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A REVIEW OF ENERGY-BASED MULTIAXIAL FATIGUE FAILURE

CRITERIA

The paper contains a review of energy-based multiaxial fatigue failure criteria for
cyclic and random loading. The criteria for cyclic loading have been divided into
three groups, depending on the kind of strain energy density per cycle which is
assumed as a damage parameter. They are: a) criteria based on elastic strain energy
for high-cycle fatigue, b) criteria based on plastic strain energy for low-cycle
fatigue. and c) criteria based on the sum of plastic and elastic strain energies for
both low- and high-cycle fatigue. The criterion for random loading is based on the
new definition of energy parameter which distinguishes plus and minus signs in
history of specific work of stress on strain along chosen directions in the critical
fracture plane. The criteria which take into account strain energy density in the
critical plane dominate in the energy description of multiaxial fatigue. Parameters
dependent on loading and factors dependent on a kind of material and influencing
selection of the critical plane have been given. The author presented the
mathematical models of the criteria and next distinguished those including influence
of mean stresses and stress gradients as well as proportional and non-proportional
loading. It has been emphasised that the generalized criterion of maximum shear
and normal strain energy density in the critical planc seems to be the most efficient
in practice and it should be developed and verified in a future.

1. Introduction

Multiaxial fatigue has been investigated for about 110 years and many
different mathematical models of the limit state of strength have been
formulated. At present we know more than 50 criteria of fatigue strength for
multiaxial loading [1], [2], [3], [4], [5], [6], [7]. [8], [9]. There are stress-, strain-
and energy-based fatigue failure criteria but there is no one universal criterion
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for different loading conditions. Therefore, new mathematical models are
sought. Recently, special attention is being paid to energy-based criteria [10-30].
These criteria can be divided into three groups, depending on the kind of strain
energy density per cycle which is assumed as the damage parameter. They are:
(i) criteria based on the elastic energy, (ii) criteria based on the plastic energy,
and (iii) criteria based on the sum of elastic and plastic energies. In each group,
we can distinguish criteria based on the critical fracture plane. A new definition
of the energy parameter has been introduced and the mentioned criteria have
been generalized to multiaxial random loading.

This paper contains a review of energy criteria of multiaxial fatigue and
specification of a kind of energy assumed as the parameter controlling the
fatigue process. The author used the previous review [24] and introduced the
latest models of the criteria.

2. Criteria based on elastic strain energy

The first criteria were formulated by adaptation of the known static strength
hypothesis proposed by Huber-Mises-Hencky and the Beltrami hypothesis to
high-cycle fatigue (HCF) under proportional loading for ductile materials.

2.1. Criterion of volume and shear strain energy density (generalized Beltrami
hypothesis)

This criterion is based on the assumption that fatigue fracture is influenced
by total strain energy [31], [32], [33]
1 .
¢=;0u8i_i, (i.j=%Y.2) (D

where ©; and g; are the amplitudes of stress and strain state components,
respectively. Thus, the amplitude of equivalent stress is
Geq =[(Oxx +Oyy +022)2 +2(14V)(C3y + 0%, +0f, = OxxOyy = OxxCuz = 0yyGz2)]!/2

2)

where v is the Poisson’s ratio.

2.2. Criterion of shear strain energy density (generalized Huber-Mises-Hencky
hypothesis)

In this criterion it is assumed that not the total strain energy ¢ (equal to the
sum of energies due to volume change, ¢,, and due to distortion change, ¢;), i.e.

1 1
O=0dy+0dr :gckkgkk +55i,jei_i, 3)
but only oy influences the fatigue fracture [31], [34], [35]. Here

1
Sij = Oij — ;Gkk Sj_i s (4)
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|
eij = &jj —;&J&_n )

are the deviatoric stress and strain tensors, respectively. In such a case, the
equivalent stress is
Oy =[(0% +0% + 05 ~ OO — Tig O — Beln + A0 65 #6592, (B)

2.3. Criterion of shear strain energy density in the plane of maximum shear stress

According to this criterion, presented in [22] at the first time, the energy
density, oy, is equal to work of shear stress, T, in direction s of maximum
shear strain, €, on the plane with normal M

]
(Dsf = ;Tnsens (7)

It has been proved in [24] that under proportional loading the shear strain energy
density in the plane of maximum shear stress, ¢y, when applied as a damage
parameter leads to a mathematical form of the maximum shear stress criterion,
1.

Ocq =0 — O3, (8)
where 0, and 6; are the maximum and minimum amplitudes of normal stresses,
respectively.

2.4. Criterion of the average strain energy

Palin-Luc and Lasserre [36] proposed a criterion based on energy density
averaged over a cyclic period T and within the material volume V* for the case
where a stress gradient occurs. Taking the mean volumetric strain energy per
cycle

&
2 I
W, =—j¢\,(t)dt, 9)
T
0
and the mean shear strain energy
i
“ I
Wi =—[or (vt (10)
T
0
we have the average strain energy in a cycle
W =W, + W, (1)
and the energy degree of triaxiality given by
W,
Tep =—, (12)
W

F, the ratio of the average strain energy under multiaxial loading W to the

average strain energy under pure torsion W, is also defined
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A~

W
Fe=—
W,
Under an arbitrary but known distribution of energy W, the strain energy

average in a volume at the critical point of a material is determined from the
following relation

(13)

I = =
& :—_'UJ(W —Wedve (14)
V-g *
Y
where
ST
W =Wr— (15)
. 262 — 2.
WJ - “G;If alrb (16)
4E

The integration limit of V* represents the volume around the considered
material point at which W > W*. The ratio F, =F defined for uniaxial load,
0. = fatigue limit under uniaxial load, o, = fatigue limit under rotary bending
and E = Young’s modulus.
The average strain energy at the fatigue limit
&1 =G a7
u

where
4E
Finally, the criterion proposed by Palin-Luc and Lasserre takes the following

form

afu = (]8)

B=0;. (19)

3. Criteria based on plastic strain energy

These criteria describe fatigue strength using the plastic strain energy dissipated
in the material during a loading cycle.

3.1. Criterion of effective strain energy

In this criterion, proposed by Lefebvre et al. [20], it is assumed that the energy
density of the plastic effective strain in a loading cycle is the parameter
influencing the initiation of a fatigue crack (detected as a small crack which is
usually indicated by a distortion of the hysteresis loop) after Ny number of
cycles that occurs under uniaxial and multiaxial stress states. It is given by
AGAEr = KN¢ (20)
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The effective stress range, AG, and the range of the effective plastic strain,
A€v, are calculated from

3 172
AG = (i AsiiAsi; j 20
3 12
AEP = [%AEIIAS!} ] (22)
|
Asij = Acij — ;A(Ykk&j (23)
AE{} = Aei_i — AE% ; (24)

where superscripts ¢ and p mean elastic and plastic strain, respectively. The
parameters K and ¢ depend on mechanical properties of the material, and are
functions of the stress ratio. Since the range of effective stress AG is
proportional to the range of octahedral shear stress, AT.., and the range of
effective plastic strain, A€r, is proportional to the plastic range of the

octahedral shear strain, Ag!,, hence Eq. (20) can be written as

oct

_ 3 , ; X c
AGAE? =—= At V24€8, =3AT0aAE), = KNS, (25)

NG

or

oct

A’toul ASP = % KN;' ~ (26)

From Eq. (26) it results that the criterion of plastic energy of the effective strain
is equivalent to the statement that plastic shear strain energy in the critical plane
(one of the octahedral planes) is a parameter influencing failure at the initiation
stage under uniaxial and multiaxial proportional stress states [24].

3.2. Criterion of normal and shear strain energy

Garud [16] assumed that plastic strain energy (equal to the sum of energies from
all the stress state components in a cycle) is the damage parameter influencing
the initiation fatigue life, i.e. up to the moment when visible cracks can be
observed. The incremental theory of plasticity was used to describe relations
between cyclic stresses and strains under multiaxial non-proportional loading
(with phase displacements). The theory includes the path of plastic strains. The
Garud’s criterion can be written as

AW] = [oyde} = AN7*, 27)

cycle

where AW is the sum of hysteresis loop areas from the nine stress state

components, while A and 3 are the material constants.
Under combined tension and torsion Eq. (27) can be written as
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AW, = AWD, +2AW), = J [Gudel +20,ydely ] = ANTB. (28)
cycle
From the experimental results it appears, however, that under combined tension
and torsion Eq. (28) should be modified to the following form

AW = AW!, +HGAWY = j [Oudel +Hooywdely = ANF,  (29)
eycle
where the weight coefficient Hg at plastic shear strain energy, AWY, , is equal 2
[37], [38], 1 [16], [39], [40], 0.6 [10] or O [41], depending on the material type.
When Hg=1, the plane x-y can be treated as the critical plane, and the sum
AW +AW]y is not the energy from all the stress state components in a cycle,
but only the energy associated with the critical plane.

