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In the present study, the problem of optimization of the motion mode of the tower
crane’s slewing mechanism in the steady-state mode of trolley movement is stated
and solved. An optimization criterion, which includes the RMS values of the drive
torque and the rate of its change over time, is minimized. The optimization is carried
out taking into account the drive torque constraints, and under the specified boundary
conditions of motion. Three optimization problems at different values of the weight
coefficients are solved. In the first problem, priority is given to the drive torque, in
the third – to the rate of the drive torque change, and in the second problem, the
significance of both components is assumed equal.

The optimization problems are nonlinear, thus a VCT-PSO method is applied to
solve them. The obtained optimal start-up modes of the crane slewing mechanism
eliminate pendulum load oscillations and high-frequency elastic oscillations of the
tower.

Most of the kinematic, dynamical, and power parameters at different values of
the weight coefficients are quite close to each other. It indicates that the optimal
modes of motion are significantly influenced by the boundary conditions, optimization
parameters, and constraints.
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1. Introduction

When using tower cranes, in order to increase the capacity of loading and
unloading operations, one must amend the mechanisms for trolley movement and
slewing. However, in this case, dynamical loads increase in the structural elements
of the crane and drive mechanisms, which leads to a decrease in the accuracy of
load handling operations and crane reliability, as well as increased energy losses.
Particularly dangerous are the loads caused by low-frequency oscillations of the
load on the flexible suspension and high-frequency oscillations of the crane struc-
ture and drive mechanisms. One of the modes of joint operation of the mechanisms
is the mode when the trolley moves in a steady-state mode, and the slewing mecha-
nism operates in a transient process (start, braking, change of motion speed). In this
mode of joint motion of the mechanisms, there is a need to minimize oscillations
in the elements of the crane structure and the load. The oscillations of structural
elements and load are significantly affected by the magnitude and the change in the
drive torque of the slewing mechanism during transient processes. In particular, the
rate of change of the drive torque is important in this case. Therefore, the problem is
to choose a favorable mode of change of the drive torque of the slewing mechanism
during startup or braking, which would minimize oscillations in the crane structure
elements.

When using hoisting cranes, in order to increase the capacity of transport and
technological operations, the operation of several mechanisms is involved [1–6].
For example, during the operation of tower cranes, the load performs a complex mo-
tion in which several mechanisms function simultaneously. The operation of these
mechanisms has both a mutual and a general effect on the crane structure [1]. This
requires the operator to be precise in choosing the operating modes of crane mech-
anisms. Therefore, there is a need to improve the mechanisms operating control
efficiency. This increases the dynamical loads in the elements of drive mechanisms
and crane structures, as well as the oscillations of the load on a flexible suspen-
sion [4–7]. Researchers from different countries have paid considerable attention
to the study of dynamical processes in the elements of hoisting machines [8–11].
The studies [8, 9] researched the dynamics of trolley movement. In the paper [12],
dynamics of hoisting operation of bridge crane was investigated.

The studies [4, 5] consider the joint motion of the mechanisms for trolley
movement and slewing of hoisting cranes, in particular tower cranes. In this case, the
drive of the mechanism for trolley movement during crane slewing with a suspended
load on a flexible suspension is controlled to reduce its oscillations. Studies [6,
7] investigated the dynamics of the joint motion of the mechanisms for trolley
movement and slewing of a tower crane, where the impact of each mechanism
on the dynamics of the crane’s motion as a whole was determined. Based on
these studies, the kinematic, power, and energy parameters of the mechanisms are
determined. In particular, significant power overloads of the drive mechanisms and
spatial oscillations of the load are detected.
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In order to reduce the oscillations of the load on a flexible suspension, opti-
mization problems of motion modes during the operation of individual mechanisms
are solved in many scientific studies. For instance, in the work [13], the transient
process of the startup of the trolley movement mechanism is optimized by control-
ling the drive torque to minimize dynamical loads. Study [14] presents a solution to
the problem of optimizing the mode of motion of the trolley movement mechanism
of a tower crane in a steady-state slewing mode.

In the study [15] load oscillations elimination, accurate slew/translation posi-
tioning of the trolley and the jib, and duration minimization are the goal to reach.
In this paper, a new suboptimal trajectory planning method is proposed for 4-DOF
tower crane system, eight constraints are involved in the problem statement as well.
The solution of the problem is compared with LQR results and validated through
experiments on the lab installation.

Both open-loop [6, 9–11, 13–15] and closed-loop [16–19] controls are involved
in the problem of load oscillations elimination.

In the article [16], the joint application of feedback control (active method) and
a damper (passive method) on a load cable is considered. Such an approach allowed
for combining the positive features of each of the methods. Optimal parameters of
the spring-damper system are obtained. The performance of the proposed scheme
is illustrated via numerical simulations for various cases of initial angle, initial
velocity, drive acceleration, and control gain.

In the work [17], a nonlinear mathematical model of a robotic tower crane is
derived. Based on the linearization of the model (at each iteration of the control
algorithm around its present operating point), the authors stated and solved the
H∞ control problem. A strong feature of this work consists in the advantages of
the linear optimal control (fast and accurate tracking of reference setpoints), the
weaknesses – are the quite a big amount of computations that must be performed on
each control iteration and the absence of constraints imposed on control and state
vector components. In addition, the stability of the control is proven via Lyapunov
analysis.

Article [18] proposes an approach to suppressing load oscillations in radial and
tangential directions. To reach the goal, one uses a nonlinear model of the tower
crane, and four constraints are imposed on the kinematical functions of the system.
The authors applied a smooth command input shaper and optimized its parameters
with a particle swarm algorithm. Lab experiments supported the theoretical results.
However, there is no optimization during the movement, only at the final moment
of movement.

