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A REVIEW OF ENERGY-BASED MULTIAXIAL FATIGUE FAILURE 
CRITERIA 

The paper contains a review of energy-based multiaxial fatigue failure criteria for 
cyclic and random loading. The criteria for cyclic loading have been divided into 
three groups, depending on the kind of strain energy density per cycle which is 
assumed as a damage parameter. They are: a) criteria based on elastic strain energy 
for high-cycle fatigue, b) criteria based on plastic strain energy for low-cycle 
fatigue. and c) criteria based on the sum of plastic and elastic strain energies for 
both low- and high-cycle fatigue. The criterion for random loading is based on the 
new definition of energy parameter which distinguishes plus and minus signs in 
history or specific work of stress on strain along chosen directions in the critical 
fracture plane. The criteria which rake into account strain energy density in the 
critical plane dominate in the energy description or multiaxial fatigue. Parameters 
dependent on loading and factors dependent on a kind or marcrial and inlluencing 
selection of the critical plane have been given. The author presented the 
mathematical models or the criteria and next distinguished those including influence 
of mean stresses and stress gradients as well as proportional and non-proportional 
loading. It has been emphasised that the generalized criterion of maximum shear 
and normal strain energy density in the critical plane seems to be the most efficient 
in practice and it should be developed and verified in a future. 

1. Introduction 

Multiaxial fatigue has been investigated for about I I O years and many 
different mathematical models of the limit state of strength have been 
formulated. At present we know more than 50 criteria of fatigue strength for 
multiaxial loading [I], [2], [3], [4], [5], [6], [7], [8], [9]. There are stress-, strain­ 
and energy-based fatigue failure criteria but there is no one universal criterion 
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for different loading conditions. Therefore, new mathematical models are 
sought. Recently, special attention is being paid to energy-based criteria [ I 0-30]. 
These criteria can be divided into three groups, depending on the kind of strain 
energy density per cycle which is assumed as the damage parameter. They are: 
(i) criteria based on the elastic energy, (ii) criteria based on the plastic energy, 
and (iii) criteria based on the sum of elastic and plastic energies. In each group, 
we can distinguish criteria based on the critical fracture plane. A new definition 
of the energy parameter has been introduced and the mentioned criteria have 
been generalized to multiaxial random loading. 

This paper contains a review of energy criteria of multiaxial fatigue and 
specification of a kind of energy assumed as the parameter controlling the 
fatigue process. The author used the previous review [24] and introduced the 
latest models of the criteria. 

2. Criteria based on elastic strain energy 

The first criteria were formulated by adaptation of the known static strength 
hypothesis proposed by Huber-Mises-Hencky and the Beltrami hypothesis to 
high-cycle fatigue (HCF) under proportional loading for ductile materials. 

2.1. Criterion of volume and shear strain energy density (generalized Beltrami 
hypothesis) 

This criterion is based on the assumption that fatigue fracture is influenced 
by total strain energy [31 ], [32], [33] 

th I . . 
'+'=-<J;j£ii, (i.j > x,y,z) 2 .. (I)

where <J;i and £;i are the amplitudes of stress and strain state components, 
respectively. Thus, the amplitude of equivalent stress is 
<J eq = [ ( 0 xx + 0 )')' + 0 zz )2 + 2(1 +V)( 0ły + at + 0 ~z - 0 xx 0 )')' - 0 xx 0 zz - 0 yy0 zz)] I /2 

(2) 
where v is the Poisson's ratio. 

2.2. Criterion of shear strain energy density (generalized Huber-Mises-Hencky 
hypothesis) 

In this criterion it is assumed that not the total strain energy ¢ (equal to the 
sum of energies due to volume change, ¢v, and due to distortion change, ¢1 ), i.e. 

I Ith= thv + <p1 = -(JkkCkk +-S;jeii, (3) 
'+' '+' 6 2 

but only ¢1 influences the fatigue fracture [31], [34], [35]. Here 

(4) 
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1 e., = £ii - -£ijÓij, (5). . 3 .. 

are the deviatoric stress and strain tensors, respectively. In such a case, the
equivalent stress is

CTeq = [(0ł, + CT~y + CTł.z - 0 xx 0 yy - 0 xx 0zz - 0 yy0zz + 3( CTły + oL + 05,z )]112 . (6)

2.3. Criterion of shear strain energy density in the plane of maximum shear stress 

According to this criterion, presented in [22] at the first time, the energy
density, ¢sr, is equal to work of shear stress, 1:q,, in direction s of maximum
shear strain, Eqs, on the plane with normal 17°

(7)

It has been proved in [24] that under proportional loading the shear strain energy
density in the plane of maximum shear stress, ¢,r, when applied as a damage
parameter leads to a mathematical form of the maximum shear stress criterion,
i.e. 

(8) 

where 01 and CT:1 are the maximum and minimum amplitudes of normal stresses,
respectively.

2.4. Criterion of the average strain energy 

Palin-Luc and Lasserre [36] proposed a criterion based on energy density
averaged over a cyclic period T and within the material volume V* for the case
where a stress gradient occurs. Taking the mean volumetric strain energy per
cycle

T
A I f Wv =- <pv(t)dt,

To
and the mean shear strain energy

T

W1=~f¢1(t)dt,
o 

we have the average strain energy in a cycle
A A A

W=W,. +Wr,
and the energy degree of triaxiality given by

WvTrn =-A-, 
w 

(9) 

( 1 O)

( I 1) 

(12) 

F, the ratio of the average strain energy under multiaxial loading W to the

average strain energy under pure torsion W, is also defined
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F=~ 
W1 

Under an arbitrary but known distribution of energy 
average in a volume at the critical point of a material 
following relation 

G) =~*JI I (W - W'' )dV* 
v'k 

( 13) 

W , the strain energy 
is determined from the 

( 14) 

where 

( I 5) 

( 16) 

The integration limit of V* represents the volume around the considered 
material point at which W 2'. W* . The ratio Fu = F defined for uniaxial load, 
O-ar = fatigue limit under uni axial load, O"arrb = fatigue limit under rotary bending 
and E = Young's modulus. 
The average strain energy at the fatigue limit 

F 
GJr =GJru - , 

Fu 
( 17) 

where 

( 18) 

Finally, the criterion proposed by Palin-Luc and Lasserre takes the following 
form 

GJ = GJr. ( 19) 

3. Criteria based on plastic strain energy 

These criteria describe fatigue strength using the plastic strain energy dissipated 
in the material during a loading cycle. 

3.1. Criterion of effective strain energy 

In this criterion, proposed by Lefebvre et al. [20], it is assumed that the energy 
density of the plastic effective strain in a loading cycle is the parameter 
influencing the initiation of a fatigue crack (detected as a small crack which is 
usually indicated by a distortion of the hysteresis loop) after Nr number of 
cycles that occurs under uniaxial and rnultiaxial stress states. It is given by 

606£'' = KNr (20) 



A REVIEW or ENERGY-BASED MULTli\XIAL Fi\TIGUI: FAILURE CRITERIA 75 

The effective stress range, 60, and the range of the effective plastic strain, 
6£ P, are calculated from 

(21) 

(22) 

611-6 6° E;i - tij - E;j , 

(23) 

(24) 

where superscripts e and p mean elastic and plastic strain, respectively. The 
parameters K and c depend on mechanical properties of the material, and are 
functions of the stress ratio. Since the range of effective stress 60 1s 
proportional to the range of octahedral shear stress, l-.10c1 , and the range of 
effective plastic strain, 6£P, is proportional to the plastic range of the 
octahedral shear strain, l-.c:!;c,, hence Eq. (20) can be written as 

A - A - 3 A '? A 11 ~ A 11 KN - u.Gu.cl' = ✓2 u.1oct -v Lu.Enc, = - u.1oc16E0c, = f , (25) 

or 
I' - I C 61:oct L'.c()CI - - KN r , 

3 
(26) 

From Eq. (26) it results that the criterion of plastic energy of the effective strain 
is equivalent to the statement that plastic shear strain energy in the critical plane 
(one of the octahedral planes) is a parameter influencing failure at the initiation 
stage under uniaxial and multiaxial proportional stress states [24]. 