3.3. Criterion of normal and shear strain energy in the critical plane

Lately, a combined plastic energy density and critical plane concept has been
proposed by Chen et al. [26] for low-cycle fatigue life under non-proportional
loading. They consider different failure mechanisms for a shear-type failure and
a tensile-type failure, and from which different damage parameters for the
critical plane-strain energy density are proposed. The critical plane energy
density criterion for a tensile-type failure is given as follows

(or)?

AeM™ Aoy + Ay At =4 (2N )2 +407er (2Ny )be (30)
where Ag™ is the maximum normal strain range, Ac,, Ay, and At, are the
normal stress, shear strain and shear stress ranges that occur on the maximum
normal strain plane, respectively, and b, ¢, of,&r,E are parameters of the
Coffin-Manson axial fatigue relationship.
For a shear-type failure, the critical plane energy density criterion is

T )? .

AY:]];leT+A5nA6n :4—( G (2N )2be +4T[‘Y[’(2N|’)bl+cl 31
where AYm 15 the maximum shear strain range, A1, Ag, and Ac, are the shear
stress, normal strain and normal stress ranges on the maximum shear strain
plane, respectively, and by, ¢,, T, i, G are parameters of Coffin-Manson torsional
fatigue relationship.

4. Criteria based on the sum of elastic and plastic strain energy

It is known that elastic strain energy alone cannot influence fatigue damage
accumulation in the low cycles to failure range; also the plastic strain energy is
minimal in high-cycle fatigue. Thus, a third group of criteria have been
proposed in which authors take into account both forms of energy.
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4.1. Criterion of the sum of elastic and plastic shear strain energy

This criterion was proposed by Ellyin [12] in 1974. He assumed that the cyclic
shear strain energy, expressed as

W, = J‘Sijdei_j s (32)
cycele

was a fatigue damage parameter under proportional loading.
Since components of the strain state deviator ¢;; in Eq.(32) are the sum of elastic
and plastic strains, energy Wy is also the sum of elastic and plastic energies of
the shear strains. Reference [12] contains calculations of the integral in Eq. (32)
using the cyclic stress-strain curve and the deformation theory of plasticity.
Hence

Wi =EAEAG + AEGw, (33)
where & = coefficient dependent on the stress level when the material is in the
non-elastic state, and G ,=(0y + O )2 is the equivalent mean stress
calculated from the upper, Gu, and the bottom, G, limits of the effective stress
(for symmetric uniaxial loading ¢ ,=Ac/2).
In [42] Ellyin and Kujawski developed the ideas contained in the criterion
expressed in Eq.(32) and assumed the following form of energy

- o
EAEAG| | + 0 —
o
t(p)
where 0, = Ok 18 the sum of mean values of normal stresses,
o = coefficient characterizing the material sensitivity to mean stresses O,

Y= (34)

0= Af)—G is the amplitude of effective stress, and
f(p) = function of the multiaxial constraints, where p is a measure of the
multiaxial constraints as expressed by the ratio of the maximum normal
and shear stresses and the effective Poisson ratio.
For experimental verification of Eq. (34) the following power function was
assumed
f(p)=p" (35)
where n > 0 is a parameter (in some cases n = 0; 0.5; 1).
For the uniaxial loading state and for oo = 0.5& and f(p) =1 then Eq. (34),
becomes Eq. (33), 1.e. ¥ = W,.
As in the plastic effective strain energy criterion, Eq.(20), we may treat
Egs. (32) and (34) as energy (elastic and plastic) of the shear strain in the
critical plane which is one of the octahedral planes.
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4.2. Criterion of the sum of elastic and plastic strain energies

Leis [13] assumed that under multiaxial proportional fatigue loading and fatigue
combined with creep, the total internal strain energy
Ur = J.Gidei_i (36)
eycle

is the parameter influencing failure up to the crack initiation stage.
The integral of Eq. (36) has been evaluated, and the following simple general
form of damage parameter has been proposed

Ut =SwmAe +AsAg (37)
where s, = equivalent mean stress, Ae; = range of total equivalent strain and
As = range of equivalent stress are defined as

) 3 12

Sm = [Ecmi_icmu j (38)
5 12

Aep = (%AEHAE,; ] (39)
3 12

Agz(;—AGjiAGij ] (40)

The energy term Uy consists of volume and shear strain energies, and contains
elastic and plastic components. The criterion also includes components of mean
SLICSSES O

Under uniaxial fatigue with the mean stress o, the Leis damage parameter
agrees  with  the experimental damage parameter proposed by
Smith-Watson-Topper [43], i.e.

A€
Ut = Oiax "7_ . (4 l)

4.3. Criterion of the sum of elastic strain energy under tension and plastic energy
of effective strain

This criterion is a developed form of the Ellyin [12] approach. It was assumed
by Ellyin and Goto$ [14], [15], [18] that the damage parameter is a special form
of energy AW/, equal to the sum of elastic strain energy in the interval of
positive stresses in a cycle AW and plastic strain energy AW" which can be
written as
AW = AWer + AWr (42)
where
AWer = Jci_ide;‘i =AWp + AWy =
cyc]c (43)

I+v A2 _I+v_, I—2v
Tcn\:\,\i_iglnnxij = — sk = 3E Ciax +

5
Y maxkk
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1-n"  _ _
AWP = |o;del = |s;del = AGAE” . (44)
. L
cycle cycle

Here szlxij = Gni_i +* 0-mi_j,
n’ = the cyclic strain hardening exponent, and
G ., = the maximum value of the effective stress, calculated similarly to AG of
Eq. (21).

For symmetric cycles, when stress mean values are equal to zero, energy
AW = ¢, AW, =0; and AWy = ¢y, according to Eq. (3).
The fatigue criterion formulated by Ellyin et al. is now being improved [19],
[44], [45]; its one form is
AW =y (p)N¢ +c(p) (45)

where x(p) and c(p) are functions of the axial/tangential strain ratio p [19], [45],
i.e.

x(p)=ap+b, (46)

c(p)zep+f s 47)
where a,b,e and f are material constants.
In [19] we can find versions of Egs. (46) and (47) which include non-zero mean
values of strains, ¥ (p, €y) and ¢ (p, €y). In [46], [47] Goto$ and Eshtewi have
presented another version of functions y (p, ©,) and ¢ (p. ©,) where non-zero
mean values of stresses are taken into account.

4.4. Criterion of the geometric mean of normal and shear strain energies

Itoh et al. [28] have proposed the energy parameter for correlating the non-
proportional fatigue lives. The energy parameter is represented by

E — \/(Acmnx . Aenm,\‘ )2 + (A’tmux ) AYmux ) (48)

In this equation, AGuux and A€mx are the maximum normal stress and strain

2

ranges, and AT and Ay are the maximum shear stress and strain ranges.
4.5. Criterion of the effective total strain energy

Under cyclic loading, Park and Nelson [30] distinguish four components of

strain energy density
W =AW{ + AW + AWD + Wi (49)

where AW and AW¢ are variable plastic and elastic deviatoric strain energies,
respectively, and AWh and AW} are variable and static (or mean) volumetric

strain energies, respectively.
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The first term of Eq. (49) is defined as

AW = [sydel, (50)
cycle
and the second one as
Asi Aef 1+
AW =250 70 TV A A 51)
2 2 4E '

The volumetric strain energy AW" is used to correct plastic energy term AW
by means of a triaxial factor for stress state TF,, and an effective plastic
distortion strain energy parameter W, is defined as

W = 2K(TR-D . AW, (52)
where the constant k; may be determined from two sets of test data with
different stress states, for instance uniaxial and torsional data or uniaxial and
equibiaxial data.
The triaxial factor, TF,, characterizes different stress states by the following
expression

TFS = (G] + 02 +63)u i (53)

Seq

where s, is the equivalent deviatoric stress amplitude defined as

2 12
Sey :(EASUASH j : (54)

and the subscript a refers to amplitude of stress.
To introduce mean stresses, the elastic energy term AW! is modified by the
static strain energy W{ , and an effective elastic distortion strain energy
parameter W¢ is defined as follows

W = 2k2THn . AWY (55)
where TF,, represents a triaxial factor for mean stresses and k, is a constant.
The triaxial factor, TF,, is represented by the ratio of sum of mean principal
stresses and the equivalent deviatoric stress amplitude s, from (54) as

TE, = (C1+02+0G3)m (56)

Seq

where the subscript m refers to mean values.
The constant, k, in Eq. (55) may be determined from fully-reversed (TF,, = 0)
and zero-to-maximum (TF,, = |) uniaxial fatigue data. Finally, the relation for
the effective total strain energy parameter W vs fatigue life Ny can be written
as

Wy =We +W; = A'N¢* + B'NY' (57)
where the constants A*, B* o* and B* can be expressed as follows using
uniaxial fatigue properties and cyclic stress-strain curve data (see Eq. (30))
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22b+|(| +V)(G}‘ )3

= 3E o
o’ =2b (59)
B* =2b+c+1ci-ei-(z;i) (60)
B =b+c (61)

4.6. Strain energy criteria in the critical plane

Under different combinations of proportional and non-proportional tension-
compression Socie [48] described multiaxial fatigue, and he used the uniaxial
Smith-Watson-Topper [43] model written in the form

O max % i (_G];—);(ZNt )Zb = G{ E? (2N1 )bﬂ: (62)

This means that the energy parameter influences only the fatigue fracture plane,
and that energy on other planes may be omitted. The Smith-Watson-Topper
(SWT) parameter includes elastic and plastic energies of the normal strains on
the critical plane which is the plane with the maximum range of normal strains;
it also includes the mean stresses of a cycle, 6, (Gyux = O, + G,). More detailed
observations of crack initiation and growth under cyclic tension-compression
and torsion [48], [49] give additional arguments for the importance of the SWT
parameter in the description of multiaxial fatigue of materials which fail
according to Mode I.

