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Stability analysis and design of state estimated
controller for delay fuzzy systems with parameter

Nizar HADJ TAIEB, Mohamed Ali HAMMAMI and François DELMOTTE

This paper deals with the problem of stabilization by an estimated state feedback for a family
of nonlinear time-delay Takagi-Sugeno fuzzy parameterized systems. The delay is supposed to be
constant where the parameter-dependent controls laws are used to compensate the nonlinearities
which are formulated in terms of linear matrix inequalities (LMIs). Based on the Lyapunov-
Krasovskii functionals, global exponential stability of the closed-loop systems is achieved. The
controller and observer gains are able to be separately designed even in the presence of modeling
uncertainty and state delay. Finally, a numerical example is given to show the applicability of
the main result.
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1. Introduction

Takagi-Sugeno (T-S) fuzzy model-based control has received considerable
attention in recent years since it allows the parallel distributed compensation
concept and linear matrix inequality (LMI) techniques to be systematically ap-
plied to complex non-linear systems. T-S fuzzy model-based control can also
be used to solve the output feedback control problem. The overall fuzzy model
of the system is achieved by smoothly blending the local linear models together
through the membership functions. Then, based on this fuzzy model, the control
design is worked out by taking full advantage of the strength of modern linear
control theory. Such models can approximate exactly a wide class of nonlinear
systems. Hence it is important to study their stability or the synthesis of stabi-
lizing controllers in the case of systems [2–5, 7, 20, 21, 25]. Since time delays
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frequently appear in many practical systems, such as chemical processes, and
telecommunication systems, the control problem for time-delay systems has re-
ceived considerable attention [1, 8, 9, 16]. While there is an extensive literature
on this topic most of the reported studies focus on linear time-delay systems
due to the difficulty of the stability analysis and controller design. The rela-
tive existing literature on the technique can be roughly divided into three types:
static output feedback control [12], dynamic control [6], and observer-based con-
trol [14,18,24]. In [15], the authors studied the problem of sampled data control
for a class of Takagi-Sugeno fuzzy systems with actuator saturation. Therefore,
fuzzy observer-based control is the most popular scheme because the state vari-
ables can be reconstructed by a T-S fuzzy observer. In our recent paper [10],
under the fact that both the estimator dynamics and the state feedback dynamics
are stable we propose a separation principle for Takagi-Sugeno fuzzy control sys-
tems with Lipschitz nonlinearities. The considered nonlinearities are Lipschitz
or meets an integrability condition which have no influence on the LMI to prove
the stability of the associated closed-loop system.
In this paper, we investigate the problem of global stabilization of a class of

nonlinear time-delay Takagi-Sugeno fuzzy parameterized systems with constant
delay. We use the parallel distributed compensation concept to propose state and
output feedback controllers depending on a parameter. Therefore, we use appro-
priate Lyapunov-Krasovskii functionals to establish global exponential stability
of the closed-loop systems. Then, the exponential stability conditions are derived
and converted to solving linear matrix inequality (LMI) problems. Based on the
developed novel LMI algorithms, the controller and observer gains are able to
be separately designed even in the presence of modeling uncertainty and state
delay.
The rest of this paper is organized as follows. In Section 2, some preliminary

results are summarized and the system description is given. Main results are
stated in Section 3. First, parameter-dependent linear state and output feedback
controllers are synthesized to ensure global exponential stability of the nonlinear
time-delay system. Then, a simulation result that reflects the effectiveness of the
proposed approach is given in Section 4.

2. Takagi-Sugeno fuzzy delayed system

Exact mathematical models of most physical systems are difficult to obtain,
because of the existence of complexities and uncertainties. However, the dynamics
of these systemsmay include linear or non linear behaviors for small rangemotion.
Lyapunov’s linearization method is often implemented to deal with the local
dynamics of nonlinear systems and to formulate local linearized approximation.
That is, the complex system can be divided by a set of local mathematical models.
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Takagi and Sugeno have proposed an effective means of aggregating these models
by using the fuzzy inferences to construct.

2.1. Preliminaries and system description

Consider the following time-delay system:

¤𝑥 = 𝑔(𝑥, 𝑥(𝑡 − 𝜏)),
𝑥(𝜃) = 𝜙(𝜃), 𝜃 ∈ [−𝜏, 0], (1)

where 𝜏 > 0 denotes the time delay and 𝜙 ∈ C is the initial function, where C
denotes theBanach space of continuous functionsmapping the interval [−𝜏, 0] →
R𝑛 equipped with the supremum-norm:

‖𝜙‖∞ = max
𝜃∈[−𝜏,0]

‖𝜙(𝜃)‖ .

‖.‖ being the Euclidean-norm. The map 𝑔 : R𝑛 → R𝑛 is smooth and satisfies
𝑔(0, 0) = 0. The function segment 𝑥𝑡 is defined by 𝑥𝑡 (𝜃) = 𝑥(𝑡 + 𝜃),m 𝜃 ∈ [−𝜏, 0]

Definition 1 [23] The zero solution of system (1) is said to be globally expo-
nentially stable with a decay 𝜎 > 0, if there exists a positive real 𝛽 such that, for
any initial condition 𝜙 ∈ C, the following inequality holds:

‖𝑥(𝑡)‖ ¬ 𝛽‖𝜙‖∞𝑒−𝜎𝑡 ; for all 𝑡 ­ 0.

Sufficient conditions for stability of time-delay systems are provided by the the-
ory of Lyapunov-Krasovskii functionals [9], a generalization of the classical
Lyapunov theory of ordinary differential equations [13]. The following theorem
gives sufficient conditions to ensure that the origin of system (1) is globally
exponentially stable [23].