Paper [19] presents the ODE-PDE mathematical model of the tower crane,
where its rotation and trolley movement are considered. PDE is used to describe
the oscillations of the crane jib. The objective function to minimize is a combination
of the duration of the controlled process, the kinetic energy of the load, control
force, and penalty terms, which are related to the final conditions. Some numerical
calculations and their brief analysis are given to support strong theoretical results.
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All of these works support the idea that the problem of determination of the
transient mode of crane slewing at a steady trolley movement remains important.

Then, the goal of the present study is to minimize oscillations of tower crane
structural elements by optimizing the start-up mode of the slewing drive mechanism
at a steady-state trolley movement.

2. Optimization Problem Statement

For the purpose of the study, the tower crane boom system during the joint
motion of the slewing and trolley movement mechanisms (Fig. 1) is presented as
a holonomic mechanical system consisting of absolutely rigid links, except for the
crane rotary part 1, which has elastic properties with a stiffness coefficient 𝐶 and
the flexible suspension 2 of the load 3, which deviates from the vertical by an angle
𝜐 when the crane is rotated. In the accepted dynamical model of the tower crane
boom system, the applied generalized coordinates are the angular coordinates of
the slewing mechanism drive 𝛼, the crane rotary part with boom 𝜑 and the load on
the flexible suspension 𝜓, as well as the linear coordinate of the trolley’s center of
mass 𝑥.

Fig. 1. Dynamical model of the joint motion of crane slewing and trolley movement mechanisms

The trolley 4 with the load 3 moves along the boom 5 with a constant speed
𝑉 , and the length of the flexible load suspension remains constant and equals 𝐻

Since the trolley moves at a constant speed, the coordinate 𝑥 is determined by the
following dependence

𝑥 = 𝑥0 +𝑉𝑡, (1)
where 𝑡 is time; 𝑥0 is initial trolley position along the boom.
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Since the linear coordinate of the trolley 𝑥 is known, the dynamical model
of the boom system has three degrees of freedom. The flexible load suspension
deviates from the vertical by an angle

𝜐 =
𝑥

𝐻
(𝜑 − 𝜓). (2)

Based on the dynamical model (Fig. 1) Lagrange’s second order equations are
used to derive differential equations of motion as follows:

𝐼1 ¥𝛼 = 𝑀𝑑𝑟 − 𝐶 (𝛼 − 𝜑),(
𝐼0 + 𝑚0(𝑥0 +𝑉𝑡)2

)
¥𝜑 + 2𝑚0𝑉 (𝑥0 +𝑉𝑡)2 ¤𝜑

= −𝑀0 + 𝐶 (𝛼 − 𝜑) + 𝑚𝑔

𝐻
(𝑥0 +𝑉𝑡)2(𝜑 − 𝜓),

(𝑥0 +𝑉𝑡) ¥𝜓 + 2𝑉 ¤𝜓 =
𝑔

𝐻
(𝑥0 +𝑉𝑡)2(𝜑 − 𝜓),

(3)

where 𝐼1, 𝐼0 – crane rotary part and slewing mechanism drive moments of inertia,
reduced to the crane rotary axis respectively; 𝑚0, 𝑚– trolley and load masses
respectively; 𝑀𝑑𝑟 , 𝑀0 – the drive torque of the slewing mechanism and the torque
caused by the resistance of the rotary crane part, reduced to the crane rotary axis
respectively; 𝑔 – the acceleration of gravity.

High-frequency oscillations of the slewing mechanism elements and low-
frequency oscillations of the flexibly suspended load significantly depend on the
drive torque and the rate of its change over time during non-steady motion of
the mechanism (acceleration or deceleration). Therefore, let us choose a non-
dimensional complex criterion, including RMS of the drive torque and the rate
of drive torque change during acceleration, as an optimization criterion which is
common for such problems [6]:

𝐶𝑟 = 𝐶𝑟1𝛿1 + 𝐶𝑟2𝛿2 + Ineq = 𝛿1

√√√√√ 1
𝑡1

𝑡1∫
0

𝑀2
𝑑𝑟

d𝑡

min
©­­«
√√√√√ 1

𝑡1

𝑡1∫
0

𝑀2
𝑑𝑟

d𝑡
ª®®¬

+ 𝛿2

√√√√√ 1
𝑡1

𝑡1∫
0

¤𝑀2
𝑑𝑟

d𝑡

min
©­­«
√√√√√ 1

𝑡1

𝑡1∫
0

¤𝑀2
𝑑𝑟

d𝑡
ª®®¬
+ Ineq → min;

𝛿1 + 𝛿2 = 1,

(4)
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where 𝛿1 and 𝛿2 are weight coefficients that show the importance of minimization
of each component of the complex criterion, 𝑡1 – duration of the slewing mechanism
startup process; ¤𝑀𝑑𝑟 = d𝑀𝑑𝑟/d𝑡 – the rate of the slewing mechanism drive torque
change over time; Ineq – penalty component of the criterion that correspond to the
drive torque constraints 0 ⩽ 𝑀𝑑𝑟 ⩽ 𝑀max.𝑑𝑟 and defined as follows:

Ineq =



0, if 𝑀max.𝑑𝑟 ⩾ 𝑀𝑑𝑟 ⩾ 0;
max ( |min(𝑀𝑑𝑟 ) | , max(𝑀𝑑𝑟 ))

min
©­­«
√√√√√ 1

𝑡1

𝑡1∫
0

𝑀2
𝑑𝑟

d𝑡
ª®®¬

𝛿ineq, if
𝑀𝑑𝑟 < 0 ∨
𝑀𝑑𝑟 > 𝑀max.𝑑𝑟

,
(5)

where 𝛿ineq is a penalty coefficient that affects the increase of the value of Ineq, if
the constraints 0 ⩽ 𝑀𝑑𝑟 ⩽ 𝑀max.𝑑𝑟 are violated; 𝑀max.𝑑𝑟 is a maximum value of
the drive torque (in this study, it is set as 𝑀max.𝑑𝑟 = 200 kNm).