Nitta, Ogata and Kuwabara [23] used energy fatigue parameters connected with
the fracture plane for approximating the results obtained from fatigue tests
under proportional and non-proportional torsion with tension. The tests were
carried out for seven ratios of the controlled strain ranges Ay /Ae and five phase
displacements between those strains.

Under proportional loading, for the strain ratio Ay / Ae < 1.7, the fracture planes
agreed with the plane suffering the maximum range of normal strain Ag,
(Mode I), and the energy term

1
AE) =—A01Ae: = AN (63)

was a suitable fatigue parameter. When the strain ratio was Ay/ Ae > 1.7, the
fracture planes agreed with the plane of maximum range of shear strain, AYuux
(Mode II), and energy in that plane was calculated from

AE> = ATpux AYmax = BN7¢ (64)
Under non-proportional loading, the fatigue damage was influenced by both
crack types. The following equation for calculating the number of cycles to
fracture seemed to be useful



82 EWALD MACHA

1 1 |
S Tl =
Nt'ou Nf] Nt"Z
where Ny, Np, Ny, are the numbers of cycles to fracture for the first (Mode 1 —
Eq. (63), second (Mode II — Eq. (64)) and mixed types of cracking, respectively.
Under a 7y and € phase shift of m/2 the fracture planes were perpendicular to the
specimen axis and the energy terms were calculated from

(65)

1
AE, = ;AGAE (66)

AE» = ATAY (67)
For the other phase shifts (1/6, ©/4 and 1/3) the fracture planes coincided with

the planes of the maximum range of shear strain Ay,,x and for this condition the
energy was calculated as

1
AE, ZEAG“AE., (68)

AE> = ATimax AYmax (69)
where AG, and Ag, are the ranges of normal stress and strain in the plane of
AYmax, respectively.

If under uniaxial fatigue the equivalent energy is defined as product of normal
stress and strain ranges

fou

I
ABeq = AGuAtey = AN (70)

then Eq. (65) can be transformed and we obtain

X

AEq, =| (AE, Ve +[%jA(AEz)%- (71)

From Eq. (71) it appears that the equivalent energy (elastic and plastic) in the
fracture plane is a nonlinear function of the energy associated with the normal
and shear strains.
For multiaxial proportional loading, Hoffman and Seeger [49] suggest the
application of the SWT parameter written as
P=+Eoce. (72)

where 6 =0, + Ou.
whereas fatigue damage of a material is better described by the maximum
amplitude of strain €;,. The modified form of the parameter

P =4/GT¥maxa (73)
should be used when fatigue damage of the material is better described by the
maximum amplitude of shear strain Yuux.. Thus, the authors suggest that only the
energy (elastic and plastic) associated with the normal strain (Eq. (72)) in the
plane of maximum normal strain, or only the shear strain energy (Eq. (73)) in
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the plane of maximum shear strain, should be assumed as the fatigue damage
parameter.
Chu et al. [50] proposed another damage parameter, namely the specific work of
shear and normal stresses in the critical plane

Cswr = 2T Ya + (G )y (€0 ), (74)
This can be treated as a development of the SWT approach [43]. The factor of 2
was assumed in order to include the same participation of work under simple
shearing and simple tension. The plane in which the parameter Cqwr reaches its
maximum value, is the critical plane.
Liu [21] proposes the virtual strain energy (VSE) in the critical fracture plane as
a parameter to describe multiaxial fatigue under proportional and
nonproportional cyclic loading

AT, A
AW = AW, + AW, = AG,Ae, + ~2Tn (75)
where:
AW, =Ac,Ae,  (normal strain energy in the critical plane) and,
AT, A . . -
AW, = i (shear strain energy in the same critical plane).

Each of the above energies include elastic, AW, and plastic, AW, energies. The
position of the critical fracture plane depends on the material, temperature,
strain range and loading history. Under uniaxial loading the energy, term AW
agrees with the energy formulated by the SWT parameter and can be expressed
with the Manson-Coffin-Basquin characteristic of fatigue failure behaviour as
follows

AW = AW, + AW, = AGAe = 4&’%(2N,- V' +4cter N ). (76)

Liu [21] considered thin-walled cylindrical specimens under a combination of
proportional torsion and tension cracked according to Modes I and II. For Mode
II, the crack driven along the surface of the specimen is defined as type A, and
the crack acting through the thickness of the specimen is defined as type B. For
materials cracking according Mode I we have

AW =AW, =(AW,)  +AW, = (AG.Ae, ), + %. (717)
For Mode II and type A we obtain )
AW = AWji4 = AW, + (AW, ), .. = AG.AE, + [%) , (78)
and for Mode Il and type B we have -
AW = AWy = AW, + (AW,), . = Ac.Ag, + (-M—?A-Y—] : (79)

If the critical plane of cracking is defined according to Mode I, then in Eq. (77)
the maximum value of the normal strain energy (AW,),ux should be assumed. In



84 EWALD MACHA

the case of Mode II, we assume the maximum values of shear strain energy
(AW )max 1n Egs. (78) and (79). We should remember that in spite of the same
symbols in Egs. (78) and (79) the strain ranges Ag,, Ay, and the stress ranges
Ao, and At, are determined in different ways. For calculation of strain and
stress ranges we use €, €3, 0}, 03 in Eq. (78) and ¢, €, 6;, 0, in Eq. (79), where
€ 2 & 2 &; and 0; 2 0, 2 3. Maximization of one term of strain energy in Egs.
(77) to (79) allows for a precise selection of the critical fracture plane when
directions of strains and stresses with maximum ranges do not coincide.

For uniaxial loading we have

AW = AW = AW, (80)
For pure torsion of thin-walled cylindrical specimens we obtain
AW = AWp = AWjia (81)

Liu also proposes a way of determining the VSE parameters under non-

proportional histories of strains (i.e. out-of-phase) and noted as AW, and AW,
Glinka et al. [17] used energy (elastic and plastic) associated with the normal
and shear strains in the critical plane for description of multiaxial symmetric
proportional loading. Their energy parameter

W :EE.*_EH

2 2 2 2

is the sum of normal and shear strain energies in the critical plane, which is the
plane of the maximum shear strain.
Assuming the notation used in [17], we can write the criterion presented as
Eq.(82) as

(82)

W= T T
A HA ’ A ) A § (83)
0 PRB L 5008 PEN 4 2 W
2 2 2 2
Thus, shear strain energy
A A
W, = 021 A&y (84)
2 2

in the critical plane 2—1 is summed with coefficient 2 (see Eq. (83)).

To consider the occurrence of both mean, normal and shear stresses in the
cycles Gy and Gupy, Glinka et al. [S1], [52] have modified the Eq. (83) as
follows

_ Aoy Aya I + l =2W,, : + : (85)
z 2

O max22

W B

O max21 O max22 O max21

] 0 8 l /7 l v 4
Tt Of T4 Of

1

The modification consists in resignation in damage parameter (85) from the
normal strain energy density W, in the critical plane (with the maximum
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amplitude of shear strain), whereas two material parameters ¢’yand T and the
maximum normal  stress  Guw22 =Om» +AG» /2 and shear  stress
Omax2l =|Om21 +AC>) /2! or IOmz] —AGC» /2’ are introduced from which the

larger G.x2; should be used.
Recently, Pan et al. [27], to improve correlation of some experimental data, have
made next modification of Eq. (83) by including two weight constants
H) =o0; /1 and Ha =y /¢€; for stress and strain amplitudes, respectively. The
modified parameter is

ACH) AYZ]

AG» A€
we =202 Oy, S0 D82
2 2 2 2

To simulate the stress-strain relationship for multiaxial loading, Pan et al. used
the endochronic constitutive equations.