Theorem 1 If there exist positive numbers 𝜆1, 𝜆2, 𝜚 and a continuous differen-
tiable functional 𝑉 : C → R+ such that:

𝜆1‖𝑥(𝑡)‖2 ¬ 𝑉 (𝑥𝑡) ¬ 𝜆2‖𝑥𝑡 ‖∞, (2)

¤𝑉 (𝑥𝑡) + 𝜚𝑉 (𝑥𝑡) ¬ 0, (3)

then, the zero solution of (1) is globally exponentially stable with the decay
rate 𝜎.
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2.2. Design of fuzzy control system

The T-S fuzzy model is given by:
Rule 𝑖 : If 𝑧1(𝑡) is 𝐹𝑖1 and 𝑧2(𝑡) is 𝐹𝑖2 ... and 𝑧𝑝 (𝑡) is 𝐹𝑖𝑝, then

¤𝑥 = 𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝑓̃𝑖 (𝜀, 𝑥, 𝑥(𝑡 − 𝜏), 𝑢), 𝑖 = 1, ..., 𝑟 (4)
where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the control input vector, 𝐴𝑖 (𝑛, 𝑛)
constant matrix, 𝐵𝑖 (𝑛, 𝑚) matrix control input and the functions 𝑓̃𝑖 represent the
delayed perturbations of each fuzzy subsystem and depends on a small parameter
𝜀 for 𝑖 = 1, ..., 𝑟 . 𝐹𝑖 𝑗 is the fuzzy set ( 𝑗 = 1, 2, ..., 𝑝), 𝑧(𝑡) =𝑇 (𝑧1(𝑡), ..., 𝑧𝑝 (𝑡)) is
the premise variable vector associated with the system states and inputs and 𝑟 is
the number of fuzzy rules. Center of gravity defuzzification yields the output of
fuzzy system:

¤𝑥 =

𝑟∑︁
𝑖=1

𝑤𝑖 (𝑧) (𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝑓̃𝑖 (𝜀, 𝑥, 𝑥(𝑡 − 𝜏), 𝑢))

𝑟∑︁
𝑖=1

𝑤𝑖 (𝑧)
,

where 𝑤𝑖 (𝑧) =

𝑝∏
𝑗=1

𝐹𝑖 𝑗 (𝑧 𝑗 ) and 𝐹𝑖 𝑗 (𝑧 𝑗 ) denotes the grade of the number ship

function 𝐹𝑖 𝑗 , corresponding to 𝑧 𝑗 (𝑡).
Let 𝜇𝑖 (𝑧) be defined as:

𝜇𝑖 (𝑧) =
𝑤𝑖 (𝑧)
𝑟∑︁
𝑖=1

𝑤𝑖 (𝑧)
.

Then the fuzzy system has the state-space form:

¤𝑥 =
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝑓̃𝑖 (𝜀, 𝑥, 𝑥(𝑡 − 𝜏), 𝑢)

)
.

Clearly,
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧) = 1

and
𝜇𝑖 (𝑧) ­ 0 for 𝑖 = 1, ..., 𝑟 .

The following assumption is made regarding the T-S fuzzy system: The pairs
(𝐴𝑖, 𝐵𝑖), 𝑖 = 1, ..., 𝑟 are controllable. That is, the nominal fuzzy system is locally
controllable.
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Based on this assumption, a state feedback control gain 𝐾𝑖 can be obtained by
pole placement design or Ackerman’s formula, such that each local dynamics is
stably controlled. The representation of the global control input matrix, denoted

by B, is in the form: 𝐵 =

𝑟∑︁
𝑖=1

𝜇𝑖𝐵𝑖. This means that the global control input matrix

dominates the control performance. The design of the fuzzy controller can be
taken as a linear state feedback control can defined as:

Rule 𝑖 : If 𝑧1(𝑡) is 𝐹𝑖1 and 𝑧2(𝑡) is 𝐹𝑖2 ... and 𝑧𝑝 (𝑡) is 𝐹𝑖𝑝, then

𝑢(𝑡) = −𝐾𝑖𝑥(𝑡), 𝑖 = 1, 2, ..., 𝑟,

where 𝐾𝑖 is the local state feedback gain. Consequently, the defuzzified result is:

𝑢(𝑡) = −
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐾𝑖𝑥(𝑡).

In the sequel, we will consider a fuzzy system with nonlinearities taken as:

𝑓̃𝑖 (𝜀, 𝑥, 𝑥(𝑡 − 𝜏), 𝑢)) = 𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥(𝑡 − 𝜏), 𝑢(𝑡))

and an output 𝑦 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥, 𝑦 ∈ R𝑞 and 𝐶𝑖 has an appropriate dimension.

𝐷𝑖 (𝜀) is a diagonal matrix which depends on 𝜀. Taking 𝑦̂ defined by

𝑦̂ =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥.

In this case, an observer can be designed which has the form:

¤̂𝑥 =
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧) (𝐴𝑖𝑥 + 𝐵𝑖𝑢) − 𝐿 (𝑦 − 𝑦̂) .

We wish to find a gain matrix 𝐿 such that the error 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) converge
exponentially to zero as 𝑡 goes to infinity. We assume that the following rules are
given concerning the observer of each subsystem.