The first term of criterion (4) allows for minimizing the equivalent drive torque,
which, in turn, minimizes energy losses in the drive. Minimization of the second
term has a positive effect on the smoothness of the crane motion as well as the
reducing of the dynamical impacts in the crane metal structure.

3. Optimization Problem Solving

Note that in order to find the denominators of the first and second terms of
criterion (4), the following optimization problems must be solved:

min
©­­«
√√√√√ 1

𝑡1

𝑡1∫
0

𝑀2
𝑑𝑟

d𝑡
ª®®¬ + Ineq → min,

min
©­­«
√√√√√ 1

𝑡1

𝑡1∫
0

¤𝑀2
𝑑𝑟

d𝑡
ª®®¬ + Ineq → min .

(6)

Thus, criterion (4) specifies the requirements for the fulfillment of constraints
0 ⩽ 𝑀𝑑𝑟 ⩽ 𝑀max.𝑑𝑟 , minimization of the RMS value of the drive torque and its
rate of change over time. The latter two requirements are met on a compromise
basis.

The minimization of the complex criterion (4) and the denominators of its
terms (6) is carried out when the boundary conditions of the system motion are
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satisfied:

𝑡 = 0: 𝜓 = 0; ¤𝜓 = 0; 𝜑 = 0; ¤𝜑 = 0; 𝛼 =
𝑀0
𝐶

; ¤𝛼 = 0; ¥𝛼 = ¥𝛼0; 𝛼̈ = 𝛼̈0;

𝑡 = 𝑡1 : 𝜓 =
𝜔𝑡1
2

; ¤𝜓 = 𝜔; 𝜑 =
𝜔𝑡1
2

; ¤𝜑 = 𝜔; 𝛼 =
𝑀0
𝐶

+ 𝜔𝑡1
2

;

¤𝛼 = 𝜔; ¥𝛼 = ¥𝛼𝑡1 ; 𝛼̈ = 𝛼̈𝑡1 ,

(7)

where 𝜔 – crane rotary part steady motion angular velocity; ¥𝛼0, ¥𝛼𝑡1 – angular
accelerations of the drive slewing mechanism at the beginning and at the end
of the startup process, respectively; 𝛼̈0, 𝛼̈𝑡1 – angular jerks of the drive slewing
mechanism at the beginning and at the end of the startup process, respectively.
First six final conditions mean elimination of the system oscillations at the end of
the acceleration (slewing mechanism drive, crane rotary part with boom and load
on the flexible suspension must be at the same position and move at the angular
speed 𝜔; the pendulum load oscillations must be eliminated in the plane, which
is perpendicular to the boom). Boundary conditions ¥𝛼0, ¥𝛼𝑡1 , 𝛼̈0, 𝛼̈𝑡1 are unknown
parameters that need to be determined in order to optimize the startup mode of the
slewing mechanism.

From the first equation of the system (3), we derive the expression of the drive
torque

𝑀𝑑𝑟 = 𝐼1 ¥𝛼 + 𝐶 (𝛼 − 𝜑). (8)

By taking the time derivative of expression (8), we determine the rate of the
drive torque change

¤𝑀𝑑𝑟 = 𝐼1𝛼̈ + 𝐶 ( ¤𝛼 − ¤𝜑) . (9)

Dependencies (8) and (9) include the coordinates of the slewing mechanism
drive 𝛼 and the crane rotary part 𝜑. We express them in terms of the generalized
coordinate of the load’s rotation 𝜓 and its time derivatives. For this purpose, from
the last equation of system (3), we express the generalized coordinate of the crane
rotary part

𝜑 = 𝜓 +
(
¥𝜓 + 2𝑉

¤𝜓
𝑥0 +𝑉𝑡

)
𝐻

𝑔
. (10)

From the second equation of system (3), we find the generalized coordinate of
the slewing mechanism drive

𝛼 = 𝜑 + 1
𝐶

((
𝐼0 + 𝑚0(𝑥0 +𝑉𝑡)2

)
¥𝜑 + 2𝑚0(𝑥0 +𝑉𝑡)𝑉 ¤𝜑

+ 𝑚(𝑥0 +𝑉𝑡)2 ¥𝜓 + 2𝑚(𝑥0 +𝑉𝑡)𝑉 ¤𝜓 + 𝑀0

)
. (11)

The dependence of the drive torque (8) and the rate of its change over time
(9) includes time derivatives of the generalized coordinate of the drive mechanism,
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thus we should define them:

¤𝛼 = ¤𝜑 + 1
𝐶

((
𝐼0 + 𝑚0(𝑥0 +𝑉𝑡)2

)
𝜑 + 4𝑚0(𝑥0 +𝑉𝑡)𝑉 ¥𝜑 + 2𝑚0𝑉

2 ¤𝜑

+ 𝑚(𝑥0 +𝑉𝑡)2𝜓 + 4𝑚(𝑥0 +𝑉𝑡)𝑉 ¥𝜓 + 2𝑚𝑉2 ¤𝜓
)
, (12)

¥𝛼 = ¥𝜑 + 1
𝐶

((
𝐼0 + 𝑚0(𝑥0 +𝑉𝑡)2

) IV
𝜑 +6𝑚0(𝑥0 +𝑉𝑡)𝑉𝜑 + 6𝑚0𝑉

2 ¥𝜑

+ 𝑚(𝑥0 +𝑉𝑡)2 IV
𝜓 +6𝑚(𝑥0 +𝑉𝑡)𝑉𝜓 + 6𝑚𝑉2 ¥𝜓

)
, (13)

𝛼̈ = 𝜑 + 1
𝐶

((
𝐼0 + 𝑚0(𝑥0 +𝑉𝑡)2

) V
𝜑 +8𝑚0(𝑥0 +𝑉𝑡)𝑉

IV
𝜑 +12𝑚0𝑉

2𝜑

+ 𝑚(𝑥0 +𝑉𝑡)2 V
𝜓 +8𝑚(𝑥0 +𝑉𝑡)𝑉

IV
𝜓 +12𝑚𝑉2𝜓

)
. (14)