Lately, Varvani-Farahani and Topper [29] have proposed the energy parameter
in the critical plane for non-proportional and mean loading. This parameter

versus the fatigue life f(Ny) is defined as

(86)

] I+ G’f
—'—IAGn Agu + i : ATmux A ’Ym“x =f (Ni ) (87)
Ofr&r TrYr 2

This parameter contains the sum of the normal strain energy range, Ac,Ag,,
and the shear strain energy range, ATmuA(Ymax /2), calculated for the critical
plane on which both strain and stress Mohr’s circles are the largest while
loading (at the angle 8,) and unloading (at the angle 6,) of a cycle. The normal
and shear strain energies in this parameter have been weighted by the tensile
(o1,€¢) and shear (tr,Yyr) fatigue properties, respectively.

The correction for mean loading is based on the mean normal stress applied to
the critical plane.

max min

Gm = n n (88)

The range of the maximum shear strain and the corresponding normal strain
range on the critical plane are calculated as

A(Ynmx ]:(81 —E ] +[£1 - ] (89)
2 2 2
01 02

Ag,,:(8'+83] +[8|+83] (90)
2 (1] 2 92

where € =€, >¢€; are the principal strains. Similarly, the range of the
maximum shear stress and the corresponding normal stress range are calculated

as
M =(0‘ _0"] +(6' o) 1)
2 o1 2

cn = /62
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C, +0, G, +0,
A, =|——— | #|—— (92)
2 2
8, 0,

where 6, 26, =205 are the principal stresses,
Some general form of energy based critical plane damage parameter for both
proportional and non-proportional multiaxial cyclic loading with mean values
has been also proposed by Rolovic and Tipton [25]. Here, failure is defined as
the development of an engineering size crack (approximately 1 mm in surface
length) after Ny cycles. Their criterion can be expressed in a general form as

[Tu + fl (Gn )}Y;l + [Gn.u & fZ (Gn )knﬂ = t‘,(N| ) (93)

where T, and 7, are the maximum shear stress and strain amplitudes on the
critical plane, respectively, ¢,, and €,, are the maximum normal stress and
strain amplitudes on the critical plane, respectively and o, is the normal (static
and cyclic) stress on the critical plane.

The first term of the left side of Eq. (93) represents Mode II crack loading
modified by a function f(G,) to account for the crack closure effects. The
second term of the left side of Eq. (93) accounts for Mode I crack loading
modified by another function f(c,). The right side of Eq. (93) is a function
f3(Ny) of the uniaxial strain life relation.

The critical plane can be determined on the basis of the maximum damage
parameter or the observed material cracking behaviour.

For experimental verification, the following specific form of general criterion
has been used

(Tn = 0-361\ )’Yil +Onmux€na = (GI;)_ (2Nl )2b +0Or€r (2Nl )h+c (94)

where G, is the normal stress on the critical plane at the same moment as v,, and
Onmax 18 the maximum normal stress on the critical plane during a cycle. Both
normal (Mode I) and shear (Mode 1) crack loading are incorporated in the
model.

5. Energy parameter in the multiaxial random stress state

The random strain and stress tensors have been described as six-dimensional
stationary and ergodic Gaussian processes with the wide-band frequency spectra
and zero-expected values. Lagoda et al.[53] have defined the energy parameter
for uniaxial random loading which distinguishes the strain energy density for
tension (positive) and the strain energy density for compression (negative) as
follows

W(t):%G(t)~€(t)sgn[0(t)‘£(t)] (95)
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where o(t) and £(t) are random stress and strain, respectively and sgn(x,y) is the
two-argument logical function, sensitive to signs of variables x and y. The
logical function is defined as

1 when sgn(x) =sgn(y) =1
0.5 whenx=0andsgn(y)=1ory=0andsgn(x)=1
sgn(x,y)=49 O when sgn(x) =-sgn(y) (96)

-0.5 when x=0and sgn(y)=-1ory=0and sgn(x)=-1

-1 when sgn(x) = sgn(y) =-1

Later Lagoda and Macha [54] generalized some known energy criteria of
multiaxial cyclic fatigue to the random loading. The proposed generalized
energy criterion is based on the selected components of specific work of stress
on the strains in the critical plane.

5.1. Generalized criterion of maximum shear and normal strain energy density on
the critical plane

It is assumed that

(1) Fatigue fracture is caused by that part of strain energy density which
corresponds to the specific work of normal stress ,,(t) on normal strain g,(t)
1.e. Wy (t) and specific work of shear stress T,(t) on shear strain €,,(t) acting
in the s direction, on the plane with a normal T, i.e. Wy(t).

(2) The direction s in the critical plane (the expected fracture plane) coincides
with the mean direction of the maximum shear strain energy density
Wnsmnx“)

(3) In the limit state that conforms to the fatigue strength, the maximum value
of combined Wy (t) and W,(t) energies under multiaxial random loading
satisfies the following equation

mlax{BWm(t)wLKW,,(t) }=Q (97)

where B = constant for a particular form of Eq. (97), x and Q = material
constants determined from sinusoidal fatigue tests.

The left side of Eq. (97) can be written as max,{ W(t)}, and should be interpreted
as the 100% quantile of the random variable W. If the maximum value of W(t)
exceeds the value of Q, then damage will accumulate resulting in fracture. The
random process W(t) can be interpreted as a stochastic process of the fatigue
strength of a material. The positions of the unit vectors 1 and s are determined
with use of one of the following procedures: weight functions method, variance
method or damage accumulation method [55].

A choice of constants B, k and Q in Eq. (97), together with the assumed position
of the critical plane, leads to particular cases of the generalized criterion. Three
special cases are considered here.
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5.2. Criterion of maximum normal strain energy density in the critical plane

If =0, k=1and Q =W, (fatigue limit under tension-compression expressed
by normal strain energy density) and if we assume that the unit vector 7
coincides with the mean direction along which the maximum normal strain
energy density Wy .(t) occurs, i.e.

T =lyi+ 1y j+higk (98)
then criterion (97) becomes

max{ Wiy (1)} = W 99)
where
in,ﬁ]n,ﬁn = mean direction cosines of 7 in relation to the constant system of
axes Oxyz,
i-, ],E = versors of the axes 0x,y,z.
The equivalent strain energy derived from criterion (99) is as follows

Weq (1) = Wi (1) = ‘ljon (D)en () sgn[oy (V),eq(1)] (100)

where ©,(t) and g,(t) are normal stress and strain in the critical plane
respectively, i.e.

01 (0)= T30 (0)+ 0, (0)+ 01, (1) + 210y 1)+ (101)
2’l\nnn0x7_(t)+21%1116116)’2(t)’
en(1)= 13 e (0)+ 3 £y ()+ A3 £ (1) + 210 £ (1) + (102)

+ 21y iy € (£)+ 2101y €42 (1)

If under proportional multiaxial sinusoidal loading we assume that normal stress
and normal strain having the maximum amplitudes act along the axis x, i.e.
Oxx (1) = Ouxx SINOOL Exx (1) = Euxx SIN O (103)

and further if we assume Tn =1, then according to Egs. (99) — (102), we obtain
1 =
max EGxx(t)gxx(t)sgn[cxx(t),gx,\(t) J _G\\xgx\\ —Wn (]04)
t

This result leads to the energy parameter used by Socie, Eq. (62), based on the
idea of Smith-Watson-Topper [43] and to the criterion proposed by Nitta, Ogata
and Kuwabara, Eq. (63) for Mode I. Thus, criterion (99) is a generalization of
the mentioned energy criteria, applied under cyclic loading.
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5.3. Criterion of maximum shear strain energy density on the critical plane

For B=4/(1+v), (v - Poisson’s ratio), Kk = 0 and Q = W,; we assume that the
critical plane with normal M is determined by the mean position of one of two
planes on which the maximum shear strain energy acts. On this plane we choose
a direction s coincident with the mean position along which the energy
Wismax(t) OCeurs, i.e.

S =1+ M.+ .k (105)
where L,ﬁls,ﬁs are mean direction cosines of S in relation to the axes Oxyz.
Under the above assumptions, the criterion (97) becomes

4
max{——W,]x(t)} =W (106)
toI+v
The equivalent strain energy density derived from criterion (1006) is as follows
4 2
Weq (1) = ——Wis (1) = ——Tys (D€ns (1) sgN[Tys (), Ens (1)] (107)
1+v I+v
where
Tns (t)= Tqiszx (t) <k ITA]”I%lgny(t) + I?lul’:lstz(t) + Z’inr’hscxy(t) + (]08)
+ 217150 (1) + 2y Gy, (1)
Ens (1) = Ty 1€ xx (1) + g M€y (1) + AnfisEys (1) + 21 o (1) +
ns (1) =1 () + myms€yy (1) N (t) \ y (1) (109)

+ 2l A8z (1) + 2My M€y ()
In the case of proportional multiaxial sinusoidal loading when the normal stress
and strain having the maximum amplitudes act along the x axis and the normal
stress and strain with minimum amplitudes act along the z axis, i.e.

