑥
, 𝐷2 =

𝜕

𝜕𝑦
and

𝜕𝑢

𝜕𝑛
= ∇𝑢 · n =

2∑︁
𝑖=1

𝜕𝑢

𝜕𝑥𝑖
𝑛𝑖 denotes the normal derivative

of 𝑢 on 𝜕Ω. The expression:

𝑎(𝑢, 𝜉) =
∫
Ω

2∑︁
𝑖=1

𝐷𝑖𝑢𝐷𝑖𝜉 dΩ (42)

leads to the discrete approximation for the Laplace operator:

A57𝑢ℎ =
𝑢𝑖−1, 𝑗+1 − 16𝑢𝑖−1/2, 𝑗+1 + 30𝑢𝑖, 𝑗+1 − 16𝑢𝑖+1/2, 𝑗+1 + 𝑢𝑖+1, 𝑗+1

144ℎ2

−
16𝑢𝑖−1, 𝑗+1/2 − 256𝑢𝑖−1/2, 𝑗+1/2 + 480𝑢𝑖, 𝑗+1/2 − 256𝑢𝑖+1/2, 𝑗+1/2 + 16𝑢𝑖+1, 𝑗+1/2

144ℎ2

+
30𝑢𝑖−1, 𝑗 − 480𝑢𝑖−1/2, 𝑗 + 900𝑢𝑖, 𝑗 − 480𝑢𝑖+1/2, 𝑗 + 30𝑢𝑖+1, 𝑗

144ℎ2

−
16𝑢𝑖−1, 𝑗−1/2 − 256𝑢𝑖−1/2, 𝑗−1/2 + 480𝑢𝑖, 𝑗−1/2 − 256𝑢𝑖+1/2, 𝑗−1/2 + 16𝑢𝑖+1, 𝑗−1/2

144ℎ2

+
𝑢𝑖−1, 𝑗−1 − 16𝑢𝑖−1/2, 𝑗−1 + 30𝑢𝑖, 𝑗−1 − 16𝑢𝑖+1/2, 𝑗−1 + 𝑢𝑖+1, 𝑗−1

144ℎ2
(43)

and to the filter mask:

Lap57 =
1
144


1 −16 30 −16 1

−16 256 −480 256 −16
30 −480 900 −480 30
−16 256 −480 256 −16
1 −16 30 −16 1


. (44)

Detailed analysis leads us to the conclusion that neither the difference scheme (43)
approaches the Laplace operator nor the filter mask (44) is directly connected with the
filter of the Laplace type. The MDE for the difference scheme (43) is induced by the
mixed fourth-order derivatives – one of the terms of the biharmonic equation:

Π57 = ℎ
4 𝜕4𝑢

𝜕𝑥2𝜕𝑦2
+𝑂 (ℎ6) (45)

and not by the standard Laplace differential operator: A𝑢 =
𝜕2𝑢

𝜕𝑥2
+ 𝜕

2𝑢

𝜕𝑦2
.

It is a similar case to that discussed in Thompson (1955a). We presented there a filter
mask in the form:

FM =


1 −2 1
−2 4 −2
1 −2 1

 (46)
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for which the MDE was also equal to (45):

ΠFM = ℎ4
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
+𝑂 (ℎ6). (47)

The filter mask (44) was also presented by Tadeusiewicz and Korohoda (1997),
Pratt (2007) (page 503), Prewitt (1970) (page 126) and Borawski (2004). Applying the
Lagrange P2 elements does not mean that we cannot construct the difference scheme for
the Laplace equation in 2-D.
Let us return to the difference scheme (6). The vector

[
−1 16 −30 16 −1

]
approaches

the second-order derivative
𝜕2𝑢

𝜕𝑥2
in 𝑉2

ℎ
. The elementary contributions of each element

𝐾𝑖 𝑗 to the stiffness matrix can be derived (Strang and Fix, 2008):
7 −8 1 0 0
−8 16 −8 0 0
1 −8 7 0 0
0 0 0 0 0
0 0 0 0 0


+


0 0 0 0 0
0 7 −8 1 0
0 −8 16 −8 0
0 0 0 0 0
0 0 0 0 0


+


0 0 0 0 0
0 0 0 0 0
0 0 7 −8 1
0 0 −8 16 −8
0 0 1 −8 7


=



7 −8 1 0 0

−8 23 −16 0 0

1 −8 30 −16 1

0 1 −16 23 −8
0 0 1 −8 7


. (48)

In effect we can obtain the difference scheme which is equivalent to the FDE (5) and
the filter mask (6) proposed by the scientists mentioned in the beginning of this section.