Dependencies (9)–(14) include time derivatives of the function 𝜑(𝑡) up to the
fifth order, so we determine them by using expression (10):

¤𝜑 = ¤𝜓 + 𝐻

𝑔

(
𝜓 + 2𝑉

¥𝜓(𝑥0 +𝑉𝑡) −𝑉 ¤𝜓
(𝑥0 +𝑉𝑡)2

)
, (15)

¥𝜑 = ¥𝜓 + 𝐻

𝑔

(
IV
𝜓 +2𝑉

𝜓(𝑥0 +𝑉𝑡)2 − 2𝑉 (𝑥0 +𝑉𝑡) ¥𝜓 + 2𝑉2 ¤𝜓
(𝑥0 +𝑉𝑡)3

)
, (16)

𝜑 = 𝜓 + 𝐻

𝑔

(
V
𝜓 + 2𝑉

(𝑥0 +𝑉𝑡)4

(
IV
𝜓(𝑥0 +𝑉𝑡)3 − 3𝑉 (𝑥0 +𝑉𝑡)2𝜓

+ 6𝑉2(𝑥0 +𝑉𝑡)2 ¥𝜓 − 6𝑉3 ¤𝜓
))

, (17)

IV
𝜑 =

IV
𝜓 +𝐻

𝑔

(
VI
𝜓 + 2𝑉

(𝑥0 +𝑉𝑡)5

(
V
𝜓(𝑥0 +𝑉𝑡)4 − 4𝑉 (𝑥0 +𝑉𝑡)3 IV

𝜓

+ 12𝑉2(𝑥0 +𝑉𝑡)2𝜓 − 24𝑉2(𝑥0 +𝑉𝑡) ¥𝜓 + 24𝑉4 ¤𝜓
))

, (18)

V
𝜑 =

V
𝜓 +𝐻

𝑔

(
VII
𝜓 + 2𝑉

(𝑥0 +𝑉𝑡)6

(
VI
𝜓(𝑥0 +𝑉𝑡)5 − 5𝑉 (𝑥0 +𝑉𝑡)4 V

𝜓

+ 20𝑉2(𝑥0 +𝑉𝑡)3 IV
𝜓 −60𝑉3(𝑥0 +𝑉𝑡)𝜓 + 120𝑉4(𝑥0 +𝑉𝑡) ¥𝜓120𝑉5 ¤𝜓

))
. (19)

In this optimization problem, we express the boundary conditions (7) in terms
of the generalized angular coordinate of the load rotation and its time derivatives.

First, let’s consider the initial startup time (𝑡 = 0). From the initial conditions
(6), we find that 𝜓(0) = 0 and ¤𝜓(0) = 0. Taking into account that 𝜑(0) = 0,
¤𝜑(0) = 0 and considering dependencies (10) and (15), we find that ¥𝜓(0) = 0,
𝜓(0) = 0. Also, from the initial startup conditions, we have 𝛼 =

𝑀0
𝐶

, ¤𝛼 = 0. Thus,
we find from dependence (11) that ¥𝜑(0) = 0. Then, from dependence (16) we have



Minimization of oscillations of the tower crane slewing mechanism in the steady-state. . . 375

that
IV
𝜓(0) = 0. From the boundary condition ¤𝛼(0) = 0, using the dependence (13),

we determine that 𝜑(0) = 0. From this condition, by expression (17), we derive
that

V
𝜓(0) = 0.

From the boundary condition ¥𝛼(0) = ¥𝛼0 using dependence (13), we determine
that

IV
𝜑(0) = 𝐶 ¥𝛼0

𝐼0 + 𝑚0𝑥
2
0
. (20)

From the obtained condition (20), using expression (18), we find that the sixth
time derivative of the angular coordinate of the load’s rotation is determined by the
following dependence

VI
𝜓(0) = 𝑔

𝐻

𝐶 ¥𝛼0

𝐼0 + 𝑚0𝑥
2
0
. (21)

From the boundary condition 𝛼̈(0) = 𝛼̈0, using dependence (14), we have

V
𝜑(0) = 𝐶 ¥𝛼0

𝐼0 + 𝑚0𝑥
2
0

(
𝛼̈0 −

8𝑚0𝑥0𝑉

𝐼0 + 𝑚0𝑥
2
0
¥𝛼0

)
. (22)

From condition (22), using expression (19), we find the seventh time derivative
of the angular coordinate of the load slewing at the moment of time when

VII
𝜓 (0) = 𝑔

𝐻

𝐶 ¥𝛼0

𝐼0 + 𝑚0𝑥
2
0

(
𝛼̈0 −

(
8𝑚0𝑥0𝑉

𝐼0 + 𝑚0𝑥
2
0
+ 2𝑉

𝑥0

)
¥𝛼0

)
. (23)

Let’s consider the final moment of time, when 𝑡 = 𝑡1. From the startup boundary
conditions (7) we have𝜓(𝑡1) =

𝜔𝑡1
2

and ¤𝜓(𝑡1) = 𝜔. Also, from the startup boundary

conditions, it is known that 𝜑(𝑡1) =
𝜔𝑡1
2

and ¤𝜑(𝑡1) = 𝜔. Then, from expressions
(10) and (12), we determine:

¥𝜓(𝑡1) = − 2𝑉𝜔
𝑥0 +𝑉𝑡1

, 𝜓(𝑡1) = 6
𝑉2𝜔

(𝑥0 +𝑉𝑡1)2 . (24)

Taking into account the condition at the end of the startup, when the drive
coordinate is 𝛼(𝑡1) =

𝑀0
𝐶

+𝜔𝑡1
2

, from dependence (9), we determine the expression
of the second time derivative of the angular coordinate of the crane rotary part at
the end of the startup