Oxx (1) = Cuxx SINAOL €45 (1) = Eaxx SINOL; (110)
GZZ([):GM‘ZS“] ot 87«2([):8:\7.7_ sin wt;
and when
A~ l R ) ]
l = = T :O, n= ;s
n «/5 my, ny «/5 .
A l R ) ]
| =, ms =0, e = ———.
then, according to Eqgs. (106)—(111) we obtain
4 2
max Wi (1) p = max ——‘Tn,\(t)gqx(t)Sgn[’[‘]_\.([)’gns([)]} —

2 Ouxx — Oazz Eaxx — €azz I
. = == — = Tamax Yamax = W:lf
1+v 2 2 I+v
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Strain energy density expressed by Eq. (112) is also applied in the criterion
proposed by Nitta, Ogata and Kuwabara for Mode II under cyclic loading
(Eq. (64)). Thus, criterion (106) is a generalization of the next energy criterion
applied under cyclic loading.

5.4. Criterion of the maximum shear and normal strain energy density on the
critical plane — case I

For B = 2(1+v), x = 2/(1-v) and Q =W, we assume, as in the above section, that
the critical plane with normal M is determined by the mean position of one of
two planes on which the maximum shear strain energy acts. On this plane, the

direction s 1is coincident with the mean position along which the energy
Wis max(t) occurs — see Eq. (105).

The general criterion (97) now has the following form

.
max{ L Wi (£) + %Wn(t)} = Wyr (113)
R Y I—-v

From criterion (113) we can derive the equivalent strain energy density as

2 2
Weq(t) S W]]x(t) + —Wﬂ (t) =
1 I+v 1-v | (114)
= —Tns (t)gns (t)SgI][T1]s (t): 8115(t)] + On (t)gn (t) Sgn [Gﬂ (t)’gn (t)]
1+v I-v

where Tys(t), €ns (1), on(t) and g,(t) are expressed by Eqgs. (108), (109), (101),
(102) respectively.

Under multiaxial sinusoidal in-phase loading and on the assumption as in the
previous section — see Eqs. (110) and (111) — from Eqs. (113) and (114) it
follows that

t

2 2
axd —=—W._ (t) + —— W, (t) b=
mx{mv (075 ”(}

1 |
= m;‘lx{l Ty Tng (t)gng (t)sgl][T]]s (t)vgns (t)] + :Gn (t)gn (t)sgn[gn (t)gn (t)} =

]

=7 +LG
2(1+v)

a max YZI max an
l—v

€ W;lf

an —

(115)
where G,, and €, are amplitudes of normal stress and strain on the plane of the
maximum shear stress and strain amplitudes Tyx and Yamax, respectively.

The strain energy density in Eq. (115) is also assumed by Liu, Eq. (78) or (79),
in his virtual strain-energy parameter (VSE) under in-phase cyclic loading for
Mode II fracture (for B = x = 1).
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Thus, the criterion (113) is a generalization of the energy criterion formulated
by Liu [21] to the range of random loading. Moreover, it is possible to prove
that for B = 2 and x = I the criterion (113) is a generalization of the energy
criterion proposed by Glinka, Shen and Plumtree, Eq. (82) for cyclic loading.
Further cases of this criterion may be defined by the choice of another position
of the critical plane. The position is determined by the given values of the

~

direction cosines l,,m,,f,(n=mn,s) of the unit vectors M and § occuring in

the fatigue criteria. The following three methods of determination of the
expected critical plane position are proposed:

a) The method of weight function, presented in [55], consists in averaging the
random values of angles o, (t), Bu(t), Ya(t), determining instantaneous positions
of the principal strain/stress axes position in relation to the constant system of
Oxyz axes with use of a special weight functions.

b) The method of damage accumulation, presented in [55]. Here the fatigue
damage is accumulated on the all possible planes. Next, the plane on which
damage is maximum is selected. Thus, we obtain not only direction of the
expected critical plane, but the fatigue life as well.

¢) The method of variance maximum. It is the method the most often applied so
far. It gives good results when the stress and strain criteria are applied [55],
[56]. Here, in the method of variance it is assumed that the planes in which
equivalent strain energy density variance according to the chosen criterion
reaches its maximum are critical for the material.

6. Some further considerations

The criteria based on elastic strain energy can be used for fatigue under a high
number of cycles to fracture (HCF), while the criteria based on plastic strain
energy are more appropriate for a low number of cycles to failure (LCF). The
criteria based on the sum of plastic and elastic strain energies can be applied for
both LCF and HCF.

In the group of criteria based on elastic strain energy, a criterion involving the
average strain energy in the period of a cycle and within a material volume for
HCEF, as proposed by Palin-Luc and Lasserre [36], should be mentioned because
it takes into account stress and energy gradients under uniaxial and multiaxial
loading.

The advantage of this criterion is that it is sensitive to different stress
distributions in circular section bars under tension and under bending as well as
to the different energy distributions under plane bending and rotary bending
when the stress distributions are the same [36].

The criteria based on plastic strain energy include the models formulated by
Lefebvre et al., Eq. (20), Garud, Eq. (27) and Chen et al., Eqs. (30) and (31). In
the first two models, there are only plastic strains, and it has been shown that in
these criteria, strain energy is not the plastic energy from all the stress state
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components in a cycle, but it is only the energy associated with the critical
plane. That new interpretation of the models supports the energy-based critical
plane approach to multiaxial fatigue. The critical plane energy criteria for a
tensile-type failure, Eq. (30), and for a shear-type failure, Eq. (31), have been
proposed and verified only for LCF [26]. Thus, we may suppose that their
authors consider only plastic strains and neglect small elastic ones. Since on the
right sides of Eqs. (30) and (31) there are also terms representing the elastic
energy of strains, we can expect that the criteria could be useful for both LCF
and HCF.

The largest group of criteria is based on the sum of elastic and plastic strain
energy densities. The first Ellyin proposals presented in 1974 concentrated on
the shear strain energy Wy (see Eq. (32)), and were only theoretical in nature.
Later Ellyin and Kujawski modified Eq. (32) and obtained energy V¥ (Eq. (34)
which was experimentally confirmed for some materials.

Other modifications by Ellyin and Goto$ assumed a specific form of energy AW'
(Eq. (42)) which is the sum of the elastic strain energy in the positive stress
range of the cycle AW and the plastic strain energy AW’. In comparison with
Egs. (32) and (34), the modifications are more complex, because the energy
AW*" includes the normal and the shear strain energy density, Eq. (43). It should
be emphasised that the plastic strain energy AW" is equal to the area of the
effective stress-strain hysteresis loop, Eq. (44).

The models by Ellyin and Gotos, Eq. (42), and Park and Nelson, Eq. (49) are
based on the same plastic energy of effective strain AW» = AW . In the model

by Park and Nelson, Eq. (49), there is, however, the double value of elastic
energy comparing with the model by Ellyin and Gotos, Eq. (42), i.e.
AWE =2AWe+ [14], [15], [18], [30]. Further differences between these models
are connected, among others, with the approach to influence of the mean
stresses.

The Leis model given as Eq. (36) includes the normal and shear strain energy
Ut with the elastic and plastic parts, and hence contains most of the energy
components. However, from a theoretical point of view, the Leis model
overestimates damage in relation to those parameters based on the energy in the
critical plane. Since the models were verified in some tests, we may expect that
in the calculation of the total or only the partial (in the critical plane) plastic
strain energy, the assumed form of the constitutive equations relating the
amplitudes of cyclic stress and plastic strain (especially under non-proportional
loading) plays a very important role.

According to the model by Itoh et al., Eq. (48), the equivalent strain energy
reduced to uniaxial state of stress is non-linear function of normal and shear
strain energies.

With respect to energy criteria associated with the critical plane, the models
proposed by Socie (see Eq. (62)) when o, = 0 and G, = O, and the energy
Omx€, or Nitta et al., Eq. (63) and the energy AE,, or Hoffman and Seeger,
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Eq. (72) and the energy P, then these approaches concern the same normal strain
energy in the plane corresponding to Mode I cracking, and are based on the
concept of the SWT parameter. The proposals by Nitta et al. Eq. (64), and
energy AE,, the Hoffman and Seeger proposals, Eq. (73), and energy P, and
Glinka et al., Eq. (85), and energy W*, they concern the same shear strain
energy in the v, plane and correspond to Mode II cracking.

The advantage of the models formulated by Chu, Eq. (74) and energy Cswr, Liu,
Eq. (75) and energy AW, Glinka et al., Eq. (83) and energy W*, Pan et al., Eq.
(86), Varvani-Farahani and Topper, Eq. (87), and Rolovic and Tipton, Eq. (93),
is that they include two kinds of energy in the damage parameter; the normal
strain energy AW, and shear strain energy AW,, in the critical plane.