3.2. Criterion of normal and shear strain energy 

Garud [ I 6] assumed that plastic strain energy (equal to the sum of energies from 
all the stress state components in a cycle) is the damage parameter influencing 
the initiation fatigue life, i.e. up to the moment when visible cracks can be 
observed. The incremental theory of plasticity was used to describe relations 
between cyclic stresses and strains under multiaxial non-proportional loading 
(with phase displacements). The theory includes the path of plastic strains. The 
Garud's criterion can be written as 

6 WI' = Jcr;1dc:11 = AN-:-1-1 IJ . I.I I ' 
c yclc 

(27) 

where l-. W;'( is the sum of hysteresis loop areas from the nine stress state 

components, while A and ~ are the material constants. 
Under combined tension and torsion Eq. (27) can be written as 
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cycle 

From the experimental results it appears, however, that under combined tension 
and torsion Eq. (28) should be modified to the following form 

tiWS =tiWJ'., +HGtiWJ~ = J[0xxd£~x +HG0xyd£1;y)=AN~~, (29) 
cycle 

where the weight coefficient HG at plastic shear strain energy, ti WJ~, is equal 2 
[37), [38), I [ 16), [39), [40), 0.6 [ IO] or O [41 ], depending on the material type. 
When HG= I, the plane x-y can be treated as the critical plane, and the sum 
ti Wt + ti WJ~ is not the energy from all the stress state components in a cycle, 
but only the energy associated with the critical plane. 

3.3. Criterion of normal and shear strain energy in the critical plane 

Lately, a combined plastic energy density and critical plane concept has been 
proposed by Chen et al. [26] for low-cycle fatigue life under non-proportional 
loading. They consider different failure mechanisms for a shear-type failure and 
a tensile-type failure, and from which different damage parameters for the 
critical plane-strain energy density are proposed. The critical plane energy 
density criterion for a tensile-type failure is given as follows 

(0· r 
tii:::""'ti01 +tiy1ti'T1 =4-1

-- (2Nr)2" +40r£i(2Nr)h+c (30) 
E 

where L1£;1"" is the maximum normal strain range, ti01, tiy1 and ti1:1 are the 
normal stress, shear strain and shear stress ranges that occur on the maximum 
normal strain plane, respectively, and b, c, 0i ,£i ,E are parameters of the 
Coffin-Manson axial fatigue relationship. 
For a shear-type failure, the critical plane energy density criterion is 

('Ti )2 . . tiy111a,ti1:+ti£nti0n =4G(2Nr)2"1 +4'Tryr(2Nr)bi+q (31) 

where tiymax is the maximum shear strain range, ti1:. ti£" and ti0" are the shear 
stress, normal strain and normal stress ranges on the maximum shear strain 
plane, respectively, and b" c" 'Tr, Yr, Gare parameters of Coffin-Manson torsional 
fatigue relationship. 

4. Criteria based on the sum of elastic and plastic strain energy 

It is known that elastic strain energy alone cannot influence fatigue damage 
accumulation in the low cycles to failure range: also the plastic strain energy is 
minimal in high-cycle fatigue. Thus, a third group of criteria have been 
proposed in which authors take into account both forms of energy. 
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4.1. Criterion of the sum of elastic and plastic shear strain energy 

This criterion was proposed by Ell yin [ 12) in 1974. He assumed that the cyclic 
shear strain energy, expressed as 

Wr = f S;jde;i , (32) 

was a fatigue damage parameter under proportional loading. 
Since components of the strain state deviator e;; in Eg.(32) are the sum of elastic 
and plastic strains, energy W1 is also the sum of elastic and plastic energies of 
the shear strains. Reference [ 12) contains calculations of the integral in Eq. (32) 
using the cyclic stress-strain curve and the deformation theory of plasticity. 
Hence 

(33) 

where ~=coefficient dependent on the stress level when the material is in the 
non-elastic state, and CT Ill= ( CT u + CT L)/2 is the equivalent mean stress 
calculated from the upper, Gu, and the bottom, CTL, limits of the effective stress 
(for symmetric uniaxial loading CT lll=L1<J/2). 
In [42) Ellyin and Kujawski developed the ideas contained in the criterion 
expressed in Eg.(32) and assumed the following form of energy 

):A_A_ I (Jill 
sl.l£l.l<J + a-=- 

o/ = f(p) cr (34) 

where <Jill= <J,nu is the sum of mean values of normal stresses, 
a= coefficient characterizing the material sensitivity to mean stresses cr111, 

o = L1CT is the amplitude of effective stress, and 
2 

f( p) = function of the multiaxial constraints, where p 1s a measure of the 
multiaxial constraints as expressed by the ratio of the maximum normal 
and shear stresses and the effective Poisson ratio. 

For experimental verification of Eq. (34) the following power function was 
assumed 

r(p)= P" (35) 

where n;:::: O is a parameter (in some cases n= O; 0.5; I). 
For the uniaxial loading state and for a = 0.5 ~ and f(p) = I then Eq. (34), 
becomes Eg. (33), i.e. o/= Wr. 
As in the plastic effective strain energy criterion, Eg.(20), we may treat 
Egs. (32) and (34) as energy (elastic and plastic) of the shear strain in the 
critical plane which is one of the octahedral planes. 
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4.2. Criterion of the sum of elastic and plastic strain energies 

Leis [ I 3] assumed that under multiaxial proportional fatigue loading and fatigue
combined with creep, the total internal strain energy

Ur= f <J;jdE;j (36)
cycle

is the parameter influencing failure up to the crack initiation stage.
The integral of Eą. (36) has been evaluated, and the following simple general
form of damage parameter has been proposed

(37)
where Sm = equivalent mean stress, t.er = range of total equivalent strain and
t.s = range of equivalent stress are defined as

(
1 jl/2

Sm= -0mii0mii 2 . . (38)

t.e1 = ( 2_6E;iilE;i )
112 

l 3 . .

(
1 jl/2

ils = :.._ il<J;it.<J;i2 . . 

The energy term Ur consists of volume and shear strain energies, and contains
elastic and plastic components. The criterion also includes components of mean

(39)

(40) 

stresses CTmii·

Under uniaxial fatigue with the mean stress 0,11
agrees with the experimental damage
Smith-Watson-Topper [43], i.e.

il£
UT =0max- • 

2 

the Leis damage parameter
parameter proposed by

(41)

4.3. Criterion of the sum of elastic strain energy under tension and plastic energy 
of effective strain 

This criterion is a developed form of the El lyin [ 12] approach. It was assumed
by Elly i n and Gołoś [ 14 ], [ 15], [ 1 8] that the damage parameter is a special form
of energy il W1

, equal to the sum of elastic strain energy in the interval of
positive stresses in a cycle t.Wc+ and plastic strain energy il WP which can be
written as

ilW1 =ilWe+ +ilW11 (42) 
where

cycle (43)
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f f 1-n' 
tiWP= CT··dEP = s dEP = --tio'tiEP

IJ IJ IJ IJ 1 + n ' . 
cycle cycle

(44)

Here CTmaxij = CTaij + CTmij,
n'= the cyclic strain hardening exponent, and
o'max = the maximum value of the effective stress, calculated similarly to ti CT of
Eq. (21).
For symmetric cycles, when stress mean values are equal to zero, energy

tiwe+ = <j), tiW0 = <!>r and tiWv = <!>v, according to Eq. (3).
The fatigue criterion formulated by Ellyin et al. is now being improved [ 19],
[44], [45]; its one form is

tiW1 =x(p)N? +c(p) (45)

where X(P) and c(p) are functions of the axial/tangential strain ratio p [ 19], [45],
I.e. 

x(p )=ap+ b,
c(p)=ep+f.