¥𝜑(𝑡1) = − 2𝑚0(𝑥0 +𝑉𝑡1)𝑉𝜔
𝐼0 + 𝑚0(𝑥0 +𝑉𝑡1)2 . (25)
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Now, using expression (21) from dependence (14), we find the fourth time
derivative of the angular coordinate of the load at 𝑡 = 𝑡1

IV
𝜓(𝑡1) =

2𝑔𝑉𝜔
𝐻 (𝑥0 +𝑉𝑡1)

©­­­«1 − 𝑚0

𝑚0 +
𝐼0

(𝑥0 +𝑉𝑡1)2

ª®®®¬ −
24𝑉3𝜔

(𝑥0 +𝑉𝑡1)3 . (26)

Taking into account the condition of ¤𝛼(𝑡1) = 𝜔, from dependence (10) we
derive the expression of the third time derivative of the angular coordinate of the
crane rotary part at the end of the startup

𝜑(𝑡1) =
2𝑚0𝑉

2𝜔

𝐼0 + 𝑚0(𝑥0 +𝑉𝑡1)2

(
4𝑚0(𝑥0 +𝑉𝑡1)2

𝐼0 + 𝑚0(𝑥0 +𝑉𝑡1)2 − 1
)
. (27)

From the obtained condition (27), using expression (17), we determine the
fifth time derivative of the angular coordinate of the load rotation

V
𝜓(𝑡1) =

2𝑔𝑉2𝜔

𝐻
· 𝑚0

𝐼0 + 𝑚0(𝑥0 +𝑉𝑡1)2

(
1 + 4𝑚0(𝑥0 +𝑉𝑡1)2

𝐼0 + 𝑚0(𝑥0 +𝑉𝑡1)2

)
+ 10𝑉2𝜔

(𝑥0 +𝑉𝑡1)2

(
12𝑉2

(𝑥0 +𝑉𝑡1)2 − 𝑔

𝐻

)
. (28)

From the boundary condition ¥𝛼(𝑡1) = ¥𝛼𝑡1 , using dependence (13), we deter-
mine that

IV
𝜑(𝑡1) =

1
𝐼0 + 𝑚0(𝑥0 +𝑉𝑡1)2

(
𝐶 ¥𝛼𝑡1 − 𝑚(𝑥0 +𝑉𝑡1)2 IV

𝜓(𝑡1)

− 6𝑉 (𝑥0 +𝑉𝑡1)
(
𝑚𝜓(𝑡1) + 𝑚0𝜑(𝑡1)

)
− 6𝑚𝑉2 ¥𝜓(𝑡1)

−
(
6𝑚0𝑉

2 + 𝐶

)
¥𝜑(𝑡1)

)
. (29)

From the obtained condition (29), using expression (18), we find that the sixth
time derivative of the angular coordinate of the load’s rotation is determined by the
following dependence

VI
𝜓(𝑡1) =

(
IV
𝜑(𝑡1) −

IV
𝜓(𝑡1)

)
𝑔

𝐻
− 𝑉

(𝑥0 +𝑉𝑡1)5

(
(𝑥0 +𝑉𝑡1)4 V

𝜓(𝑡1)

− 4𝑉 (𝑥0 +𝑉𝑡1)3 IV
𝜓(𝑡1) + 12𝑉2

(
(𝑥0 +𝑉𝑡1)2𝜓(𝑡1)

− 2𝑉 (𝑥0 +𝑉𝑡1) ¥𝜓(𝑡1) + 2𝑉2𝜔
))
. (30)
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From the boundary condition 𝛼̈(𝑡1) = 𝛼̈𝑡1 , using dependence (15), we have

IV
𝜑(𝑡1) =

1
𝐼0 + 𝑚0(𝑥0 +𝑉𝑡1)2

(
𝐶 ¥𝛼𝑡1 − 𝑚(𝑥0 +𝑉𝑡1)2 V

𝜓(𝑡1)

− 8𝑉 (𝑥0 +𝑉𝑡1)
(
𝑚

IV
𝜓(𝑡1) + 𝑚0

IV
𝜑(𝑡1)

)
−

(
12𝑚0𝑉

2 + 𝐶

)
𝜑(𝑡1) − 12𝑚𝑉2 ¥𝜓(𝑡1)

)
. (31)

From condition (31), using expression (19), we find the seventh time derivative
of the angular coordinate of the load slewing at the final moment of time (𝑡 = 𝑡1):

VII
𝜓 (𝑡1) =

(
V
𝜑(𝑡1) −

V
𝜓(𝑡1)

)
𝑔

𝐻
− 2𝑉

(𝑥0 +𝑉𝑡1)6

(
(𝑥0 +𝑉𝑡1)5 VI

𝜓(𝑡1)

− 5𝑉 (𝑥0 +𝑉𝑡1)4 V
𝜓(𝑡1) + 20𝑉2(𝑥0 +𝑉𝑡1)3 IV

𝜓(𝑡1)

− 60𝑉3(𝑥0 +𝑉𝑡1)2𝜓(𝑡1) − 120𝑉4(𝑥0 +𝑉𝑡1) ¥𝜓(𝑡1) − 120𝑉5𝜔

)
. (32)

Thus, taking into account expressions (5)–(32), the minimization of the crite-
rion (4) is carried out when the following boundary conditions for the load rotation
are satisfied:

𝑡 = 0: 𝜓 = 0, ¤𝜓 = 0, ¥𝜓 = 0, 𝜓 = 0,
IV
𝜓 = 0,

V
𝜓 = 0,

VI
𝜓 =

VI
𝜓(0),

VII
𝜓 =

VII
𝜓 (0),

𝑡 = 𝑡1 : 𝜓 =
𝜔𝑡1
2

, ¤𝜓 = 𝜔, ¥𝜓 = ¥𝜓(𝑡1), 𝜓 = 𝜓(𝑡1),
IV
𝜓 =

IV
𝜓(𝑡1),

V
𝜓 =

V
𝜓(𝑡1),

VI
𝜓 =

VI
𝜓(𝑡1),

VII
𝜓 =

VII
𝜓 (𝑡1).