Comparing these models, we notice that the participation of these energies in
the damage parameter is different. Under symmetric loading, in Chu’s model we
have Cswr = AW + 4W,,, in Liu’s model AW = AW, + AW,,, and in the
Glinka et al. model there is W* = AW, + 2AW,,, in Pal et al. model
W*=H H>,AW,, + AW,,, in Varvani-Farahani and Topper’s model
AW, + H:AW,, (where H; =constant) and in the Rolovic and Tipton model

AW, + 2AW,,. Therefore, we can see that the individual participation of

energies AW, and AW,y in the Glinka et al. model is the same as in the Relovic

and Tipton model.

If we now consider these interpretations of the damage parameter for the

symmetric cycles in which

e the plastic effective strain energy, which is equivalent to the plastic shear
strain energy on the octahedral plane, At,.Ag,.." (see Eq. (26)), or

e the sum of two from nine areas of the closed stress-strain hysteresis loops,
which is equal to the sum of the plastic normal and shear strain energies in
the x-y plane AW," + AW, (see Eq. (29) for Hg=1), or

e the elastic and plastic shear strain energy, which is equal to the elastic and
plastic shear strain energy in the octahedral plane Wy (see Eq. (32) and ¥ in
Eq. (34)),

then it will be noticed that those criteria involving the strain energy in the

critical plane dominate in the description of multiaxial fatigue and that is why

we may accept them as being the most promising criteria. They are shown in

Table 1.

Also the generalized criterion of maximum shear and normal strain energy

density for multiaxial random loading, Eq. (97). is based on the critical plane.

To extend energy approach to random fatigue, it was necessary to introduce a

new definition of the energy parameter for distinguishing positive and negative

signs in history of specific work of stress on strain along the chosen direction.

This new damage parameter has made it possible to generalize some energy

criteria of multiaxial cyclic fatigue to the random loading.

The mean stress effects in energy criteria are formulated in a different manner.

In the group of criteria based on the elastic strain energy, we can calculate the
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mean equivalent stress Opeq, 1N a manner similar to the amplitude of the
equivalent stress O,eq, from Eqs. (2), and (6) and then calculated the transformed
(enlarged) amplitude G,er of the cycle with a zero mean value according to one
of the relationships o, versus o, (for example Goodman [57], Marin [58], Troost
and El-Magd [59] applicable to uniaxial loading. The mean shear stress T,, in the
criterion of elastic shear strain energy in the critical plane @ (Eq. (7)) is treated
in a similar way. The mean stresses in those energy criteria are included as in
the stress based criteria of multiaxial fatigue failure. The criterion proposed by
Palin-Luc and Lasserre, Eq. (19), concerns symmetric cycles with zero mean
values.

In the criteria based on plastic strain energy there is a lack of information as
how to involve the mean value of stresses in Eqs. (20), (27), (30) and (31)
proposed by respectively Lefebvre et al., Garud and Chen et.al. It is known that
mean stresses usually relax in the regime of LCF.

Table 1.
The criteria of multiaxial cyclic fatigue including the strain energy density in the critical plane

Range of
application

HCF and LCF

The criterion proposed by Kind of energy

I. [ Ellyin [12] (1974) clastic and plastic shear strain cnergy in

the octahedral plane, Eqgs. (32) and (34)

2 Macha [22] (1979) clastic shear strain cnergy in the plane of | HCF
maximum shear stress, Eq. (7)
3. | Garud [16] sum of plastic energies ol normal and | LCF

(a particular case Hg= 1) | shear strains in the critical plane, Eq. (29)

(1981)

4. Smith, Watson and HCF and LCF

clastic and plastic cnergies of normal

Topper [42], (1970)
Socie [47] (1987)

strain in the planc of maximum range of
normal strain, Eq. (62)

5. Letebvre, Neale and plastic energy of the shear strain in the | LCF
Ellyin [20] (1988) octahedral plane, Eq. (26)
6. Nitta, Ogata and i) elastic and plastic encrgies of normal | HCF and LCF
Kuwabara [23] (1989) strain in the planc of maximum range of
normal strain Eq. (63), or
ii) clastic and plastic cnergies of shear
strain in the plane of maximum range of
shear strain Eq. (64)
T Smith, Watson and i) elastic and plastic cnergies of the [ HCF and LCF

Topper [42], (1970)
Hoffman and Seeger [48]
(1989)

normal strain in the planc of maximum
normal strain Eq. (72)

i) elastic and plastic energies of the
shear strain in the plane of maximum shear
strain Eq. (73)
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W

8. | Chu, Conle and Bonnen | sum of energies (clastic and plastic) of | HCF and LCF
[49] (1993) normal and shear strains in the critical
planc (with the maximum sum of both
energies), Eq. (74)

9. | Liu[21](1993) sum of cnergies (clastic and plastic) of | HCF and LCF
normal and shear strains in the critical
planc (with maximum value of one
component ol energy, according to Mode |
or Mode 1), Eq. (75)

10. | Glinka, Shen and sum of energices (elastic and plastic) of the | HCF and LCF
Plumtree [17] (1995) normal and shear strains in the plane of
maximum shear strains, Eq. (82)

11. | Chen, Xu and Huang (i) sum of plastic energics of normal and | LCF
[26] (1999) shear strains in the maximum normal strain

plane, Eq. (30)
(ii) sum of plastic encrgies of normal and
shear strains in the maximum shear strain
plane, Eq. (31)

12. | Pan, Hung and Chen [27] | sum of cnergics (elastic and plastic) of | HCF and LCF
(1999) shear and weighted normal strains in the
plane of maximum shear strains. Eq. (86)

13. | Rolovic and Tipton[25] sum of cnergics (clastic and plastic) of | HCF and LCF
(1999) normal and shear strains in the critical
plane (with maximum sum of both
energies  or the obscrved  cracking
behaviour of the material), Eq. (93)

14. | Varvani-Farahani and sum of weighted encrgies (elastic and | HCF and LCF
Topper [29] (2000) plastic) of normal and shear strains in the

critical plane (on which the stress and
strain Moh'r circles are the largest during
the loading and unloading parts of a
cycle). Eq. (87)

As for the criteria based on the sum of elastic and plastic strain energy, the mean
value of stresses has been included in the models of Ellyin and Kujawski, Eq.
(34), Leis, Eq. (36), Ellyin and Golos, Eq. (42), Park and Nelson, Eq. (57),
Socie, Eq. (62), Hoffman and Seeger, Eqs. (72) and (73), Glinka et al., Eq. (85),
Varvani-Farahani and Topper, Eq. (87) and Rolovic and Tipton. Eq. (93). In the
energy models of Itoh et al., Eq. (48), Nitta et al., Eqgs. (63), (64) and (71), Chu
et al., Eq. (74), Liu, Eq. (75), Glinka et al., Eq. (82), Pan et al., Eq. (86) and in
the model for multiaxial random loading, Eq. (97), their authors did not say how
to take into account the mean stress effects. From the above specification it
appears that the role of mean stresses in the energy criteria requires further
experimental evidence, especially under random loading.

Some of the energy criteria discussed in this paper are also effective under non-
proportional loading. Here we could mention the parameters proposed by Palin-
Luc and Lasserre, Eq. (19), Garud, Eq. (27), Chen et al., Egs. (30) and (31), Itoh
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et al., Eq. (48), Park and Nelson, Eq. (57), Socie, Eq. (62), Nitta et al., Eq. (71),
Chu et al., Eq. (74), Liu, Eq. (63), Varvani-Farahani and Topper, Eq. (87),
Rolovic and Tipton, Eq. (93) and the generalized criterion of maximum shear
and normal strain energy on the critical plane, Eq. (97). There is no
experimental evidence for the application of other criteria under
non-proportional loading.

It 1s observed that in HCF regime the crack initiation period is dominating and
the propagation time is very short in the total fatigue life of typical structural
materials. In LCF regime, the initiation and propagation times are comparable.
The discussed energy criteria concern only the crack initiation. As for the
propagation time, the calculation should be based on a separate group of criteria
for multiaxial fatigue, using elements of fracture mechanics [2], [3], [4], [5], [6],
[71, [8], [9]. At present, it is not easy to say how to apply the discussed criteria
in practice for real structures. First of all, the experimental verification, using
complex components stressed under multiaxial random load-time histories, is
necessary. We must also pay attention to the material used, because —
depending on the nature of the material (ductile, semi-ductile or brittle) —
different failure processes and mechanisms must be taken into account. The
generalized criterion of maximum shear and normal strain energy density in the
critical plane seems to be the most useful in engineering practice. This criterion
should be developed, and the mean stresses, stress concentration, non-stationary
loading and external factors (for instance, corrosion, high or low temperature)
should be taken into account.

7. Conclusions

1. From the review of known energy criteria of multiaxial cyclic fatigue failure
it appears that they can be divided into three groups when assuming the
strain energy density per cycle as the damage parameter. They are:

a) criteria based on elastic energy for high-cycle fatigue,

b) criteria based on plastic energy for low-cycle fatigue,

¢) criteria based on the sum of elestic and plastic energies for high- and
low-cycle fatigue.