Rule 𝑙 : If 𝑧𝑖 (𝑡) is 𝐹𝑖1 and 𝑧2(𝑡) is 𝐹𝑖2 ... and 𝑧𝑝 (𝑡) is 𝐹𝑖𝑝, then

¤̂𝑥 =
(
𝐴𝑖𝑥 + 𝐵𝑖𝑢

)
−𝐿𝑖 (𝑦 − 𝑦̂), 𝑖 = 1, 2, ..., 𝑟 .
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It suffices to take 𝐿 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐿𝑖. So,

¤̂𝑥 =
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧) (𝐴𝑖𝑥 + 𝐵𝑖𝑢) −
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐿𝑖 (𝑦 − 𝑦̂) .

The stability of the closed-loop fuzzy system is not guaranteed by its construction
where the conception of observers for fuzzy systems are important when we wish
to control systems using the an estimated controller which is available via an
observer design. Now, in order to prove a result of stabilization by means of an
observer one can summarize this fact by the following assumptions on thematrices
(𝐴𝑖; 𝐵𝑖;𝐶𝑖), the fact that (𝐴𝑖; 𝐵𝑖) are controllable and (𝐶𝑖; 𝐴𝑖) are observable for
𝑖 = 1, 2, ..., 𝑟 . The state-feedback gain 𝐾𝑖 and the state-observer gain 𝐿𝑖 can be
obtained by formulating a synthesis tool based on some LMIs.
The aim of this paper is to design an estimated state feedback to stabilize

the origin of the following time-delay perturbed fuzzy system depending on a
parameter:

¤𝑥(𝑡) =
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧) (𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥(𝑡 − 𝜏), 𝑢(𝑡))) ,

𝑦(𝑡) =
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥(𝑡),
(5)

where 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is the control input, 𝑦 ∈ R𝑞 is the output 𝜏 is
a positive known scalar that denotes the time delay affecting the state variables
and 𝜀 > 0 is a parameter. 𝑟 ­ 2 is the number of If-then rules, and 𝐹𝑖 𝑗 are the
fuzzy sets ( 𝑗 = 1, ..., 𝑝). 𝑧1, ..., 𝑧𝑝 are the premise variables which are supposed
to be measurable. We set 𝑧 = [𝑧1, ..., 𝑧𝑝].

It is assumed that 𝜇𝑖 (𝑧) ­ 0, for all 𝑖 = 1, ..., 𝑟 and
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧) = 1, for all 𝑡 ­ 0.

The matrices 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 are of appropriate dimension and the perturbed term

𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥(𝑡 − 𝜏), 𝑢(𝑡)) =
[
𝑓𝑖1 (𝜀, 𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑢(𝑡)),

..., 𝑓𝑖𝑛 (𝜀, 𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑢(𝑡))
]𝑇
,

where for all 𝑖 ∈ {1, ..., 𝑟} and 𝑗 ∈ {1, ..., 𝑛} the function 𝑓𝑖 𝑗: R∗+×R𝑛×R𝑛×R𝑚→ R
are smooth such and satisfy the following assumption:

A1 : There exist function 𝛾𝑖1 (𝜀) > 0 and 𝛾𝑖2 (𝜀) > 0 such that
‖𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑢(𝑡))‖ ¬ 𝛾𝑖1 (𝜀)‖𝑥(𝑡)‖ + 𝛾𝑖2 (𝜀)‖𝑥(𝑡 − 𝜏)‖.
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Remark 1 Let 𝐷𝑖 (𝜀) the following diagonal matrix:

𝐷𝑖 (𝜀) = diag
[
1
𝑛
,
𝜀

𝑛
, ...,

𝜀𝑛−1

𝑛

]
.

One can see that if there exist 𝛾𝑖1 (𝜀) > 0 and 𝛾𝑖2 (𝜀) > 0, such that,

𝑛∑︁
𝑗=1
𝜀 𝑗−1 𝑓𝑖 𝑗 (𝑥, 𝑥(𝑡 − 𝜏), 𝑢) ¬ 𝛾𝑖1 (𝜀)

𝑛∑︁
𝑗=1
𝜀 𝑗−1 |𝑥𝑖 | + 𝛾𝑖2 (𝜀)

𝑛∑︁
𝑗=1
𝜀 𝑗−1 |𝑥𝑖 (𝑡 − 𝜏) |

then,

‖𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑢(𝑡))‖ ¬ 𝛾𝑖1 (𝜀)‖𝑥(𝑡)‖ + 𝛾𝑖2 (𝜀)‖𝑥(𝑡 − 𝜏)‖.

Many published results, concerning the control of the fuzzy system, are based
on the parallel distributed compensation (PDC) principle [17, 19, 22]. The fuzzy
system is assumed to be locally controllable. The design of the fuzzy controller
shares the same antecedent as the fuzzy system and employs a linear state feedback
control in the consequent part. The controller is defined as:

𝑢 = −
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐾𝑖𝑥 , (6)

where 𝐾𝑖 ∈ R𝑛×𝑚 is the gain matrix.
In this paper, we will give time-delay independent conditions to ensure global

exponential stabilization of the nonlinear time-delay system (5) under Assump-
tion A1. We will use the parallel distributed compensation to propose a state
controller and an output feedback controller. Therefore, we will develop linear
matrix inequalities (LMIs) conditions. Indeed, it is worth noting that numerous
results on the stabilization of the nonlinear system (5) proposing linear matrix in-
equality conditions were developed when the nonlinearities satisfies some linear
growth condition or it is Lipschitz [10, 11].
Throughout the paper, the time argument is omitted and the delayed state

vector 𝑥(𝑡−𝜏) is noted by 𝑥𝜏. 𝐴𝑇 means the transpose of 𝐴. 𝜆max(𝐴) and 𝜆min(𝐴)
denote the maximal and minimal eigenvalue of a matrix 𝐴, respectively and 𝐼 is
the matrix identity.