(33)

The last two boundary conditions at 𝑡 =0 are determined by dependencies
(21) and (23), and the last six conditions at 𝑡 = 𝑡1 are determined by formulas (24),
(26), (28), (30) and (32).

The purpose of such a detailed explanation of calculations (8)–(32) is to allow
understanding the way of reducing the initial boundary conditions (7) to those
expressed by (33) – suitable for only 𝜓(𝑡) function operation.

One cannot expect that the optimization problem (4), (33), taking into account
expressions (5)–(32), can be solved analytically, due to its nonlinearity, which is
caused by the component (5). Therefore, we should solve it approximately. For this
purpose, we define a base function that includes free parameters. It is obtained as
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a solution to the following three-point boundary problem:

𝐿 (𝜓) = 0;

𝑡 = 0: 𝜓 = 0, ¤𝜓 = 0, ¥𝜓 = 0, 𝜓 = 0,
IV
𝜓 = 0,

V
𝜓 = 0,

VI
𝜓 =

VI
𝜓(0),

VII
𝜓 =

VII
𝜓 (0);

𝜓

( 𝑡1
2

)
= 𝜓 𝑡1

2
, ¤𝜓

( 𝑡1
2

)
= ¤𝜓 𝑡1

2
;

𝑡 = 𝑡1 : 𝜓 =
𝜔𝑡1
2

, ¤𝜓 = 𝜔, ¥𝜓 = ¥𝜓(𝑡1), 𝜓 = 𝜓(𝑡1),
IV
𝜓 =

IV
𝜓(𝑡1),

V
𝜓 =

V
𝜓(𝑡1),

VI
𝜓 =

VI
𝜓(𝑡1),

VII
𝜓 =

VII
𝜓 (𝑡1).

(34)

where 𝐿 (𝜓) is the operator that acts on the function 𝜓(𝑡) (within this study
𝐿 (𝜓(𝑡)) =

XVI
𝜓 (𝑡)); ¥𝛼0, 𝛼̈0, 𝜓 𝑡1

2
, ¤𝜓 𝑡1

2
, ¥𝛼𝑡1 , 𝛼̈𝑡1 – are unknown free parameters of

the solution of the boundary problem (34), by which an approximate solution to
the original problem (4), (33) is sought.

As a result, the original problem (4), (33) is reduced to the following uncon-
strained optimization problem:

𝐶𝑟 = 𝐶𝑟

(
¥𝛼0, 𝛼̈0, 𝜓 𝑡1

2
, ¤𝜓 𝑡1

2
, ¥𝛼𝑡1 , 𝛼̈𝑡1

)
(35)

Since the problem of optimization of the modes of joint motion of the crane
slewing and trolley movement mechanisms is quite complicated and nonlinear, a
metaheuristic optimization method VCT-PSO [20] is applied to solve it.

The method VCT-PSO is one of the simple PSO modification. In order to
improve canonical PSO method performance it is proposed in the work [20] to
change cognitive term in the expression of particles update velocity:

v′ = 𝑤v + 𝑐1𝑟1 (p̃ − x) + 𝑐2𝑟2(g − x), (36)

where x and v – are position and velocity vectors of a particle (x ∈ [𝑥1, 𝑥2, . . . , 𝑥𝑖 ,
. . . , 𝑥𝐷]; v ∈ [𝑣1, 𝑣2, . . . , 𝑣𝑖 , . . . , 𝑣𝐷]); 𝐷 – is a number of unknown arguments
to find (𝐷 = 6 for considered case); p̃ is the so-called personal best – the best
solution, that a particle has found for some number of iterations or the personal
best of another (randomly chosen) particle for the rest of iterations; g is the so-
called global best – the best solution that a swarm has found; 𝑤, 𝑐1 and 𝑐2 are
inertial, cognitive and social coefficients, respectively; 𝑟1, 𝑟2 are random numbers
that are generated on the interval [0, 1]. The stroke in the superscript means a new
position and velocity of a particle. After application of formulas (36), p̃ and g must
be updated: {

p̃′ = x′, if 𝑓 (x′) < 𝑓 (p̃′);
g′ = p̃′, if 𝑓 (p̃′) < 𝑓 (g′),

(37)

where 𝑓 is an objective function (in the considered case (35)) to minimize.
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All the calculations are performed in the Wolfram Mathematica software.
The quest for solution of the optimization problem of the transient process

of the slewing mechanism motion at the steady mode of the trolley movement
is performed with the following parameters of the tower crane QTZ-80 system:
𝑚 = 5000 kg, 𝑚0 = 300 kg, 𝐼0 = 4.92 · 106 kg m2, 𝐼1 = 5.51 · 105 kg m2, 𝑉 =

0.85 m/s, 𝜔 = 0.075 rad/s, 𝑀0 = 39890 Nm, 𝐻 = 10 m, 𝑔 = 9.81 m/s2, 𝐶 =

6.627 · 106 Nm/rad, 𝑡0 = 10 m, 𝑡1 = 5.0 s.
For these data, we find the solutions to the minimum values of the denomi-

nators of the criterion components (4). As a result of the calculations, we obtain:

min
©­­«
√√√√√ 1

𝑡1

𝑡1∫
0

𝑀2
𝑑𝑟

d𝑡
ª®®¬ = 128487 Nm, min

©­­«
√√√√√ 1

𝑡1

𝑡1∫
0

¤𝑀2
𝑑𝑟

d𝑡
ª®®¬ = 301029 Nm/s. The

obtained values are used to normalize the dimensionless components of criterion
(4) with weight coefficients 𝛿1 and 𝛿2.