2. The proposed criterion of multiaxial random fatigue failure is based on the

new definition of energy parameter which distinguishes both positive and

negative signs in history of specific work of stress on strain along the
chosen directions in critical fracture plane.

From laboratory tests it appears that the criteria that do not include all the

strain energy, but only the components connected with the critical fracture

plane dominate in the energy description of multiaxial fatigue, and that is
why we may accept them as being the most promising criteria.

4. At present it is not possible to recommend one criterion for application in
industry. Therefore, experimental verification using complex-shaped

W
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components subjected to multiaxial random load-time histories and different
environments is necessary.

The generalized criterion of maximum shear and normal strain energy
density in the critical plane seems to be the best for application in practice.
It should be developed, and mean stresses, stress concentration and non-
stationary loading as well as external factors such as corrosion, high or low
temperature should be taken into account. It is also necessary to consider the
material used, because its kind (ductile, semi-ductile, brittle) influences
different failure processes and mechanisms.

The paper realized within the research project 7 TO7B 018 18, partly finanse by
the Polish State Research Commitee in 2000-2002.

(3]

(4]

(5]

(6]

(71

(10]

Manuscript received by Editorial Board. October 24, 2000:
final version, November 30, 2000.

REFERENCES

Garud Y.S.: Multiaxial Fatigue: a Survey ol the State of the Art. Journal of Testing and
Evaluation, 1981, Vol. 9, No. 3, pp.165+178.

Ellyin F., Valaire B.: Development of Fatigue Failure Theories for Multiaxial High Strain
Conditions. Solid Mechanics Archives. 1985, Vol.10. pp. 45+83.

Multiaxial Fatigue. K.J. Miller and M.W. Brown (Eds.). ASTM STP 853. American Society
for Testing and Materials, West Conshohcken. PA. 1985.

Biaxial and Multiaxial Fatigue. M.W. Brown and K.J. Miller (Eds.), EGF Publication 3,
Mechanical Engineering Publications, London, 1989.

Fatigue under Biaxial and Multiaxial Loading. K.J. Kussmaul. D.L. McDiarmid and D.F.
Socie (Eds.), ESIS Publication 10, London 1991.

Multiaxial Fatigue and Deformation Testing Techniques. S. Kallui and P.J. Bonacuse
(Eds.). ASTM STP 1280, American Society [or Testing and Materials, West Conshohocken,
PA, 1993.

Advances in Multiaxial Fatigue. D.L. McDowell and R. Ellis (Eds.). ASTM STP 1191,
American Society for Testing and Materials. West Conshohocken, PA, 1993.

Proceedings of the Fifth International Conference on Biaxial/Multiaxial Fatigue
and Fracture. E. Macha and Z. Mréz (Eds.). Technical University of Opole, Poland,
1997.

Socie D.F., Marquis G.B.: Multiaxial Fatiguc. Socicty of Automotive Engineers,
Warrendale. PA, 2000.

Andrews R.M., Brown M.W.: Elevated Temperature Out-of-phase Fatigue Behaviour of a
Stainless Steel, in: Biaxial and Multiaxial Fatigue EGF (ESIS) Publication 3, M.W. Brown
and K.J. Miller (Eds.). MEP, London, pp. 641+658.



98

EWALD MACHA

(1]

(18]

(191

(20]

(21]

(23]

(27]

Curioni S., Freddi A.: Energy-Based Torsional Low-Cycle Fatigue Analysis, Fatigue under
Biaxial and Multiaxial Loading. ESIS Publication 10, K.F. Kussmaul, D.L. McDiarmid and
D.F. Socie (Eds.), MEP, London 1991, pp.23+33.

Ellyin F.: A Criterion for Fatigue under Multiaxial States of Stress. Mechanics Research
Communications, 1,4, 1974, pp.219+224.

Leis B.N.: An Energy-Based Fatigue and Creep-Fatigue Damage Parameter. Trans. ASME
JPVT, 99, 1977, pp.524+533.

Ellyin F.: Cyclic Strain Energy as a Criterion for Multiaxial Fatigue Failure, in: Biaxial and
Multiaxial Fatigue. EGF (ESIS) Publication 3, K.J. Miller and M.W. Brown (Eds.), MEP,
London 1989, pp. 571+583.

Ellyin F., Golo$ K.: Multiaxial Fatigue Damage Criterion. Trans. ASME JEMT. 110, 1988,
pp.63+68.

Garud Y.S.: A New Approach to the Evaluation of Fatigue under Multiaxial Loadings.
Trans. ASME JEMT 103, 1981, pp.113+125.

Glinka G., Shen G., Plumtree A.: A Multiaxial Fatigue Strain Energy Density Parameter
Related to the Critical Fracture Plane. Fatigue Fract. Engng. Mater. Struct. 18(1), 1995,
pp. 37+64.

Golos K.: An Energy Based Multiaxial Fatigue Criterion. Engineering Transactions 36.1,
Polish Academy of Sciences, 1988, pp. 55+63.

Gotos K.. Osinski Z.: Multiaxial Fatigue Criterion under Proportional Loading Including
Mean Strain Effect. Fourth Int. Conf. on Biaxial/Multiaxial Fatigue, St Germain en Laye
(France), May 31 = Junc 3, 1994, Vol.Il, pp. 303+315.

Lefebvre D., Neale K.V., Ellyin F.: A Criterion lor Low-Cycle Fatigue Failure under
Biaxial States of Stress. Trans. ASME JEMT, 1988, pp.103, 1-6.

Liu K.C.: A Method Based on Virtual Strain-Energy Parameters for Multiaxial Fatigue Life
Prediction, Advances in Multiaxial Fatigue. ASTM STP 1191, D.L. McDowell and R. Ellis
(Eds.), American Society for Testing and Materials. Philadelphia, 1993, pp.67+84.

Macha E.: Mathematical Models of Fatigue Lile of the Materials under Random Complex
Stress. Scientific Papers of Inst. of Materials Science and Tech. Mechanics, Technical
University of Wroclaw, No.41. Series: Monographs No. 13, Wroclaw 1979 (in Polish).
Nitta A., Ogata T., Kuwabara: Fracture Mechanisms and Life Assessment under High-Strain
Biaxial Cyclic Loading of Type 304 Stainless Steel. Fatigue Fract. Engng. Mater. Struct.
12(2), 1989, pp.77+92.

Macha E., Sonsino C.M.: Energy Criteria of Multiaxial Fatigue Failure. Fatigue Fract.
Engng. Mater. Struct., Vol. 22, 1999, pp.1053+1070.

Rolovic R., Tipton S.M.: An Energy Based Critical Plane Approach to Multiaxial Fatigue
Analysis. Fatigue and Fracture Mechanics: Twenty —Ninth Volume. T.L. Panontin and
S.D. Shepard (Eds.), ASTM STP 1332, American Society for Testing and Materials. West
Conshohocken, PA, 1999, pp. 599+613.

Chen X., Xu S., Huang D.: A Critical Planc — Strain Encrgy Density Criterion for
Multiaxial Low-Cycle Fatigue Life under Non-proportional Loading. Fatigue Fract. Engng.
Mater. Struct., Vol.22, 1999, pp.679+686.

Pan W.F., Hung C.Y.. Chen L.L.: Fatigue Life Estimation under Multiaxial Loadings. Int. J.
Fatigue, Vol.21, 1999, pp. 3=10.



A REVIEW OF ENERGY-BASED MULTIAXIAL FATIGUE FAILURE CRITERIA 99

(38]

[41]

[43]

Itoh T., Sakane M., Ohnami M.: Proc.Conf. on Matcrials and Mechanics, No. 917-71,
Vol. B, Japan Society of Mechanical Engincers, 1991, pp. 425+427.

Varvani-Farahani A., Topper T.H.: A New Energy-Critical Plane Parameter for Fatigue Life
Assessment of Various Metallic Materials Subjected to In-Phase Multiaxial Conditions.
IntJ. Fatigue , Vol.22, 2000, pp.295+305.

Park J., Nelson D., Evaluation of an energy-based approach and a critical plane approach for
predicting constant amplitude multiaxial fatigue life, Int. J. Fatigue, Vol. 22, 2000,
pp- 23+39.

Findley W.N.: Combined Stress Fatiguc Strength of 78S-T61 Aluminium Alloy with
Superimposed Mean Stresses and Corrections for Yielding. NACA-TN-2924, Washington,
1953.

Rotvel F.: Biaxial Fatigue Tests with Zero Mcan Stresses Using Tubular Specimens, Int. J.
Mech. Sci., 12(7), 1970, pp.597+613.
Sines G.: Failure of Materials under Combined Repeated Stresses with Superimposed Static

Stresses. NACA-TN-3495, Washington, 1995.