(46)
(47)

where a.b,e and fare material constants.
In [ 19] we can find versions of Eqs. (46) and (47) which include non-zero mean
values of strains, X (p, E111) and c (p, Em). In [46], [47] Gołoś and Eshtewi have
presented another version of functions X (p, CTm) and c (p. CTm) where non-zero
mean values of stresses are taken into account.

4.4. Criterion of the geometric mean of normal and shear strain energies 

Itoh et al. [28] have proposed the energy parameter for correlating the non­
proportional fatigue lives. The energy parameter is represented by

(48)

In this equation, tiCT,rnx and tiEma, are the maximum normal stress and strain
ranges, and ti'Imax and tiy,rn, are the maximum shear stress and strain ranges.

4.5. Criterion of the effective total strain energy 

Under cyclic loading, Park and Nelson [30] distinguish four components of
strain energy density

w= tiWl\1 + tiWi1 + tiWll + W,\\ (49)
where tiW

1
\1 and tiW~1 are variable plastic and elastic deviatoric strain energies,

respectively, and tiWll and tiW,\\ are variable and static (or mean) volumetric
strain energies, respectively.
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The first term of Eq. (49) is defined as 

tiW0 - f · d P P - si.i ei.i, 
cycle 

and the second one as 
tis ii tief I + v ti WJ'=--· .I =--tiS;jtiS;i. 
2 2 4E . . 

(50) 

(5 l) 

The volumetric strain energy ti W" is used to correct plastic energy term ti Wi\' 
by means of a triaxial factor for stress state TF,, and an effective plastic 
distortion strain energy parameter Wi';' is defined as 

w,; = 2k1 nr-,-1> . ti W1\1 , (52) 

where the constant k I may be determined from two sets of test data with 
different stress states, for instance uniaxial and torsional data or uniaxial and 
equibiaxial data. 
The triax ial factor, TF,, characterizes different stress states by the following 
expression 

TE= (cr, +02 +cr.iL, 
Seq 

(53) 

where Seq is the equivalent deviatoric stress amplitude defined as 

() f" 
Seq = l t tis;jtiS;j ) , 

and the subscript a refers to amplitude of stress. 
To introduce mean stresses, the elastic energy term ti Wt is modified by the 
static strain energy W,\\, and an effective elastic distortion strain energy 
parameter W; is defined as follows 

(54) 

(55) 
where TF,11 represents a triaxial factor for mean stresses and k2 is a constant. 
The triaxial factor, TFm, is represented by the ratio of sum of mean principal 
stresses and the equivalent deviatoric stress amplitude Seq from (54) as 

(56) 

where the subscript m refers to mean values. 
The constant, k2 in Eq. (55) may be determined from fully-reversed (TFm = O) 
and zero-to-maximum (TFm = I) uniaxial fatigue data. Finally, the relation for 
the effective total strain energy parameter Wf' vs fatigue life Nr can be written 
as 

W,*= W~'+ W,;= A"Nf + B"N\3" (57) 
where the constants A*, B*, a* and ~* can be expressed as follows using 
uniaxial fatigue properties and cyclic stress-strain curve data (see Eq. (30)) 
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A,= 221,+1 (I+ v)(cri )2 
3E 

a·• =2b 

( c- b) s·• = 2b+c+2<JiEi l C + b 
~* = b + C 

(58) 

(59) 

(60) 

(61) 

4.6. Strain energy criteria in the critical plane 

Under different combinations of proportional and non-proportional tension­ 
compression Socie [48] described multiaxial fatigue, and he used the uniaxial 
Smith-Watson-Topper [43] model written in the form 

~E ( cr; )2 ( )2 b , , ( )b+c CTrna,-=-- 2Nr +CTrEr 2N, (62) 
2 E 

This means that the energy parameter influences only the fatigue fracture plane, 
and that energy on other planes may be omitted. The Smith-Watson-Topper 
(SWT) parameter includes elastic and plastic energies of the normal strains on 
the critical plane which is the plane with the maximum range of normal strains; 
it also includes the mean stresses of a cycle, CTm (CT,lla, =CT.,+ CTrn)- More detailed 
observations of crack initiation and growth under cyclic tension-compression 
and torsion [48], [49] give additional arguments for the importance of the SWT 
parameter in the description of multiaxial fatigue of materials which fail 
according to Mode I. 
Nitta, Ogata and Kuwabara [23] used energy fatigue parameters connected with 
the fracture plane for approximating the results obtained from fatigue tests 
under proportional and non-proportional torsion with tension. The tests were 
carried out for seven ratios of the controlled strain ranges ~y /~£ and five phase 
displacements between those strains. 
Under proportional loading, for the strain ratio ~y / ~E::::: 1.7, the fracture planes 
agreed with the plane suffering the maximum range of normal strain ~E1 

(Mode I), and the energy term 

(63) 

was a suitable fatigue parameter. When the strain ratio was ~y / ~E > 1.7, the 
fracture planes agreed with the plane of maximum range of shear strain, ~Yma, 
(Mode II), and energy in that plane was calculated from 

~E2 = ~Lrnax~Yll1a, = BNr'' (64) 
Under non-proportional loading, the fatigue damage was influenced by both 
crack types. The following equation for calculating the number of cycles to 
fracture seemed to be useful 
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I I I -=~+- (65) 
Nrou Nr1 Nr2 

where Nn, Nr2, Nro11 are the numbers of cycles to fracture for the first (Mode I - 
Eq. (63), second (Mode II - Eq. (64)) and mixed types of cracking, respectively. 
Under a y and E phase shift of rc/2 the fracture planes were perpendicular to the 
specimen axis and the energy terms were calculated from 

I 
L1E1 = -L1<JL1E (66) 

2 
L1E2 =L11L1y (67) 

For the other phase shifts (rc/6, rc/4 and rc/3) the fracture planes coincided with 
the planes of the maximum range of shear strain L1Yrn;ix and for this condition the 
energy was calculated as 

(68) 

(69) 

where L1<J11 and L1£11 are the ranges of normal stress and strain Ill the plane of 
L1Ymax, respectively. 
If under uniaxial fatigue the equivalent energy is defined as product of normal 
stress and strain ranges 

I 
L1Eeq = 2L1<JcqL1Ecq = AN~:;, 

then Eq. (65) can be transformed and we obtain 

(70) 

(71) 

From Eq. (71) it appears that the equivalent energy (elastic and plastic) in the 
fracture plane is a nonlinear function of the energy associated with the normal 
and shear strains. 
For multiaxial proportional loading, Hoffman and Seeger [ 49) suggest the 
application of the SWT parameter written as 

P = .JE0E1" (72) 

where <J = <J" + <Jm. 
whereas fatigue damage of a material is better described by the maximum 
amplitude of strain Eia- The modified form of the parameter 