3. Main results

In order to stabilize the fuzzy system by a state estimated feedback law, we
first prove a result of stabilization and we consider a fuzzy observer based a
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fuzzy controller. It is well-known that for linear systems the combination of a
stabilizing state feedback and an observer yields a stabilizing estimated feedback
controller. This is known as the separation principle. However as the considered
fuzzy system is nonlinear, it is not known whether the separation principle holds.
Note also that this separation principle is not more available if we consider a TS
model with uncertainties.

3.1. Global exponential stabilization

The state feedback controller is given by (6). Thus, the closed-loop system is

¤𝑥 =
𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖 (𝑧)𝜇 𝑗 (𝑧)
(
(𝐴𝑖 − 𝐵𝑖𝐾 𝑗 )𝑥 + 𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥𝜏, 𝑢)

)
=

𝑟∑︁
𝑖=1

𝜇2𝑖 𝐺𝑖𝑖𝑥 + 2
∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗𝐺𝑖 𝑗𝑥 +
𝑟∑︁
𝑖=1

𝜇𝑖𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥𝜏, 𝑢), (7)

where
𝐺𝑖𝑖 = 𝐴𝑖 − 𝐵𝑖𝐾𝑖

and
𝐺𝑖 𝑗 =

1
2
(
𝐴𝑖 − 𝐵𝑖𝐾 𝑗 + 𝐴 𝑗 − 𝐵 𝑗𝐾𝑖

)
.

Theorem 2 Suppose that (A1) hold and there exist symmetric and positive def-
inite matrices 𝑃 and positive constants 𝜀, 𝜎 such that the following inequalities
hold,

𝐺𝑇𝑖𝑖𝑃 + 𝑃𝐺𝑖𝑖 ¬ −𝐼, 𝑖 = 1, ..., 𝑟,

𝐺𝑇𝑖 𝑗𝑃 + 𝑃𝐺𝑖 𝑗 ¬ −𝐼, 1 ¬ 𝑖 < 𝑗 ¬ 𝑟,

and
𝑃 < 𝑎(𝜎, 𝜀)𝐼,

where

𝑎(𝜎, 𝜀) = 1
2𝜀
min

(
1

2𝜎 + 2𝛾1(𝜀) + 𝛾2(𝜀)
,
𝑒−2𝜎𝜏

2𝛾2(𝜀)

)
,

𝛾1(𝜀) =

𝑟∑︁
𝑖=1

𝛾𝑖1 (𝜀) and 𝛾2(𝜀) =

𝑟∑︁
𝑖=1

𝛾𝑖2 (𝜀), then the fuzzy closed-loop system

(7)−(6) is globally exponentially stable.
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Proof. Let us choose a Lyapunov-Krasovskii functional candidate as follows:

𝑉 (𝑥𝑡) = 𝑥𝑇𝑃𝑥 +
1
2𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑥(𝑠 + 𝑡)‖2d𝑠. (8)

First, it is easy to see that

𝑉 (𝑥𝑡) ¬ 𝜆max(𝑃)‖𝑥‖2 +
1
2𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑥𝑡 (𝑠)‖2d𝑠

¬ 𝜆max(𝑃)‖𝑥𝑡 ‖2∞ + 1
2𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑥𝑡 ‖2∞d𝑠

¬
(
𝜆max(𝑃) +

1
4𝜎𝜀

)
‖𝑥𝑡 ‖2∞

and
𝑉 (𝑥𝑡) ­ 𝜆min(𝑃)‖𝑥(𝑡)‖2.

Thus condition (2) of Theorem 1 is satisfied with

𝜆1 = 𝜆min(𝑃) and 𝜆2 = 𝜆max(𝑃) +
1
4𝜎𝜀

.

One can see that by using the change of variable 𝑢 = 𝑡 + 𝑠 one gets

0∫
−𝜏

𝑒2𝜎𝑠‖𝑥(𝑠 + 𝑡)‖2 =
𝑡∫

𝑡−𝜏

‖𝑥(𝑢)‖2d𝑢.

Therefore, the time derivative of 𝑉 (𝑥𝑡) along the trajectories of system (7) is

¤𝑉 (𝑥𝑡) =
𝑟∑︁
𝑖=1

𝜇2𝑖 𝑥
𝑇
(
𝐺𝑇𝑖𝑖𝑃 + 𝑃𝐺𝑖𝑖

)
𝑥 + 2

𝑟∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗𝑥
𝑇
(
𝐺𝑇𝑖 𝑗𝑃 + 𝑃𝐺𝑖 𝑗

)
𝑥

+ 2𝑥𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥𝜏, 𝑢) +
1
2𝜀

‖𝑥‖2

− 𝑒−2𝜎𝜏

2𝜀
‖𝑥𝜏‖2 − 𝜎

𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑥(𝑠 + 𝑡)‖2d𝑠.
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On the one hand, we have

𝑥𝑇 (𝐺𝑇𝑖𝑖𝑃 + 𝑃𝐺𝑖𝑖)𝑥 ¬ −‖𝑥‖2, 𝑖 = 1, 2, ..., 𝑟,

and
𝑥𝑇 (𝐺𝑇𝑖 𝑗𝑃 + 𝑃𝐺𝑖 𝑗 )𝑥 ¬ −‖𝑥‖2, 1 ¬ 𝑖 < 𝑗 ¬ 𝑟.

It follows that,

¤𝑉 (𝑥𝑡) ¬ −‖𝑥‖2
𝑟∑︁
𝑖=1

𝑟∑︁
𝑖=1

𝜇𝑖𝜇 𝑗 + 2𝑥𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥𝜏, 𝑢)

+ 1
2𝜀

‖𝑥‖2 − 𝑒−2𝜎𝜏

2𝜀
‖𝑥𝜏‖2 − 𝜎

𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑥(𝑠 + 𝑡)‖2d𝑠.