4. Results and Discussion

From the obtained solutions, we built graphical dependences of the power
(Figs. 2 and 3), energy (Fig. 4), and kinematic (Figs. 5 and 6) features. In addition,
estimated values of the slewing mechanism during the startup process at a steady-
state trolley movement at different values of the weight coefficients of criterion (4)
are calculated (Table 1).

Fig. 2. Plots of the drive torque

The plots in Fig. 2 show that in the first half of the startup the drive torque at
different values of the weight coefficients has a different pattern of change, and in



380 V.S. LOVEIKIN, Y.O. ROMASEVYCH, A.V. LOVEIKIN, M.M. KOROBKO, A.P. LIASHKO

Fig. 3. Plots of elastic torque in the crane tower

Fig. 4. Plots of the dynamic power component of the drive

the second half of the startup it changes almost identically. The highest maximum
value of the drive torque is observed at the weight coefficients 𝛿1 = 1, 𝛿2 = 0 and is
about 197.4 kNm. At the other two startup modes, the maximum values are almost
the same and reach 181.7 and 185.2 kNm. The RMS values of the drive torque in all
three startup modes are almost the same and reach the values close to 57 kNm. The
lowest initial starting torque occurs in the mode of motion with weight coefficients
𝛿1 = 1, 𝛿2 = 0 and equals 40 kNm, and the highest – at 𝛿1 = 0, 𝛿2 = 1 and equals
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Fig. 5. Phase portrait of the tower elastic oscillations

Fig. 6. Phase portrait of the pendulum oscillations of the load

160 kNm. Under the startup mode with weight coefficients 𝛿1 = 0.5, 𝛿2 = 0.5 the
initial start torque takes an intermediate value of 125 kNm.



382 V.S. LOVEIKIN, Y.O. ROMASEVYCH, A.V. LOVEIKIN, M.M. KOROBKO, A.P. LIASHKO

Table 1. Estimated indicators of the optimal mode of the tower crane slewing mechanism at different
values of weight coefficients

Item
No. Description Unit of

measure

Estimated indicators for the values
of weight coefficients

𝛿1 = 1;
𝛿1 = 0

𝛿1 = 0.5;
𝛿1 = 0.5

𝛿1 = 0;
𝛿1 = 1

Class of extreme indicators
1 Maximum value of the drive torque Nm 197359 181708 185192
2 Minimum value of the drive torque Nm 7043 5831 193
3 Maximum value of the elastic torque in

the tower
Nm 426756 453643 448796

4 Minimum value of the elastic torque in
the tower

Nm –195085 –246537 –236812

5 Maximum value of drive power W 26561 26234 26347
6 Minimum value of drive power W –7499 –10699 –9870
7 Magnitude of the elastic tower defor-

mation
rad 0.0644 0.0684 0.0677

8 Magnitude of load pendulum oscilla-
tions

rad 0.0452 0.0452 0.0455

Class of integral indicators
9 RMS value of the drive torque Nm 57044 56902 57059
10 RMS value of the torque in the tower Nm 89916 95983 94188
11 RMS value of drive power W 4632 4827 4691
12 RMS value of the elastic tower defor-

mation
rad 0.0136 0.0145 0.0142

13 RMS value of the deviation of the rope
with a load from the vertical

rad 0.0117 0.0116 0.0116

The pattern of elastic torque in the crane rotary tower changing (Fig. 3) is
almost identical at different values of the complex criterion weight coefficients.
In this case, the maximum values of the elastic torque in the tower occur at the
same time at different values of the weight coefficients. They are almost the same
in magnitude. The lowest maximum value corresponds to the startup mode with
weight coefficients 𝛿1 = 1, 𝛿2 = 0 and equals 426.7 kNm, and the highest – at case
𝛿1 = 0.5, 𝛿2 = 0.5 and reaches 453.6 kNm. A similar pattern is observed for the
RMS value of the elastic torque in the tower, where the minimum value is in the
first mode and the maximum value is in the second mode. They are equal to 89.9
and 96.0 kNm, respectively. In all three startup modes, the elastic torque in the
tower has an asymmetric change relative to the time axis.

During the entire startup process, the dynamical component of the drive power
(Fig. 4) in different motion modes is described by quite a similar dependencies.
However, in the first half of the startup process, there are some deviations in the
maximum values of local extremes. Thus, for example, in the first extreme, the
biggest maximum power value, is achieved at the weight coefficients 𝛿1 = 1, 𝛿2 = 0
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in criterion (4) and is 14.5 kW, and the smallest one – at 𝛿1 = 1, 𝛿2 = 0 and reaches
9.5 kW. A slightly different picture is observed at the third extreme, where the
biggest maximum value is achieved at 𝛿1 = 0.5, 𝛿2 = 0.5 and is 22.5 kW, and the
smallest one – at 𝛿1 = 1, 𝛿2 = 0 and is equal to 17.0 kW. In general, the highest
maximum power value occurs at the fifth extreme, which is almost the same for all
three startup modes and close to 26.5 kW.

From the phase portrait of the elastic oscillations of the crane tower (Fig. 5),
it can be seen that the nature of the oscillations under all three start-up modes
is damped and quite similar in waveform. The startup mode at the values of the
weight coefficients 𝛿1 = 1, 𝛿2 = 0 in criterion (4) provides the lowest maximum
values of the deformation (0.0644 rad) and deformation rate (0.165 rad/s) of the
tower. The largest deformation (0.0684 rad) and deformation rate (0.190 rad/s)
of the tower are achieved in the startup mode with weight coefficients 𝛿1 = 0.5,
𝛿2 = 0.5. According to the RMS value of the tower deformation, the mode with
𝛿1 = 1, 𝛿2 = 0 (0.0136 rad) is also the best, and the worst one is the mode with
𝛿1 = 0.5, 𝛿2 = 0.5 (0.0145 rad).