P = .JG1Ymax.a (73) 
should be used when fatigue damage of the material is better described by the 
maximum amplitude of shear strain y11ma· Thus, the authors suggest that only the 
energy (elastic and plastic) associated with the normal strain (Eq. (72)) in the 
plane of maximum normal strain, or only the shear strain energy (Eq. (73)) in 
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the plane of maximum shear strain. should be assumed as the fatigue damage 
parameter. 
Chu et al. [50] proposed another damage parameter, namely the specific work of 
shear and normal stresses in the critical plane 

CswT =2"CrnaxYa +(crn)m,,,(£11}. (74) 
This can be treated as a development of the SWT approach [ 43]. The factor of 2 
was assumed in order to include the same participation of work under simple 
shearing and simple tension. The plane in which the parameter CswT reaches its 
maximum value, is the critical plane. 
Liu [21] proposes the virtual strain energy (VSE) in the critical fracture plane as 
a parameter to describe multiaxial fatigue under proportional and 
nonproportional cyclic loading 

(75) 

where: 
t,,.W" =/>,.crnf,,.£11 

t,,.W, = t,,.111/>,.Yn 
2 

(normal strain energy in the critical plane) and, 

(shear strain energy in the same critical plane). 

Each of the above energies include elastic, t,,. W O and plastic, />,. W" energies. The 
position of the critical fracture plane depends on the material, temperature, 
strain range and loading history. Under uniaxial loading the energy, term t,,.W 
agrees with the energy formulated by the SWT parameter and can be expressed 
with the Manson-Coffin-Basquin characteristic of fatigue failure behaviour as 
follows 

t,,.W = t,,.We + t,,.W" = t,,.cr/>,.£ = 4 (cr, )2 (2Nr )2" + 4cr,£, (2Nr te. 
E 

(76) 

Liu [21] considered thin-walled cylindrical specimens under a combination of 
proportional torsion and tension cracked according to Modes I and II. For Mode 
II, the crack driven along the surface of the specimen is defined as type A, and 
the crack acting through the thickness of the specimen is defined as type B. For 
materials cracking according Mode I we have 

_ W _ ( W ) t,,. W -( ) t,,.111t,,.Y11 t,,_ w - t,,_ I - t,,_ Il max + S - />,.(J Il/>,.£ Il 111ax + 
2 

· 

For Mode II and type A we obtain 

( ) ( f,,.111/>,.Yn J 
t,,.W=/>,.W11A =/>,.Wił+ !>,.Ws'""" =/>,.cr11/>,.£11 +l 2 )rnax 

and for Mode II and type B we have 

( ) ( 
t,,.1"t,,.y" J t,,.W = t,,.W1113 = t,,.Wll + !>,.Ws max = t,,.cr11/>,.£11 + ? 

- max

(77) 

(78) 

(79) 

If the critical plane of cracking is defined according to Mode I, then in Eq. (77) 
the maximum value of the normal strain energy (/>,. W11)111,,, should be assumed. In 
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the case of Mode II, we assume the maximum values of shear strain energy
(6Ws)max in Eqs. (78) and (79). We should remember that in spite of the same
symbols in Eqs. (78) and (79) the strain ranges 6£11, 6y11 and the stress ranges
6011 and 6't11 are determined in different ways. For calculation of strain and
stress ranges we use £1, £3, 01, 0., in Eq. (78) and £1, £2, 01, 02 in Eq. (79), where
£1 2 £2 2 £, and 01 2 02 2 03. Maximization of one term of strain energy in Eąs.
(77) to (79) allows for a precise selection of the critical fracture plane when
directions of strains and stresses with maximum ranges do not coincide.
For uniaxial loading we have

6W = 6W1 = 6Wn (80) 
For pure torsion of thin-walled cylindrical specimens we obtain

6W = 6W1A = 6W11A (81)
Liu also proposes a way of determining the VSE parameters under non­
proportional histories of strains (i.e. out-of-phase) and noted as 6W, and 6W11.
Glinka et al. [ 17] used energy (elastic and plastic) associated with the normal
and shear strains in the critical plane for description of multiaxial symmetric
proportional loading. Their energy parameter

W* = 60. 6£ + 61. 6y (82)
2 2 2 2

is the sum of normal and shear strain energies in the critical plane, which is the
plane of the maximum shear strain.
Assuming the notation used in [ 17], we can write the criterion presented as
Eą.(82) as

•. 6022 6£22 6't21 6y21W·=--·--+--·--= 
2 2 2 2

= 6022 . 6£22 + 2 6021 . 6£21 = W
22 

+ 2W21 
2 2 2 2

Thus, shear strain energy

(83)

W
21 

= 6021 . 6£21 (84)
2 2 

in the critical plane 2-1 is summed with coefficient 2 (see Eq. (83)).
To consider the occurrence of both mean, normal and shear stresses 111 the
cycles 011122 and 011121, Glinka et al. [51], [52] have modified the Eą. (83) as
follows

W''= 6021 6Y21 l I + I 1=2W,1l I + I 1(85)
2 2 ] _ 0111,:x21 I_ 0111,~x21 - I_ 0ni;:x21 ] _ 0111,~x22

1r 0r 'tr 0r 

The modification consists in resignation in damage parameter (85) from the
normal strain energy density W22 in the critical plane (with the maximum
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amplitude of shear strain), whereas two material parameters cr'r and 'Ir' and the 
maximum normal stress O"ma, 22 = O"m22 + t.crn / 2 and shear stress 

O"max21 =[crm21 +t.cr21 /2[ or jcrrn21 -t.cr21 l2j are introduced from which the 

larger O"max21 should be used. 
Recently, Pan et al. [27], to improve correlation of some experimental data, have 
made next modification of Eq. (83) by including two weight constants 
H1 = o; /11 and H2 = yi /£i for stress and strain amplitudes, respectively. The 
modified parameter is 

W.,_ t.cr21 fly21 H H flcr22 t.£22 ---·--+ I 2--·-- 
2 2 2 2 

(86) 

To simulate the stress-strain relationship for multiaxial loading, Pan et al. used 
the endochronic constitutive equations. 
Lately, Varvani-Farahani and Topper [29] have proposed the energy parameter 
in the critical plane for non-proportional and mean loading. This parameter 
versus the fatigue life f(N1) is defined as 

crm 
I+-n 

I cri ( Ymax ) · ( ) -.-. flcr11fl£11 + . . · t.1ma,fl -- = t Nr 
0-1£1 1rYr 2 

(87) 

This parameter contains the sum of the normal strain energy range, t.crnt.£11, 
and the shear strain energy range, fl1ma,fl(Yma, /2), calculated for the critical 
plane on which both strain and stress Mohr's circles are the largest while 
loading (at the angle 81) and unloading (at the angle 02) of a cycle. The normal 
and shear strain energies in this parameter have been weighted by the tensile 
( cr;, £1) and shear ( ,i , yi ) fatigue properties, respectively. 
The correction for mean loading is based on the mean normal stress applied to 
the critical plane. 