Since,
𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖𝜇 𝑗 = 1,

then,

¤𝑉 (𝑥𝑡) ¬ −‖𝑥‖2 + 2𝑥𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥𝜏, 𝑢) +
1
2𝜀

‖𝑥‖2 − 𝑒−2𝜎𝜏

2𝜀
‖𝑥𝜏‖2

− 𝜎

𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑥(𝑠 + 𝑡)‖2d𝑠

¬ − 1
2𝜀

‖𝑥‖2 + 2‖𝑥‖‖𝑃‖
𝑟∑︁
𝑖=1

𝜇𝑖‖𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥𝜏, 𝑢)‖ −
𝑒−2𝜎𝜏

2𝜀
‖𝑥𝜏‖2

− 𝜎

𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑥(𝑠 + 𝑡)‖2d𝑠.

On the other hand by assumption A1, we obtain

¤𝑉 (𝑥𝑡) ¬ − 1
2𝜀

‖𝑥‖2 − 𝑒−2𝜎𝜏

2𝜀
‖𝑥𝜏‖2 + 2‖𝑥‖‖𝑃‖

𝑟∑︁
𝑖=1

𝜇𝑖
(
𝛾𝑖1 (𝜀)‖𝑥‖ + 𝛾𝑖2 (𝜀)‖𝑥𝜏‖

)
− 𝜎

𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑥(𝑠 + 𝑡)‖2d𝑠
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¬ − 1
2𝜀

‖𝑥‖2 − 𝑒−2𝜎𝜏

2𝜀
‖𝑥𝜏‖2 + 2‖𝑥‖‖𝑃‖

𝑟∑︁
𝑖=1

(
𝛾𝑖1 (𝜀)‖𝑥‖ + 𝛾𝑖2 (𝜀)‖𝑥𝜏‖

)
− 𝜎

𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑥(𝑠 + 𝑡)‖2d𝑠

¬ − 1
2𝜀

‖𝑥‖2 − 𝑒−2𝜎𝜏

2𝜀
‖𝑥𝜏‖2 + 2‖𝑃‖𝛾1(𝜀)‖𝑥‖2 + 2‖𝑃‖𝛾2(𝜀)‖𝑥‖‖𝑥𝜏‖

− 𝜎

𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑥(𝑠 + 𝑡)‖2d𝑠.

Using the fact that
2‖𝑥‖‖𝑥𝜏‖ ¬ ‖𝑥‖2 + ‖𝑥𝜏‖2,

we deduce that

¤𝑉 (𝑥𝑡) ¬ −
[ 1
2𝜀

− 2‖𝑃‖𝛾1(𝜀) − ‖𝑃‖𝛾2(𝜀)
]
‖𝑥‖2

−
[
𝑒−2𝜎𝜏

2𝜀
− ‖𝑃‖𝛾2(𝜀)

]
‖𝑥𝜏‖2

− 𝜎

𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑥(𝑠 + 𝑡)‖2d𝑠.

Hence, we obtain

¤𝑉 (𝑥𝑡) + 2𝜎𝑉 (𝑥𝑡) ¬ 2𝜎𝑥𝑇𝑃𝑥 −
[
1
2𝜀

− 2‖𝑃‖𝛾1(𝜀) − ‖𝑃‖𝛾1(𝜀)
]
‖𝑥‖2 (9)

−
[
𝑒−2𝜎𝜏

2𝜀
− ‖𝑃‖𝛾2(𝜀)

]
‖𝑥𝜏‖2

¬ −𝑐(𝜀)‖𝑥‖2 − 𝑑 (𝜀)‖𝑥𝜏‖2, (10)

where
𝑐(𝜀) = 1

2𝜀
− 2𝜎‖𝑃‖ − 2‖𝑃‖𝛾1(𝜀) − ‖𝑃‖𝛾2(𝜀)

and
𝑑 (𝜀) = 𝑒−2𝜎𝜏

2𝜀
− ‖𝑃‖𝛾2(𝜀).

Since,
𝑃 < 𝑎(𝜎, 𝜀)𝐼,
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then 𝑐(𝜀) > 0 and 𝑑 (𝜀) > 0. Consequently,
¤𝑉 (𝑥𝑡) + 2𝜎𝑉 (𝑥𝑡) ¬ 0.

Thus, condition (3) of Theorem 1 is satisfied. Therefore, the system (7)–(6) is
globally exponentially stable.

Corollary 1 Suppose that (A1) hold and there exist symmetric and positive defi-
nite matrices 𝑃 and a positive constant 𝜀 such that the following inequalities hold,

𝐺𝑇𝑖𝑖𝑃 + 𝑃𝐺𝑖𝑖 ¬ −𝐼, 𝑖, 𝑗 = 1, ..., 𝑟,

𝐺𝑇𝑖 𝑗𝑃 + 𝑃𝐺𝑖 𝑗 ¬ −𝐼, 1 ¬ 𝑖 < 𝑗 ¬ 𝑟,

and
𝑃 < 𝑏(𝜀)𝐼, (11)

where
𝑏(𝜀) = 1

2𝜀
(
2𝛾1(𝜀) + 𝛾2(𝜀)

) ,
𝛾1(𝜀) =

𝑟∑︁
𝑖=1

𝛾𝑖1 (𝜀) and 𝛾2(𝜀) =
∑𝑟
𝑖=1 𝛾𝑖2 (𝜀), then the fuzzy closed-loop system

(7)−(6) is globally exponentially stable.