Majors H., Mills D.D., McGregor C.W.: Fatigue under Combined Pulsating Stresses.
J. Appl. Mech., 1949, pp.269+276.

Marin J: Interpretation of Fatigue Strengths for Combined Stresses. Proc. Int. Conf. on
Fatigue of Metals, Inst. Mech. Eng., London 1956, pp. 184+194.

Palin-Luc T., Lasserre S.: High Cycle Multiaxial Fatigue Energetic Criterion Taking into

Account the Volumic Distribution of Stresses. Proc. 5™ Int. Conf. on Biaxial/Multiaxial
Fatigue and Fracture, E.Macha and Z.Mrdz (Eds.). TU Opole, Poland, 1997 Vol. 1,
pp. 63+79.

Chen X., Gao A., Abel A., Wu S.: Evaluation of Low Cycle Fatigue under Nonproportional
Loading. Fourth Int. Conf. on Biaxial/Multiaxial Fatigue. St Germain en Laye (France).
May 31-June 3, 1994, Vol. I, pp. 283+292.

Tipton S.M., Fash J.W.: Multiaxial Fatigue Life Predictions of the SAE Specimen Using
Strain Based Approaches, Multiaxial Fatigue: Analysis and Experiments, AE-14, G.E.Leese
and D.Socie (Eds.), Society of Automative Engincers. Inc. Warrendale, USA, 1989,
pp. 67+80.

Shukayev S.N.: Biaxial Low Cycle Fatigue of Titanium Alloys and 08X18H10T Stainless
Steel. Fatigue’96. Proc. Sixth Int. Fatigue Congress. Berlin 1996, Vol. 11, pp. 977+982.
Shukayev S.N.: Criteria for Limiting Condition of Metal Alloys under Biaxial Low-Cycle
Fatigue. Proc. 5" Int. Conf. on Biaxial/Multiaxial Fatiguc and Fracture, E.Macha and
Z.Mréz (Eds.), TU Opole, Poland, 1997 Vol I, pp. 207+220).

Kazantsev A.G., Makhutov N.A:: Low-Cycle Fatigue ol Anisotropic Steel under
Nonproportional Loading. Proc. 3" Int. Conf. on Biaxial/Multiaxial Fatigue and Fracture,
E. Macha and Z. Mréz (Eds.), TU Opole, Poland, 1997, Vol. I, pp.125+139.

Ellyin F.. Kujawski D., A Multiaxial Fatigue Criterion Including Mean-Stress Etfect,
Advances in Multiaxial Fatigue. ASTM STP 1191, D.L.McDowell and R.Ellis (Eds.),
American Society for Testing and Materials, Philadelphia, 1993, pp. 55+66.

Smith K.N., Watson P., Hopper T.H.: A Stress-Strain Function for the Fatigue of Metals.
Journal of Materials, 5(4), 1970, pp. 767+776.



100

EWALD MACHA

[44]

[45]

[46]

(47

(48]

(49]

[50]

(51]

[52]

(53]

[54]

(53]

(56]

(57

[58]

[59]

Ellyin F., Golos K.. Xia Z.: In-phase and Out-of-phase Multiaxial Fatigue. Trans. ASME
JEMT, 113(1), 1991, pp. 112+118.

Ellyin F., Xia Z.: A General Fatigue Theory and its Application to Out-of-Phase Cyclic
Loading. Trans. ASME JEMT, 115(4), 1993, pp. 411+416.

Golos K.: Multiaxial F'atigue Criterion with Mean Stress Effect. Int. I.Pres. Ves. and Piping
69, 1996, pp. 263+2606.

Golos K.M.. Eshtewi S.H.: Multiaxial Fatigue and Mcan Stress Effect of St5 Medium
Carbon Steel. Proc., 5" Int. Conf. on Biaxial/Multiaxial Fatigue and Fracture, E. Macha and
Z. Mréz (Eds.), TU Opole, Poland. 1997. Vol. I, pp. 25+34.

Socie D.F.: Multiaxial Fatigue Damage Models. Trans. ASME JEMT. 109, 1987,
pp. 293+298.

Hoffman H., Seeger T.: Stress-Strain Analysis and Life Predictions of a Notched Shaft
under Multiaxial Loading, Multiaxial Fatigue: Analysis and Experiments. AE-14, G.E.Leese
and D.Socie (Eds.), Society of Automotive Engineers. Ins. Warrendale, USA, 1989,
pp. 81+99.

Chu C.C, Conle F.A,, .Bonnen J.J.: Multiaxial Stress-Strain Modelling and Fatigue Life
Prediction of SAE Axle Shafts, Advances in Multiaxial Fatigue. ASTM STP 1191,
D.L.McDowell and R.Ellis (Eds.), American Socicty for Testing and Materials,
Philadelphia, 1993, pp. 37+54.

Glinka G., Wang G.. Plumtree A.: Mecan Stress Effects in Multiaxial Fatigue, Fatigue Fract.
Engng. Mater. Struct. 18 (7/8), 1995, pp. 755+764.

Liebster T.D., Glinka G.: Multiaxial Fatigue Life Prediction Methods for Engineering
Components, in: Reliability Assessment of Cyclically Loaded Engineering Structures.
R.A. Smith (Ed.), Kluver Acad. Publ., 1997, pp.101+136.

Lagoda T.. Macha E.. Bedkowski W.. A Critical Planc Approach Based on Energy
Concepts:  Application to Biaxial Random Tension-Compression High-Cycle Fatigue
Regime. Int. J. Fatigue, Vol.21, 1999, pp. 431+443.

Lagoda T., Macha E.: Multiaxial Random FFatiguce of Machine Elements and Structures. Part
[1I: Generalization of the Energy Criteria of Multiaxial Cyclic Fatigue to Random Loading,
Studies and Monographs 104, Technical University of Opole, 1998 (in Polish).

Macha E.: Simulation Investigations of the Positions of Fatigue Fracture Plane in Materials
with Biaxial Loads. Mat.-wiss.u.Werkstofltech., 1989, 20. Helt 4/89, pp. 132+136, Heft
5/89, pp.159+164.

Lagoda T., Macha E.. Dragon A.. Petit I.: Influence of Correlation between Stresses on
Calculated Fatigue Life on Machine Elements. Int.J.Fatigue, 18, 8, 1996, pp. 547+555.
Goodman J.: Mechanics Applied to Engincering. Longmans Green and Co., 9" Edition,
New York 1954.

Marin J.: Interpretation of Fatigue Strength for Combined Stresses. Proc. Int. Conf. on
Fatigue of Metals, Inst. Mech. Eng., London, 1956. pp 184+194.

Troost A.. El. Magd: General Formulation of Fatigcue Strength Amplitude in the

Representation of Haigh. Materialprufung 17(2), 1975, pp.47+49 (in German).



A REVIEW OF ENERGY-BASED MULTIAXIAL FATIGUE FAILURE CRITERIA 101

Przeglad energetycznych kryteriow wieloosiowego zniszczenia zmeczeniowego

Streszezenie

Praca zawiera przeglad energetycznych kryteriow wicloosiowego zniszezenia zmgezeniowego
w warunkach cyklicznego i losowego obcigzenia. Kryteria odnoszgce si¢ do cyklicznego
obcigzenia podziclono na trzy grupy. zaleznic od rodzaju gestosct energii odksztaleenia na cykl.
ktérag przyjmuje si¢ jako parametr uszkodzenia. Sy to: a) kryteria oparte na cnergii sprezystej
odksztalcenia dla zmgczenia wysokocyklowego. b) kryteria oparte na energii plastycznej
odksztalcenia dla zmg¢czenia niskocyklowego oraz ¢) kryteria oparte na sumie energii sprezystej i
plastycznej dla zmgczenia wysoko- i niskocyklowego. Kryterium dotyczace losowego obciazenia
jest oparte na nowej definicji parametru encrgetyveznego. ktory odrdznia dodatnie i ujemne znaki w
historii pracy wlasciwej napre¢zenia na odksztaleceniu w wybranych kierunkach krytycznej
plaszczyzny zlomu. Kryteria. ktore uwzgledniaja gestos¢ energii odksztalcenia w plaszczyznie
krytycznej. dominuja w cnergetycznym opisic zmeczenia wicloosiowego. Podano parametry
zalezne od obcigzen oraz czynniki zalezne od rodzaju materialu.  decydujace o wyborze
plaszczyzny krytycznej. Omoéwiono modele matematyczne kryteriow. a nastgpnie wyrdzniono te,
ktore uwzgledniaja wplyw napr¢zen sSrednich 1 gradientéw  naprezen. oraz  obcigzenia
proporcjonalne i nieproporcjonalne. Zwrdcono uwage. ze  najblizsze potrzebom obliczen
inzynierskich jest uogolnione kryterium gestosci energii maksymalnego odksztaleenia normalnego
i stycznego w plaszezyznie krytycznej i nalezy je nadal rozwijac i weryfikowac.