(Jill 11 
(J max + (J llllll 

Il li 

2 
(88) 

The range of the maximum shear strain and the corresponding normal strain 
range on the critical plane are calculated as 

fl( y,;,IX I= ( £1 ~ £3 I + ( £1 ~ £3 I (89) 
- ) - )ei - Je2 

flc:11 =(£1 +£, i +(£1 +£.1 i 
2 )01 2 )f)2 

where c:1 2 c:2 2 £:i are the principal strains. Similarly, the range of the 
maximum shear stress and the corresponding normal stress range are calculated 
as 

(90) 

(
cr1 -cr_, J (cr1 -cr_, J fl1ma., = 

1 
+ 

1 
- 01 - 02 

(91) 
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óa" ~ la, ~a, 1. +la, ~a, l
where cr1 ~ cr2 ~ o , are the principal stresses,
Some general form of energy based critical plane damage parameter for both
proportional and non-proportional multiaxial cyclic loading with mean values
has been also proposed by Rolovic and Tipton [25]. Here, fai lure is defined as
the development of an engineering size crack (approximately I mm in surface
length) after N1 cycles. Their criterion can be expressed in a general form as

ha +f1(cr11)}ya +[cr,u +f2(cr11)f:11a =fi(Nr) (93)

(92) 

where 1:a and Ya are the maximum shear stress and strain amplitudes on the
critical plane, respectively, cr11a and £11.a are the maximum normal stress and
strain amplitudes on the critical plane. respectively and o, is the normal (static
and cyclic) stress on the critical plane.
The first term of the left side of Eq. (93) represents Mode II crack loading
modified by a function f1(cr11) to account for the crack closure effects. The
second term of the left side of Eq. (93) accounts for Mode I crack loading
modified by another function f2(cr11). The right side of Eq. (93) is a function
f,(N1) of the uniaxial strain life relation.
The critical plane can be determined on the basis of the maximum damage
parameter or the observed material cracking behaviour.
For experimental verification, the following specific form of general criterion
has been used

(1:a +0.3cr11)Ya +cr11111axE11a = (cri )2 (2N,)2b +cr"r£"r(2Nr)b+c (94)
E 

where o, is the normal stress on the critical plane at the same moment as y,, and
cr,,.max is the maximum normal stress on the critical plane during a cycle. Both
normal (Mode I) and shear (Mode Il) crack loading are incorporated in the
model.

5. Energy parameter in the multiaxial random stress state 

The random strain and stress tensors have been described as six-dimensional
stationary and ergodic Gaussian processes with the wide-band frequency spectra
and zero-expected values. Łagoda et al.[53] have defined the energy parameter
for uniaxial random loading which distinguishes the strain energy density for
tension (positive) and the strain energy density for compression (negative) as
follows

I
W(t) = -cr(t) • £(t)sgn[cr(t),£(t)]

2 
(95)
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where 0(t) and E(t) are random stress and strain, respectively and sgn(x,y) is the 
two-argument logical function, sensitive to signs of variables x and Y- The 
logical function is defined as 

I 
0.5 

sgn(x,y)= O 

-0.5 
- 1 

when sgn(x) = sgn(y) = I 
when x =O and sgn(y) = I or y = O and sgn (x) = I 

when sgn(x) = -sgn(y) 

when x = O and sgn(y) = - I or y = O and sgn(x) = - I 
(96) 

when sgn(x) = sgn(y) = -1 

Later Lagoda and Macha [54] generalized some known energy criteria of 
multiaxial cyclic fatigue to the random loading. The proposed generalized 
energy criterion is based on the selected components of specific work of stress 
on the strains in the critical plane. 

5.1. Generalized criterion of maximum shear and normal strain energy density on 
the critical plane 

It is assumed that 
(I) Fatigue fracture is caused by that part of strain energy density which 

corresponds to the specific work of normal stress 01/t) on normal strain c:,i(t) 
i.e. W,i(t) and specific work of shear stress 'Iq,(t) on shear strain £'15(t) acting 
in the s direction. on the plane with a normal rf, i.e. W ll5(t). 

(2) The direction s in the critical plane (the expected fracture plane) coincides 
with the mean direction of the maximum shear strain energy density 
w'7SlllaX(t) 

(3) In the limit state that conforms to the fatigue strength, the maximum value 
of combined Wll,(t) and Wq(t) energies under multiaxial random loading 
satisfies the following equation 

max{~W,7,(t)+KWq(t) }=Q (97) 
I 

where ~ = constant for a particular form of Eq. (97), K and Q = material 
constants determined from sinusoidal fatigue tests. 
The left side ofEq. (97) can be written as max,{W(t)}, and should be interpreted 
as the 100% quantile of the random variable W. If the maximum value of W(t) 
exceeds the value of Q, then damage will accumulate resulting in fracture. The 
random process W(t) can be interpreted as a stochastic process of the fatigue 
strength of a material. The positions of the unit vectors rf and s are determined 
with use of one of the following procedures: weight functions method, variance 
method or damage accumulation method [55]. 
A choice of constants B, Kand Qin Eq. (97). together with the assumed position 
of the critical plane, leads to particular cases of the generalized criterion. Three 
special cases are considered here. 
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5.2. Criterion of maximum normal strain energy density in the critical plane 

If~= O, K = I and Q = War (fatigue limit under tension-compression expressed
by normal strain energy density) and if we assume that the unit vector ff
coincides with the mean direction along which the maximum normal strain
energy density W11111a,(t) occurs, i.e.

Ą - -

ff= l17i + IT117j + ll17k (98)
then criterion (97) becomes

max(W11(t)} = War
t

(99)

where

111, 1n11, n11 = mean direction cosines of ff in relation to the constant system of
axes 0xyz,
i, j, k = verso rs of the axes 0x,y ,z.
The equivalent strain energy derived from criterion (99) is as follows

Weq(t) = WT1(t) = }CT11(t)E11(t)sgn[cr11(t),E11(t)] (100)

where CT1i(t) and £11(t) are normal stress and strain in the critical plane
respectively, i.e.

G17 (t) = Lłcr xx (t) + 111 ~(j yy (t) + Il Ącr zz ( t) + 211111117G xy (t) +
+ 211111 T1<J xz (t )+ 2111171117G yz (t}

E 11 (t) = I~ E xx (t) + 111 Ą E yy (t ) + 11 Ą E zz ( t) + 2111 Ill T) EX y (t) +

(IOI)

( 102)

If under proportional multiaxial sinusoidal loading we assume that normal stress
and normal strain having the maximum amplitudes act along the axis x, i.e.

Gxx (t) = Gaxx sin Wt; Exx (t) = Eaxx sin Wt ( 103)

and further if we assume 111 =I, then according to Eqs. (99) - ( I 02), we obtain

max{_!__cr xx ( t)Exx (t) sgn [cr xx ( t), Exx (t) 1} = _!__ Gaxx Eaxx = War ( I 04)
I 2 2

This result leads to the energy parameter used by Socie, Eq. (62), based on the
idea of Smith-Watson-Topper (43] and to the criterion proposed by Nitta, Ogata
and Kuwabara, Eq. (63) for Mode I. Thus, criterion (99) is a generalization of
the mentioned energy criteria, applied under cyclic loading.
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5.3. Criterion of maximum shear strain energy density on the critical plane 

For ~=4/(l+v), (v - Poisson's ratio), K = O and Q = War we assume that the
critical plane with normal ff is determined by the mean position of one of two
planes on which the maximum shear strain energy acts. On this plane we choose
a direction s coincident with the mean position along which the energy
W11smax(t) occurs, i.e.