Proof. From Theorem 2, we have the closed loop system (7) is globally exponen-
tially stable if

1
2𝜀

− 2𝜎‖𝑃‖ − 2‖𝑃‖𝛾1(𝜀) − ‖𝑃‖𝛾2(𝜀) > 0

and
𝑒−2𝜎𝜏

2𝜀
− ‖𝑃‖𝛾2(𝜀) > 0.

therefore, the constant 𝜎 should satisfies

𝜎 <
𝛼(𝜀)
2‖𝑃‖ and − 2𝜎𝜏 > ln (2𝜀‖𝑃‖𝛾2(𝜀)) , (12)

where 𝛼(𝜀) = 1
2𝜀

− 2‖𝑃‖𝛾1(𝜀) − ‖𝑃‖𝛾2(𝜀). Since we have

𝑃 < 𝑏(𝜀)𝐼,

then,
𝛼(𝜀) > 0.
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Thus,
1 − 2𝜀‖𝑃‖𝛾2(𝜀) > 4𝜀‖𝑃‖𝛾1(𝜀) > 0.

It follows that
ln (2𝜀‖𝑃‖𝛾2(𝜀)) < 0.

Consequently,

𝜎 <
1
2𝜏
ln (2𝜀‖𝑃‖𝛾2(𝜀)) .

Just take
𝜎 =

1
2
min

[
𝛼(𝜀)
2‖𝑃‖ ,

1
2𝜏
ln
(
2𝜀‖𝑃‖𝛾2(𝜀)

)]
> 0.

In many practical control problems, the physical state variables of systems are
partially or fully unavailable for measurement, since the state variables are not
accessible by sensing devices and transducers are not available or very expensive.
In such cases, observer based control schemes should be designed to estimate
the state. Newt, for the perturbed fuzzy system, an observer-based controller is
suggested to stabilize the closed-loop dynamic. By combining a Luenberger-like
state fuzzy observer and the state fuzzy feedback control law.

3.2. Stabilization by an estimated state feedback

The exponential stabilization of T-S models with a PDC control law is proven.
The main property of this control law is that it shares the same premises as the
T-S model. If the state is not measurable, conditions of stabilization with a fuzzy
observer exist but make the assumption that premises are measurable.We propose
the following system:

¤̂𝑥 =
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧) (𝐴𝑖𝑥 + 𝐵𝑖𝑢 − 𝐿𝑖 (𝑦 − 𝑦̂)) , (13)

Where 𝑦̂ given by

𝑦̂ =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥

and the estimated feedback controller is given by

𝑢 = −
𝑟∑︁
𝑖=1

𝜇𝑖𝐾𝑖𝑥. (14)

We wish to find 𝐿𝑖, 𝑖 = 1, ..., 𝑟 such that 𝑒 = 𝑥− 𝑥 converges to zero exponentially
as 𝑡 tends to infinity.
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Subtracting (7) from (13), we have the system error

¤𝑒 =
𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖 (𝑧)𝜇 𝑗 (𝑧)
(
𝐴𝑖 − 𝐿 𝑗𝐶𝑖

)
𝑒 +

𝑟∑︁
𝑖=1

𝜇𝑖𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥𝜏, 𝑢). (15)

Thus,

¤𝑒 =
𝑟∑︁
𝑖=1

𝜇2𝑖 Υ𝑖 𝑗𝑒 + 2
∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗 (𝑧)Υ𝑖 𝑗𝑒 +
𝑟∑︁
𝑖=1

𝜇𝑖𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥𝜏, 𝑢),

where
Υ𝑖𝑖 = 𝐴𝑖 − 𝐿𝑖𝐶𝑖 ,

and
Υ𝑖 𝑗 =

1
2
(
𝐴𝑖 − 𝐿 𝑗𝐶𝑖 + 𝐴 𝑗 − 𝐿 𝑗𝐶𝑖

)
.

Then let consider the following theorem.

Theorem 3 Suppose that (A1) hold and there exist symmetric and positive def-
inite matrices 𝑃 and 𝑄 and positive constants 𝜀, 𝜎 such that the following
inequalities hold,

Υ𝑇𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖 ¬ −𝐼, 𝑖 = 1, ..., 𝑟,

Υ𝑇𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗 ¬ −𝐼, 1 ¬ 𝑖 < 𝑗 ¬ 𝑟,

and
𝑃 < 𝑎̃(𝜎, 𝜀)𝐼,

where
𝑎̃(𝜎, 𝜀) = 1

2𝜀
(
2𝜎 + 𝛾1(𝜀) + 𝛾2(𝜀)

) ,
𝛾1(𝜀) =

𝑟∑︁
𝑖=1

𝛾𝑖1 (𝜀) and 𝛾2(𝜀) =
𝑟∑︁
𝑖=1

𝛾𝑖2 (𝜀), then the closed loop system (7)−(14)

is globally exponentially stable.

Proof. Let us choose a Lyapunov-Krasovskii functional candidate as follows

𝑉 (𝑒𝑡) = 𝑒𝑇𝑃𝑒 +
1
2𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑒(𝑠 + 𝑡)‖2d𝑠.
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As in the proof of Theorem 1, we have

𝜆min(𝑃)‖𝑒(𝑡)‖ ¬ 𝑊 (𝑒𝑡) ¬
(
𝜆min(𝑃) +

1
4𝜎𝜀

)
‖𝑒𝑡 ‖∞.