3. The numerical tests

Let us carry out a numerical test. Figure 11a presents a field of any function 𝐼 (𝑥, 𝑦)
determined by the script peaks.m in which one can appoint strong gradient, weak gradient
and gradient-less areas of the function 𝐼 (𝑥, 𝑦). Let us filter this field by the 5 × 5 pixels
Laplace mask Lap51 (6) derived on the basis of the fourth-order difference scheme (5)
(Fig. 11b) and then by the 3 × 3 pixels mask Lap33:

Lap33 =
1
6


1 4 1
4 −20 4
1 4 1

 , Lap31 =

0 1 0
1 −4 1
0 1 0

 (49)

also derived on the basis of the fourth-order difference scheme (Fig. 11c) (Miyakoda,
1960; Strikwerda, 2004 (pages 328, 331); LeVeque, 2007; Winnicki et al., 2022).
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(a) (b)

(c)

Fig. 11. Tested field (a), the tested field after filtering by means of the mask (6) (b) and the tested field
after filtering by means of the mask (47) (c)

The natural feature of the filter masks of the Laplace type is that they generally
highlight regions of rapid changes of the function 𝐼 (𝑥, 𝑦) values.
The gradients of these changes are clearly seen as the isolines of the vertical projec-

tions of the tested and filtered fields of peaks.m on the horizontal plane in Figure 11. The
Laplace filters sharpen the gradients but, unfortunately, they usually reduce the maxima
and the minima of the magnitudes of any fluctuation (compare the ranges of the color
bars in Figure 11a, 11b, 11c). In general, the shape of the tested field is conserved.
Let us also note that the filter masks (44) and (46) cut all the fluctuations in the

analyzed fields (Fig 12a and Fig. 12b, respectively). The magnitudes of the remaining
fluctuations are less than |0.11| for filter (44) and about |0.12| for filter (46), respectively,
while the maximum of the magnitude of the test field in Fig. 11a is approximately equal
to |8.02|. So, in our opinion the presented example is the best proof that the masks (44)
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and (46) are not of the Laplace type. The sums of all elements of these filters are equal
to zero, however, it is the feature of all kernels applied to corners and edges of objects
detection.

(a) (b)

Fig. 12. The tested field after filtering by means of the mask: (44) (a) and the tested field after filtering
by means of the mask: (46) (b)

The graphs of the cross sections of the transfer functions: 𝑓𝑝 ( 𝑘̃ , 𝑙̃)/ 𝑓𝐿 ( 𝑘̃ , 𝑙̃) for some
𝑙̃ = const ∈ (0÷1) are presented in Figure 13.

Fig. 13. The graphs of the functions
𝑓𝑝 ( 𝑘̃ , 𝑙̃ = const)
𝑓𝐿 ( 𝑘̃ , 𝑙̃ = const)

for 𝑙̃ = 0.05, 𝑙̃ = 0.15, 𝑙̃ = 0.75, 𝑙̃ = 1.0, 𝑝 = 1 ± 6
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In Figure 14 we present the graphs of 𝑓 51 ( 𝑘̃ , 𝑙̃) – blue line, the transfer function

𝑓3( 𝑘̃ , 𝑙̃) =
8
3
sin2

𝜋𝑘̃

2
sin2

𝜋𝑙̃

2
− 4 sin2 𝜋𝑘̃2 − 4 sin2 𝜋𝑙̃

2
for the filter Lap33 (49) – magenta

line and the transfer function 𝑓 31 ( 𝑘̃ , 𝑙̃) = −4 sin2 𝜋𝑘̃
2

−4 sin2 𝜋𝑙̃
2
forLap31 (49) based on the

“cross” stencil (the first difference proposition for the Laplacian, see Richardson (1910))
– green line. We shall discuss these graphs in both figures in Section 4.