S = l,i + lllsj + 11,k ( I 05) 

where Is, Ill,, 11, are mean direction cosines of sin relation to the axes Oxyz. 
Under the above assumptions, the criterion (97) becomes

max{-
4
-W,1,(t)}=War (106)

1 l+v
The equivalent strain energy density derived from criterion ( I 06) is as follows

4 2 W,q (t) =--W,1, (t) = ---r11, (t)£11, (t) sgn['rqs ( t),£11, (t)] ( I 07)
l+v l+v

where
Lqs(t) = l,1lsCTxx (t) + ITl11111sO'yy(t) + ll11llsO'zz(t) + 2]ą!TlsO'xy(t) +

+ 21,111 sCTxz ( t) + 2111q 11,CT yz ( t)
( I 08) 

A A A 

E11s (t) = 1,1 i.e., (t) + 11111111,Eyy (t) + 11 ąllsEzz ( t) + 21,1111,Exy (t) +

+ 211111,£,z(t) + 21111111,Ey,(t)
In the case of proportional multiaxial sinusoidal loading when the normal stress
and strain having the maximum amplitudes act along the x axis and the normal
stress and strain with minimum amplitudes act along the z axis. i.e.

( I 09)

CT xx (t) = O'axx sin wt:
CT zz ( t) = CT azz Si 11 Wt;

c., (t) = Eaxx sin Wt;
Ezz(t)=EauSinwt;

( I I O)

and when
A I
111 = ✓2, 
A I 
I,= ✓2' 

11111 = O,

Ill, =0,

1111 = ✓2,

A I
n,=- ✓2'

( I I I) 

then, according to Eqs. ( I 06)-( 111) we obtain

max{-
4
-W,1,(t)} = max{_2__-rq,(t)£11,(t)sgn[-r,1,(t),£,1,(t)]} =

1 l+v I l+v
2 O'axx - O'azz Eaxx - Eazz I

= --------=--"CamaxYarnax = W;1f 
l+v 2 2 l+v

( I I 2) 
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Strain energy density expressed by Eg. ( 112) is also applied in the criterion 
proposed by Nitta, Ogata and Kuwabara for Mode II under cyclic loading 
(Eq. (64)). Thus, criterion ( I 06) is a generalization of the next energy criterion 
applied under cyclic loading. 

5.4. Criterion of the maximum shear and normal strain energy density on the 
critical plane - case I 

For~= 2( I +v), K = 2/( 1-v) and Q =War we assume, as in the above section, that 
the critical plane with normal 17° is determined by the mean position of one of 
two planes on which the maximum shear strain energy acts. On this plane, the 
direction s is coincident with the mean position along which the energy 
W11,111a,(t) occurs - see Eg. (105). 
The general criterion (97) now has the following form 

max{-
2
-W11,(t)+-

2
-W11(t)}=W,r (113) 

1 l+v 1-v 
From criterion ( 113) we can derive the equivalent strain energy density as 

2 2 
Weq(t) =--W,1,(t) +--W11(t) = 

l+v 1-v (114) 
I I 

= --'Tqs ( t)E.11, (t) sgn[ 'T,1, ( t), E11s ( t)] + --011 ( t )E.11 ( t) sgn] 011 ( t), £11 ( t)] 
l+v 1-v 

where 111s(t), E.115 (t), 011(t) and £11(t) are expressed by Egs. ( I 08), ( I 09), (IOI), 
(102) respectively. 
Under multiaxial sinusoidal in-phase loading and on the assumption as in the 
previous section - see Egs. (I IO) and (111) - from Eqs. (113) and (114) it 
follows that 

max{-
2-w11s (t) + ~ W11 (t)} = r l+v 1-v 

= max{-1
-111, (t)Eqs (t)sgn['T115(t),£11, (t)] +-

1
-011 (t)E.11 (t)sgn[011 (t)E11(t)} = 

1 l+v 1-v 
I I 

= 2(1 + v) 1a max Ya 111ax + I_ V 0a1}0a11 = War 

( 115) 
where 0011 and Ea£ are amplitudes of normal stress and strain on the plane of the 
maximum shear stress and strain amplitudes 'T"""" and Ya111ax, respectively. 
The strain energy density in Eq. ( 115) is also assumed by Liu, Eq. (78) or (79), 
in his virtual strain-energy parameter (VSE) under in-phase cyclic loading for 
Mode II fracture (for f = K = I). 
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Thus, the criterion ( 113) is a generalization of the energy criterion formulated 
by Liu [21] to the range of random loading. Moreover, it is possible to prove 
that for ~ = 2 and K = I the criterion ( 113) is a generalization of the energy 
criterion proposed by Glinka, Shen and Plumtree, Eq. (82) for cyclic loading. 
Further cases of this criterion may be defined by the choice of another position 
of the critical plane. The position is determined by the given values of the 

direction cosines ln,rnn,lln(n =11,s) of the unit vectors Tj" and s occuring in 
the fatigue criteria. The following three methods of determination of the 
expected critical plane position are proposed: 
a) The method of weight function, presented in [55], consists in averaging the 
random values of angles an(t), ~n(t), y,/t), determining instantaneous positions 
of the principal strain/stress axes position in relation to the constant system of 
Oxyz axes with use of a special weight functions. 
b) The method of damage accumulation, presented in [55]. Here the fatigue 
damage is accumulated on the all possible planes. Next, the plane on which 
damage is maximum is selected. Thus, we obtain not only direction of the 
expected critical plane, but the fatigue life as well. 
c) The method of variance maximum. It is the method the most often applied so 
far. It gives good results when the stress and strain criteria are applied [55], 
[56]. Here, in the method of variance it is assumed that the planes in which 
equivalent strain energy density variance according to the chosen criterion 
reaches its maximum are critical for the material. 