The time derivative of𝑊 (𝑒𝑡) along the trajectories of system (13) is given by

¤𝑊 (𝑒) =
𝑟∑︁
𝑖=1

𝜇2𝑖 𝑒
𝑇 (Υ𝑇𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖)𝑒 + 2

∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗𝑒
𝑇 (Υ𝑇𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗 )𝑒

+ 2𝑒𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥𝜏, 𝑢) +
1
2𝜀

‖𝑒‖2 − 𝑒−2𝜎𝜏

2𝜀
‖𝑒𝜏‖2

− 𝜎

𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑒(𝑠 + 𝑡)‖2d𝑠.

On the one hand, we have

𝑒𝑇 (Υ𝑇𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖)𝑒 ¬ −‖𝑒‖2, 𝑖 = 1, ..., 𝑟

and
𝑒𝑇 (Υ𝑇𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗 )𝑒 ¬ −‖𝑒‖2, 1 < 𝑖 < 𝑗 < 𝑟.

Then, one gets

¤𝑊 (𝑒𝑡) ¬ −‖𝑒‖2
𝑟∑︁
𝑖=1

𝑟∑︁
𝑖=1

𝜇𝑖𝜇 𝑗 + 2‖𝑒‖‖𝑃‖
𝑟∑︁
𝑖=1

𝜇𝑖‖𝐷𝑖 (𝜀) 𝑓𝑖 (𝑥, 𝑥𝜏, 𝑢)‖

+ 1
2𝜀

‖𝑒‖2 − 𝑒−2𝜎𝜏

2𝜀
‖𝑒𝜏‖2 − 𝜎

𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑒(𝑠 + 𝑡)‖2d𝑠.

It follows that

¤𝑊 (𝑒𝑡) ¬ − 1
2𝜀

‖𝑒‖2 + 2𝛾1(𝜀)‖𝑃‖‖𝑒‖‖𝑥‖ + 2𝛾2(𝜀)‖𝑃‖‖𝑒‖‖𝑥𝜏‖

− 𝑒−2𝜎𝜏

2𝜀
‖𝑒𝜏‖2 − 𝜎

𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑒(𝑠 + 𝑡)‖2d𝑠.

Using the fact that

2‖𝑒‖‖𝑥‖ ¬ ‖𝑒‖2 + ‖𝑥‖2 and 2‖𝑒‖‖𝑥𝜏‖ ¬ ‖𝑒‖2 + ‖𝑥𝜏‖2,
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we deduce that

¤𝑊 (𝑒𝑡) ¬ −
[
1
2𝜀

− 𝛾1(𝜀)‖𝑃‖ − 𝛾2(𝜀)‖𝑃‖
]
‖𝑒‖2

− 𝑒−2𝜎𝜏

2𝜀
‖𝑒𝜏‖2 + 𝛾1(𝜀)‖𝑃‖‖𝑥‖2

+ 𝛾2(𝜀)‖𝑃‖‖𝑥𝜏‖2 −
𝜎

𝜀

0∫
−𝜏

𝑒2𝜎𝑠‖𝑒(𝑠 + 𝑡)‖2d𝑠. (16)

Let
𝑈 (𝑥𝑡 , 𝑒𝑡) = 𝜂𝑊 (𝑒𝑡) +𝑉 (𝑥𝑡),

where 𝑉 is given by (8). Using (9) and (16), we get

¤𝑈 (𝑥𝑡 , 𝑒𝑡) + 2𝜎𝑈 (𝑥𝑡 , 𝑒𝑡) ¬ −𝜂
[
1
2𝜀

− 𝛾1(𝜀)‖𝑃‖ − 𝛾2(𝜀)‖𝑃‖
]
‖𝑒‖2

−
[
𝑐(𝜀) − 𝜂𝛾1(𝜀)‖𝑃‖

]
‖𝑥‖2

−
[
𝑑 (𝜀) − 𝜂𝛾2(𝜀)‖𝑃‖

]
‖𝑥𝜏‖2.

Finally, we select 𝜂 such that

𝜂 < min
(

𝑐(𝜀)
𝛾1(𝜀)‖𝑃‖

,
𝑑 (𝜀)

𝛾2(𝜀)‖𝑃‖

)
.

to get
¤𝑈 (𝑥𝑡 , 𝑒𝑡) + 2𝜎𝑈 (𝑥𝑡 , 𝑒𝑡) ¬ 0.

Therefore, the closed-loop system (7)–(14) is globally exponentially stable.

Corollary 2 Suppose that (A1) hold and there exist symmetric and positive
definite matrices 𝑃 and 𝑄 and positive constants 𝜀, 𝜎 such that the following
inequalities hold,

Υ𝑇𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖 ¬ −𝐼, 𝑖 = 1, ..., 𝑟,

Υ𝑇𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗 ¬ −𝐼, 1 ¬ 𝑖 < 𝑗 ¬ 𝑟,

and
𝑃 < 𝑏̃(𝜀)𝐼, (17)
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where
𝑏̃(𝜀) = 1

2𝜀
(
𝛾1(𝜀) + 𝛾2(𝜀)

) ,
𝛾1(𝜀) =

𝑟∑︁
𝑖=1

𝛾𝑖1 (𝜀) and 𝛾2(𝜀) =

𝑟∑︁
𝑖=1

𝛾𝑖2 (𝜀), then the system error (7)−(14) is

guaranteed to globally exponentially stable.

Proof. The fact that the LMI inequality 𝑃 < 𝑎̃(𝜎, 𝜀)𝐼, implies that

𝜎 <
𝑐̃(𝜀)
2𝜀

.

where 𝑐̃(𝜀) =
1
2𝜀

− 𝛾1(𝜀)‖𝑃‖ − 𝛾2(𝜀)‖𝑃‖. Since, 𝑃 < 𝑏̃(𝜀)𝐼, then 𝑐(𝜀) > 0.
Therefore, in view of (12), we choose

𝜎 =
1
2
min

[
𝑐̃(𝜀)
2𝜀

,
𝛼(𝜀)
2‖𝑃‖ ,

1
2𝜏
ln (2𝜀‖𝑃‖𝛾2(𝜀))

]
> 0.