Fig. 14. As above but only for the masks (6) and both (49)

A few plane figures: square, triangle, pentagon, parallelogram, star, square with
rounded corners (squircle), cross and rhombus are presented in Figure 15a. The same

a)

b)

c)

Fig. 15. The differences in filtering the plane geometrical figures (a) by means of the masks (44) (b)
and (46) are unnoticeable (c)
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plane figures after filtering by means of the masks (44) and (46) are presented in Fig-
ure 15b and Figure 15c, respectively.

Table 1. Masks of the fifth-order filters and their first differential approximations (f.d.a).
The coefficients of the terms in red have incorrect signs

Masks The shortened Π-forms of the the f.d.a – MDE:

1
12


0 0 −1 0 0
0 0 16 0 0
−1 16 −60 16 −1
0 0 16 0 0
0 0 −1 0 0


Π51 = ∇2𝑢 − ℎ4

90

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
− ℎ6

1008

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+𝑂 (ℎ8)

1
16



0 0 −1 0 0
0 −2 24 −2 0

−1 24 −84 24 −1

0 −2 24 −2 0
0 0 −1 0 0



Π52 = ∇2𝑢 + ℎ
2

48

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
− ℎ2

8
𝜕4𝑢

𝜕𝑥2𝜕𝑦2

+ 11ℎ
4

1440

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
− ℎ4

96

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
− ℎ6

1152
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
− 59ℎ

6

80640

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+𝑂 (ℎ8)

1
36



0 −1 −1 −1 0
−1 32 −14 32 −1
−1 −14 −60 −14 −1
−1 32 −14 32 −1
0 −1 −1 −1 0


Π53 = ∇2𝑢 + 2ℎ

2

3
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
+ ℎ4

90

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
− ℎ6

1008

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
− ℎ4

36

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+𝑂 (ℎ8)

1
25



1 1 1 1 1
1 1 1 1 1
1 1 −24 1 1
1 1 1 1 1
1 1 1 1 1



Π54 = ∇2𝑢 + 17ℎ
2

60

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
+ ℎ2 𝜕4𝑢

𝜕𝑥2𝜕𝑦2
− 13ℎ

4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
+ 257ℎ6

100800

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
− 17ℎ

4

60

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ 289ℎ

6

3600
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8)

1
30



1 2 2 2 1
2 −1 −4 −1 2
2 −4 −8 −4 2
2 −1 −4 −1 2
1 2 2 2 1



Π55 = ∇2𝑢 + 7ℎ
4

20

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
+ 31ℎ

2

30
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
− 17ℎ

4

360

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
− 103ℎ

4

360

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ 341ℎ

6

100800

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+ 319ℎ

6

4320
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8)

1
8



0 0 1 0 0
0 1 2 1 0
1 2 −16 2 1
0 1 2 1 0
0 0 1 0 0



Π56 = ∇2𝑢 + 5ℎ
2

24

(
𝜕4𝑢

𝜕𝑥4
+ 𝜕

4𝑢

𝜕𝑦4

)
+ ℎ
2

8
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
− 17ℎ

4

720

(
𝜕6𝑢

𝜕𝑥6
+ 𝜕

6𝑢

𝜕𝑦6

)
− ℎ4

96

(
𝜕6𝑢

𝜕𝑥4𝜕𝑦2
+ 𝜕6𝑢

𝜕𝑥2𝜕𝑦4

)
+ 13ℎ

6

8064

(
𝜕8𝑢

𝜕𝑥8
+ 𝜕

8𝑢

𝜕𝑦8

)
+ ℎ6

1152
𝜕8𝑢

𝜕𝑥4𝜕𝑦4
+𝑂 (ℎ8)
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Note that in Figure 15b and Figure 15c all horizontal and vertical edges were removed
from the figures by the masks (44) and (46): all edges in the square (Fig. 15b1 and
Fig. 15c1), the bases of the triangle (Fig. 15b2 and Fig. 15c2), pentagon (Fig. 15b3 and
Fig. 15c3) and parallelogram (Fig. 15b4 and Fig. 15c4, here also the upper edge). The
analyzed masks also removed wide fragments of the horizontal and vertical edges of the
squircle (Fig. 15b6 and Fig. 15c6). The star (Fig. 15b5 and Fig. 15c5) and the rhombus
(Fig. 15b8 and Fig. 15c8) are not changed because their edges are neither horizontal nor
vertical.
The most interesting plane figure is the cross (Fig. 15a7) where filtering its image