6. Some further considerations 

The criteria based on elastic strain energy can be used for fatigue under a high 
number of cycles to fracture (HCF), while the criteria based on plastic strain 
energy are more appropriate for a low number of cycles to failure (LCF). The 
criteria based on the sum of plastic and elastic strain energies can be applied for 
both LCF and HCF. 
In the group of criteria based on elastic strain energy, a criterion involving the 
average strain energy in the period of a cycle and within a material volume for 
HCF, as proposed by Palin-Luc and Lasserre [36], should be mentioned because 
it takes into account stress and energy gradients under uniaxial and multiaxial 
loading. 
The advantage of this criterion is that it is sensitive to different stress 
distributions in circular section bars under tension and under bending as well as 
to the different energy distributions under plane bending and rotary bending 
when the stress distributions are the same [36]. 
The criteria based on plastic strain energy include the models formulated by 
Lefebvre et al., Eq. (20), Garud, Eq. (27) and Chen et al., Eqs. (30) and (31). In 
the first two models, there are only plastic strains, and it has been shown that in 
these criteria, strain energy is not the plastic energy from all the stress state 
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components in a cycle, but it is only the energy associated with the critical
plane. That new interpretation of the models supports the energy-based critical
plane approach to multiaxial fatigue. The critical plane energy criteria for a
tensile-type failure, Eq. (30), and for a shear-type failure, Eq. (31 ), have been
proposed and verified only for LCF [26). Thus, we may suppose that their
authors consider only plastic strains and neglect small elastic ones. Since on the
right sides of Eqs. (30) and (31) there are also terms representing the elastic
energy of strains, we can expect that the criteria could be useful for both LCF
and HCF.
The largest group of criteria is based on the sum of elastic and plastic strain
energy densities. The first Ellyin proposals presented in 1974 concentrated on
the shear strain energy W1 (see Eq. (32)), and were only theoretical in nature.
Later Ellyin and Kujawski modified Eq. (32) and obtained energy li' (Eq. (34)
which was experimentally confirmed for some materials.
Other modifications by Ellyin and Gołoś assumed a specific form of energy !::iW' 
(Eq. (42)) which is the sum of the elastic strain energy in the positive stress
range of the cycle !::iwe+ and the plastic strain energy !::iW". In comparison with
Eqs. (32) and (34), the modifications are more complex, because the energy
1::iwc+ includes the normal and the shear strain energy density, Eq. (43). It should
be emphasised that the plastic strain energy !::i WP is equal to the area of the
effective stress-strain hysteresis loop, Eq. (44).
The models by Ellyin and Gołoś, Eq. (42), and Park and Nelson, Eq. (49) are
based on the same plastic energy of effective strain !::iWP = !::iWJ1• In the model
by Park and Nelson, Eq. (49), there is, however, the double value of elastic
energy comparing with the model by Ellyin and Gołoś, Eq. (42), i.e.
!::iW/ =21::iWe+ [14), [15), [18), [30]. Further differences between these models
are connected, among others, with the approach to influence of the mean
stresses.
The Leis model given as Eq. (36) includes the normal and shear strain energy
U-r with the elastic and plastic parts, and hence contains most of the energy
components. However, from a theoretical point of view, the Leis model
overestimates damage in relation to those parameters based on the energy in the
critical plane. Since the models were verified in some tests, we may expect that
in the calculation of the total or only the partial (in the critical plane) plastic
strain energy, the assumed form of the constitutive equations relating the
amplitudes of cyclic stress and plastic strain (especially under non-proportional
loading) plays a very important role.
According to the model by Itoh et al., Eq. (48), the equivalent strain energy
reduced to uniaxial state of stress is non-I i near function of normal and shear
strain energies.
With respect to energy criteria associated with the critical plane, the models
proposed by Socie (see Eq. (62)) when 0,11 = O and <J,11:ix = <J" and the energy
0ma,£, or Nitta et al., Eq. (63) and the energy !::iE1, or Hoffman and Seeger,
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Eq. (72) and the energy P, then these approaches concern the same normal strain
energy in the plane corresponding to Mode I cracking. and are based on the
concept of the SWT parameter. The proposals by Nitta et al. Eg. (64), and
energy t.E2, the Hoffman and Seeger proposals, Eg. (TJ), and energy P, and
Glinka et al., Eq. (85), and energy W*, they concern the same shear strain
energy in the Ymax plane and correspond to Mocie 11 cracking.
The advantage of the models formulated by Chu, Eq. (74) and energy Csw-r, Liu,
Eg. (75) and energy 6 W, Glinka et al., Eq. (83) and energy W'\ Pan et al., Eg.
(86), Varvani-Farahani and Topper. Eq. (87), and Rolovic and Tipton, Eg. (93),
is that they include two kinds of energy in the damage parameter; the normal
strain energy 6Wxx and shear strain energy 6W xy in the critical plane.
Comparing these models, we notice that the participation of these energies in
the damage parameter is different. Under symmetric loading, in Chus model we
have CswT = t.W,, + 4W,y, in Lius model t.W = t.Wxx + t.W,y, and in the
Glinka et al. model there is W* = t.Wxx + 2t.W,y, in Pal et al. model
W*= H1H2t.Wxx +t.W,y, 111 Varvani-Farahani and Topper's model
t. Wxx + H,t.W,y (where H1 =constant) and in the Rolovic and Tipton model
t.W,, + 2t.W,y. Therefore, we can see that the individual participation of
energies t.W,, and t.W,y in the Glinka et al. model is the same as in the Relovic
and Tipton model.
If we now consider these interpretations of the damage parameter for the
symmetric cycles in which
• the plastic effective strain energy, which is equivalent to the plastic shear

strain energy on the octahedral plane, 610c,6£0c," (see Eg. (26)), or
• the sum of two from nine areas of the closed stress-strain hysteresis loops,

which is equal to the sum of the plastic normal and shear strain energies in
the x-y plane AW,/+ 6W,/ (see Eg. (29) for HG= I), or

• the elastic and plastic shear strain energy, which is equal to the elastic and
plastic shear strain energy in the octahedral plane W, (see Eą. (32) and ~ in
Eą. (34)),

then it will be noticed that those criteria involving the strain energy in the
critical plane dominate in the description of multiaxial fatigue and that is why
we may accept them as being the most promising criteria. They are shown in
Table I.
Also the generalized criterion of maximum shear and normal strain energy
density for multiaxial random loading, Eą. (97). is based on the critical plane.
To extend energy approach to random fatigue, it was necessary to introduce a
new definition of the energy parameter for distinguishing positive and negative
signs in history of specific work of stress on strain along the chosen direction.
This new damage parameter has made it possible to generalize some energy
criteria of multiaxial cyclic fatigue to the random loading.
The mean stress effects in energy criteria are formulated in a different manner.
In the group of criteria based on the elastic strain energy, we can calculate the
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mean equivalent stress 0111eq, in a manner similar to the amplitude of the 
equivalent stress O"aeq, from Eqs. (2), and (6) and then calculated the transformed 
(enlarged) amplitude O"aeqT of the cycle with a zero mean value according to one 
of the relationships 0., versus o., (for example Goodman [57], Marin [58], Troost 
and El-Magd [59] applicable to uniaxial loading. The mean shear stress 1111 in the 
criterion of elastic shear strain energy in the critical plane <t>,1 (Eq. (7)) is treated 
in a similar way. The mean stresses in those energy criteria are included as in 
the stress based criteria of multiaxial fatigue failure. The criterion proposed by 
Palin-Luc and Lasserre, Eq. ( 19), concerns symmetric cycles with zero mean 
values. 
In the criteria based on plastic strain energy there is a lack of information as 
how to involve the mean value of stresses in Eqs. (20), (27), (30) and (31) 
proposed by respectively Lefebvre et al., Garud and Chen et.al. It is known that 
mean stresses usually relax in the regime of LCF. 

Table I. 
The criteria of multiaxial cyclic fatigue including the strain energy density in the critical plane 

No. The criterion proposed by Kind or energy 
Range of 

application 

I. Ellyin [12] (1974) elastic and plastic shear strain energy in HCF and LCF 
the octahedral plane, Eqs. 02) and (34) 

2. Macha [22] ( 1979) elastic shear strain energy in the plane of HCF 
maximum shear stress, Eq. (7) 

3. Garud [ 16] sum of plastic energies of normal and LCF 
(a particular case HG= I) shear strains in the critical plane, Eq. (29) 
( 1981) 

4. Smith, Watson and elastic and plastic energies or normal HCF and LCF 
Topper [421, ( 1970) strain in the plane 01· maximum range or 
Socie [47) ( 1987) normal strain, Eq. (62) 

5. Lefebvre, Neale and plastic energy of the shear strain in the LCF 
Ellyin [20] (1988) octahedral plane, Eq (26) 

6. Nitta, Ogata and i) elastic and plastic energies of normal HCF and LCF 
Kuwahara [231 (1989) strain in the plane of maxi mum range of 

normal strain Eq. (63), or 

ii) elastic and plastic energies of shear 
strain in the plane or maximum range of 
shear strain Eq. (64) 

7. Smith, Watson and i) elastic and plastic energies 01· the HCF and LCF 
Topper [ 42), ( 1970) normal strain in the plane 01· maximum 
Hollman and Seeger [ 48) normal strain Eq. (72) 
( 1989) ii) elastic and plastic energies or the 

shear strain in the plane ()r maximum shear 
strain Eq. (73) 
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8. Chu, Conle and Bonncn sum of energies (elastic and plastic) or HCF and LCF 
(49] (1993) normal alld shear strains Ill the critical 

plane (with the maximum sum of both 
energies), Eq. (74) 

9. Liu (21] (1993) sum or energies (elastic and plastic) or HCF and LCF 
normal and shear strains Ill the critical 
plane (with maximum value or one 
component or energy, according to Mode I 
or Mode li), Eq. (75) 