Remark 2 The conditions (11) and (17) do not depend on the delay 𝜏.

Next, we will consider an example to show the applicability of the main result
where an observer-based controller for delay fuzzy system is presented. The
closed-loop stability is guaranteed based on dual problems concerning the con-
ception of the fuzzy controller and the design the fuzzy observer in presence of
a small parameter.

4. Numerical example

Consider the following nonlinear fuzzy planar system,
¤𝑥1 = 𝑥2 + 𝜀𝑥3 sin(𝑥2) sin(𝑥3) + 𝜀𝑥3(𝑡 − 𝜏) cos(𝑢),
¤𝑥2 = 𝑥3 ,
¤𝑥3 = 𝑢 ,
𝑦 = 𝑥1 .

(18)

Now one can represent exactly the system by the following two-rule fuzzy model:
Rule 1: If 𝑧 is 𝐹11 then{ ¤𝑥(𝑡) = 𝐴1𝑥 + 𝐵1𝑢 + 𝐷1(𝜀) 𝑓1(𝑥, 𝑥𝜏, 𝑢),

𝑦(𝑡) = 𝐶1𝑥.
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Rule 2: If 𝑧 is 𝐹21 then{ ¤𝑥(𝑡) = 𝐴2𝑥 + 𝐵2𝑢 + 𝐷2(𝜀) 𝑓2(𝑥, 𝑥𝜏, 𝑢),
𝑦(𝑡) = 𝐶2𝑥,

where
𝑧 = sin(𝑥2),

𝐴1 =

[0 1 0
0 0 1
0 0 0

]
, 𝐵1 =

[0
0
1

]
, 𝐶1 =

[
1 0 0

]
,

𝐴2 =

[0 1 0
0 0 1
0 0 0

]
, 𝐵2 =

[0
0
1

]
, 𝐶2 =

[
1 0 0

]
𝐷1(𝜀) 𝑓1(𝑥, 𝑥𝜏, 𝑢) = 𝜀𝑥3 sin(𝑥2) sin(𝑥3) cos(𝑢) +

1
2𝜀
𝑥3(𝑡 − 𝜏) sin(𝑢),

𝐷2(𝜀) 𝑓2(𝑥, 𝑥𝜏, 𝑢) = −𝜀𝑥3 sin(𝑥2) sin(𝑥3) cos(𝑢) +
1
2𝜀
𝑥3(𝑡 − 𝜏) sin(𝑢),

𝐹11 =
sin(𝑥2) + 1

2
and 𝐹21 =

1 − sin(𝑥2)
2

.

We define the membership functions for rule 1 and 2 as:

𝜇1(𝑡) =
1 − sin(𝑥2(𝑡))

2
and 𝜇2(𝑡) = 1 − 𝜇1(𝑡).

It is easy to check that system (18) satisfiesAssumptionA1with 𝛾𝑖1 (𝜀) = 𝛾𝑖2 (𝜀) =
𝜀, 𝑖 = 1, 2. Using an LMI optimization algorithm, we obtain:

𝑃 =

[1.5145 0.7341 0.0265
0.7341 1.4339 0.0548
0.0265 0.0548 0.0446

]
,

and the following feedback gains

𝐾1 =
[
17.4927 22.4490 8.5714

]
and 𝐾2 =

[
78.1250 62.500 12.5000

]
.

Now concerning the observer, let’s suppose the following fuzzy observer rules:
Rule 1: If 𝑧 is 𝐹11 then{ ¤̂𝑥 = 𝐴1𝑥 + 𝐵1𝑢 − 𝐿1 (𝑦 − 𝑦̂) ,

𝑦̂ = 𝐶1𝑥;
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Rule 2: If 𝑧 is 𝐹21 then{ ¤̂𝑥 = 𝐴2𝑥 + 𝐵2𝑢 − 𝐿2 ( 𝑦̂ − 𝑦) ,
𝑦̂ = 𝐶2𝑥.

Then, we obtain the following observer gain:

𝐿1 =
[
−34.9854 −34.9854 −34.9854

]𝑇
and

𝐿2 =
[
−34.9854 −34.9854 −34.9854

]𝑇
.

and the positive symmetric definite matrices:

𝑃 =


0.8079 −0.3374 −0.4560
−0.3374 0.7030 −0.3425
−0.4560 −0.3425 0.7890

 .
The conditions (11) is satisfied with 𝜀 < 0.2746 and (17) is satisfied with

𝜀 < 0.3645. One can choose 𝜀 = 0.2. For our numerical simulation results given
in Figs. 1, 2, and 3, we choose constant delay 𝜏 = 1.
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Figure 1: 𝑥1 and its estimated 𝑥̂1
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Figure 2: 𝑥2 and its estimated 𝑥̂2
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Figure 3: 𝑥3 and its estimated 𝑥̂3
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5. Conclusion

In this paper, we have presented state and an estimated feedback controllers
for a certain class of nonlinear time-delay fuzzy systems depending on a param-
eter. We have derived delay-independent conditions to ensure global exponential
stability of the resulting closed-loop systems. We have shown that classical LMIs
conditions can be used for both the observer and the controller, and they can be
designed separately since a separation principle is available. The effectiveness
of the proposed theory is illustrated by a computer simulation of a theoretical
example.
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