reduced all horizontal and vertical linear structures to the corner pixels (Fig. 15b7 and
Fig. 15c7).
In our analysis we come to the conclusion that the filter masks (44) and (46) are

not isotropic. They strongly depend on the edges orientation. If the edges are neither
horizontal nor vertical the filter masks (44) and (46) are “blind” to all contours (see for
example the triangle, pentagon, parallelogram, star and rhombus). Therefore, the masks
(44) and (46) must not be called filter masks of the Laplace type (the Laplace kernels
highlight the edges).
The results of another test presented in Table 2 confirm that the differences in filtering

of the plane geometrical figures (single and triple squares) by means of the masks (44)
and (46) are hardly noticeable. Because the calculations with the 5 × 5 pixel mask are
more expensive than with the 3 × 3 pixel mask, we suggest that the mask (46) should be
applied to filtering large digital images.

Table 2. Detection of the corners of the single and triple squares

Lap57 (44)

FM (46)

The masks (44) and (46) could be an alternative to the Harris corner detector method
for digital image processing applied to figures with horizontal and vertical edges (see:
Marr and Hildreth (1980), Harris and Stephens (1988), Burger and Burge (2008).
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4. The final conclusions

We discussed the spectral features of seven filter masks of the fifth order for the Laplace

differential operator A𝑢 =
𝜕2𝑢

𝜕𝑥2
+ 𝜕

2𝑢

𝜕𝑦2
. Six of them were derived on the basis of the finite

difference method and one on the basis of the finite element method with approximation
of the solution 𝑢(𝑥, 𝑦) by means of the piecewise quadratic Lagrange P2 elements (see
(44)). TheMDEs (Table 1) and the transfer functions for each of themwere also presented
here. It turns out that the filter mask (44), alike the filter (46) is not induced by the Laplace

operator but by the mixed derivatives of the fourth order:
𝜕4𝑢

𝜕𝑥2𝜕𝑦2
.

In numerical methods the difference schemes spread on five points in each direction
are not too popular, even these of the fourth-order accuracy (6). They render too many
points near boundaries, even in regular grid. The main problem concerns the boundary
conditions.
Our analysis yields a few conclusions:
1. All the presented Laplace masks satisfy the standard condition (and the necessary
condition) for the Laplace difference operator and for the Laplace filters: the sum
of all elements of the filters Lap51÷Lap56 is equal to zero.

2. The Laplace filter Lap51 (6) is characterized by the best conformity of its transfer
function 𝑓 51 ( 𝑘̃ , 𝑙̃) (8) to the transfer function of the Laplace differential operator
𝑓𝐿 ( 𝑘̃ , 𝑙̃) for the full range of ( 𝑘̃ , 𝑙̃) = [−1÷1] × [−1÷1] and in general it is much
better than for the 3× 3 pixels masks – Figure 12. Let us also notice that the filters
Lap51 (6) and Lap31 (49) have the simplest structure: they are based on the “cross”
25-point and 9-point stencils, respectively, and they have no mixed derivatives in
their MDEs. Every mask of the Laplace type with coefficients only on the “cross”
stencil yields lower costs of calculations.

3. The transfer function 𝑓 52 ( 𝑘̃ , 𝑙̃) (13) – Figure 11, red dot-dashed line – for medium
Nyquist wave-numbers exceeds 1, see also Figure 3. The choice between the masks
(6) and (11) depends on the structure of the digital images.

4. The application of the Laplace type mask Lap53 (16) is rather limited. For medium
and large Nyquist wave-numbers its transfer function 𝑓 53 ( 𝑘̃ , 𝑙̃) (19) is negative
(Fig. 11 – orange line). We come to the same conclusion with respect to the mask
Lap55 (29) (Fig. 11 – green line).

5. Our analysis has shown that the filter (26) most strongly cuts the local intensity
peaks in the family of the third-order masks (from [−6.43÷8.02] to [−2.02÷1.98])
and the filter (22) in the family of the fifth-order masks (from [−6.43÷8.02]
to [−1.79÷1.77]).

The first differential approximations for the analyzed filter masks of the Laplace type
are collected in Table 1 where we additionally marked the coefficients with incorrect
signs in red.
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