IO. Glinka, Shen and sum of energies (elastic and plastic) or the HCF and LCF 
Plumtree l I7] ( 1995) normal alld shear strains in the plane or 

maximum shear strains, Eq. (82) 

11. Chen, Xu and Huang (i) sum of plastic energies of normal and LCF 
(26] ( 1999) shear strains in the maximum normal strain 

plane, Eq. (30) 

(ii) sum or plastic energie» of normal and 
shear strains in the maximum shear strain 
plane, Eq. (31) 

12. Pan, Hung and Chen (27] sum of ellergies (elastic .md plastic) or HCF and LCF 
(1999) shear and weighted normal strains ill the 

plane or maximum shear strains. Eq. (86) 

13. Rolovic and Tipton[25] sum or energies (elastic and plastic) of HCF and LCF 
( 1999) normal and shear strains in the critical 

plane (with maximum SUill or both 
energies or the observed cracking 
behaviour or the material), Eq. (93) 

14. Varvani-Farahani and sum of weighted energies (elastic and HCF and LCF 
Topper (291 (2000) plastic) of normal allel shear strains i n the 

critical plane (Oil which the stress allel 
strain Moh'r circles are the I argest during 
the loading and unloading parts of a
cycle). Eq. (87) 

As for the criteria based on the sum of elastic and plastic strain energy, the mean
value of stresses has been included in the models of Ellyin and Kujawski, Eg.
(34), Leis, Eq. (36), Ellyin and Gołoś, Eq. (42), Park and Nelson, Eg. (57),
Socie, Eg. (62), Hoffman and Seeger, Eqs. (72) and (73), Glinka et al., Eg. (85),
Varvani-Farahani and Topper, Eq. (87) and Rolovic and Tipton. Eq. (93). In the
energy models of Itoh et al., Eg. (48). Nitta et al., Egs. (63), (64) and (71 ), Chu
et al., Eq. (74), Liu, Eq. (75), Glinka et al., Eq. (82), Pan et al., Eq. (86) and in
the model for multiaxial random loading, Eq. (97), their authors did not say how
to take into account the mean stress effects. From the above specification it
appears that the role of mean stresses in the energy criteria requires further
experimental evidence, especially under random loading.
Some of the energy criteria discussed in this paper are also effective under non­
proportional loading. Here we could mention the parameters proposed by Palin­
Luc and Lasserre, Eg. ( I 9), Garud, Eg. (27), Chen et al., Egs. (30) and (31 ), Itoh
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et al., Eq. (48), Park and Nelson, Eq. (57), Socie, Eq. (62), Nitta et al., Eq. (71), 
Chu et al., Eq. (74), Liu, Eq. (63), Varvani-Farahani and Topper, Eq. (87), 
Rolovic and Tipton, Eq. (93) and the generalized criterion of maximum shear 
and normal strain energy on the critical plane, Eq. (97). There 1s no 
experimental evidence for the application of other criteria under 
non-proportional loading. 
It is observed that in HCF regime the crack initiation period is dominating and 
the propagation time is very short in the total fatigue I ife of typical structural 
materials. In LCF regime, the initiation and propagation times are comparable. 
The discussed energy criteria concern only the crack initiation. As for the 
propagation time, the calculation should be based on a separate group of criteria 
for multiaxial fatigue, using elements of fracture mechanics (2), [3], [4], [5], [6], 
[7], [8], [9]. At present, it is not easy to say how to apply the discussed criteria 
in practice for real structures. First of all, the experimental verification, using 
complex components stressed under multiaxial random load-time histories, is 
necessary. We must also pay attention to the material used, because - 
depending on the nature of the material (ductile, semi-ductile or brittle) - 
different failure processes and mechanisms must be taken into account. The 
generalized criterion of maximum shear and normal strain energy density in the 
critical plane seems to be the most useful in engineering practice. This criterion 
should be developed, and the mean stresses, stress concentration, non-stationary 
loading and external factors (for instance, corrosion, high or low temperature) 
should be taken into account. 

7. Conclusions 

I. From the review of known energy criteria of multiaxial cyclic fatigue failure 
it appears that they can be divided into three groups when assuming the 
strain energy density per cycle as the damage parameter. They are: 
a) criteria based on elastic energy for high-cycle fatigue, 
b) criteria based on plastic energy for low-cycle fatigue, 
c) criteria based on the sum of elestic and plastic energies for high- and 

low-cycle fatigue. 
2. The proposed criterion of multiaxial random fatigue failure is based on the 

new definition of energy parameter which distinguishes both positive and 
negative signs in history of specific work of stress on strain along the 
chosen directions in critical fracture plane. 

3. From laboratory tests it appears that the criteria that do not include all the 
strain energy, but only the components connected with the critical fracture 
plane dominate in the energy description of multiaxial fatigue, and that is 
why we may accept them as being the most promising criteria. 

4. At present it is not possible to recommend one criterion for application in 
industry. Therefore, experimental verification using complex-shaped 
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components subjected to multiaxial random load-time histories and different 
environments is necessary. 

5. The generalized criterion of maximum shear and normal strain energy 
density in the critical plane seems to be the best for application in practice. 
It should be developed, and mean stresses, stress concentration and non­ 
stationary loading as well as external factors such as corrosion, high or low 
temperature should be taken into account. It is also necessary to consider the 
material used, because its kind (ductile. semi-ductile, brittle) influences 
different failure processes and mechanisms. 

* * * 

The paper realized within the research project 7 T07B O 18 18, partly finanse by 
the Polish State Research Commitee in 2000-2002. 
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Przegląd energetycznych kryteriów wieloosiowego zniszczenia zmęczeniowego

Streszczenie

Praca zawiera przegląd energetycznych kryteriów wieloosiowego zniszczenia zmęczeniowego
w warunkach cyklicznego i losowego obciążenia. Kryteria odnoszące się cło cyklicznego
obciążenia podzielono na trzy grupy. zależnie ocl rodzaju gc-rości energii odkształcenia na cykl.
którą przyjmuje się jako parametr uszkodzenia. Sq to: a) kryteria oparte na energii sprężystej
odkształcenia clla zmęczenia wysokocyklowego. b) kryteria oparte na energii plastycznej
odkształcenia dla zmęczenia niskocyklowego oraz c) kryteria oparte na sumie energii sprężystej i
plastycznej clla zmęczenia wysoko- i niskocyklowcgo. Kryterium dotyczące losowego obciążenia
jest oparte na nowej definicji parametru energetycznego. który odróżnia dodatnie i ujemne znaki w
historii pracy właściwej naprężenia na odkształceniu w wybranych kierunkach krytycznej
płaszczyzny złomu. Kryteria. które uwzględniają gęstość energii odkształcenia w płaszczyźnie
krytycznej, dominują w energetycznym opisie zmęczenia wieloosiowego. Podano parametry
zależne ocl obciążeń oraz czynniki zależne od rodzaju materiału. decydujące o wyborze
płaszczyzny krytycznej. Omówiono modele matematyczne kryteriów, a następnie wyróżniono te,
które uwzględniają wpływ naprężeń średnich I gradientów naprężeń. oraz obciążenia
proporcjonalne i nieproporcjonalne. Zwrócono uwag.,:. ie najbliższe potrzebom obliczeń
inżynierskich jest uogólnione kryterium gęstości energii maksymalnego odkształcenia normalnego
i stycznego w płaszczyźnie krytycznej i należy je nadal rozwijać i weryfikować.