From the observation of phase portrait of the load pendulum oscillations on a
flexible suspension (Fig. 6) it can be concluded that in each of the three considered
startup modes, the oscillations are eliminated in one oscillation cycle. This is
achieved through the selection of boundary conditions during the startup process.
All the three modes of the drive mechanism accelerations provide almost identical
phase portraits of load oscillations. The load oscillation magnitude in all three
motion modes is almost the same and equals to 0.0452, 0.0452 and 0.0455 rad,
respectively. A similar picture is observed in terms of the RMS value of the
deviation from the vertical of the load rope with the load. They equal to 0.0117,
0.0116 and 0.0116 rad, respectively.

From the results of the optimization of the slewing mechanism startup mode
(Figs. 2–6 and Table 1), it can be concluded that most of the power, energy, and
kinematic parameters under different startup modes are quite close to each other. It
indicates that, in addition to the criterion, the optimization results are significantly
influenced by the boundary conditions of motion and constraints to the power
parameters, which are assumed to be the same for the three options of the weight
coefficients of the complex criterion.

5. Conclusions

In the article, a dynamical model of the tower crane slewing mechanism under
the steady-state mode of trolley movement is developed, on the basis of which
the differential equations of motion are derived. On the basis of the obtained
equations, an optimization problem is stated and solved according to a complex
dimensionless dynamical criterion, which includes the components of the RMS
values of the drive torque and the rate of its change over time. The impact of
each component of the complex criterion is assessed by weight coefficients that
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are varied from 0 to 1. Optimization problems with different values of the weight
coefficients are solved with the same constraints 0 ⩽ 𝑀𝑑𝑟 ⩽ 𝑀max.𝑑𝑟 . The same
type of kinematic characteristics of the crane’s slewing mechanism are chosen as
the boundary conditions of motion, to which additional conditions are added as
optimization parameters to find.

Since the optimization problem is nonlinear, a modification of the metaheuris-
tic method VCT-PSO of optimization algorithm is applied to solve it. The obtained
optimal start-up modes of the crane slewing mechanism at different values of the
weight coefficients ensure minimization of the complex integral dynamical crite-
rion and eliminate low-frequency oscillations of the load on a flexible suspension
and high-frequency elastic oscillations of the slewing tower.

The optimization of the crane slewing mechanism startup mode is carried
out according to a complex criterion at different values of the weight coefficients
under the same constraints imposed on the drive torque and boundary conditions
of motion. Based on the results of optimization of the slewing mechanism startup
modes, it is found that most of the kinematic, dynamical, and power parameters at
different values of the weight coefficients are almost identical or quite close to each
other. It indicates that, in addition to the criterion, the results of the optimization
are significantly influenced by the boundary conditions of motion and constraints
to the power characteristics.

The relevance of the obtained results for a real-world application is in the
implementation of the optimal modes of motion via variable frequency drive. Since
a great variety of control laws may be implemented with variable frequency drives,
the results obtained in the current study aren’t exceptional. The drive torque law may
be coded in a proper software and written to an on-board microcontroller, which
forms commands and sends them to the frequency inverter. It, in turn, changes the
frequency and voltage of the drive and the desired (optimal) law 𝑀𝑑𝑟 (𝑡) is applied
to the system.

References

[1] E.M. Abdel-Rahman, A.H. Nayfeh, and Z.N. Masoud. Dynamics and control of cranes: A review.
Journal of Vibration and Control, 9(7):863–908, 2003. doi: 10.1177/1077546303009007007.

[2] S.C. Kang and E. Miranda. Physics based model for simulating the dynamics of tower cranes.
In 2004 Proceeding of Xth International Conference on Computing in Civil and Building
Engineering (ICCCBE), Weimar, Germany, June 2004. doi: 10.25643/bauhaus-universitaet.240.

[3] T. Kuo, Y-C. Chiang, S-Y. Cheng, and S.-C.J. Kang. Oscillation reduction method for fast crane
operation. Modular and Offsite Construction (MOC) Summit Proceedings, pages 388–395,
2015. doi: 10.29173/mocs159.

[4] G. Sun and M. Kleeberger. Dynamic responses of hydraulic mobile crane with considera-
tion of the drive system. Mechanism and Machine Theory. 38(12):1489–1508, 2003. doi:
10.1016/S0094-114X(03)00099-5.

[5] T. Čampara, H. Bukvić, D. Sprečić. Ability to control swinging of payload during the movement
of the rotary cranes mechanism. In 4th International Conference on Intelligent Technologies

https://doi.org/10.1177/1077546303009007007
https://doi.org/10.25643/bauhaus-universitaet.240
https://doi.org/10.29173/mocs159
https://doi.org/10.1016/S0094-114X(03)00099-5


Minimization of oscillations of the tower crane slewing mechanism in the steady-state. . . 385

in Logistics and Mechatronics Systems. Kaunas University of Technology Panevezys Institute,
pages 52–55, Kaunas. Lithuania, 2009.

[6] V. Loveikin, Yu. Romasevych, A. Loveikin, and M. Korobko. Optimization of the trolley
mechanism acceleration during tower crane steady slewing. Archive of Mechanical Engineering,
69(3):411–429, 2022. doi: 10.24425/ame.2022.140424.

[7] I. Gutierrez-Carmona and J. Colado. Control of a two wired hammerhead tower crane. Nonlinear
Dynamics, 84(4):2137–2148, 2016. doi: 10.1007/s11071-016-2634-3.

[8] P. Schlott, F. Rausher, and O. Sawodny. Modelling the structured dynamics of a tower crane.
In 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pages
763–768, Banff, Canada, 2016. doi: 10.1109/AIM.2016.7576860.

[9] R.P. Gerasymyak and V.A. Leshchev. Analysis and Synthesis of Crane Electromechanical
Systems. 2008. (in Russian).

[10] R.P. Gerasymyak and O.V. Naidenko. Features of the control of the electric drive of the boom
departure mechanism during the rotation of the crane with a suspended load. Electrical Engi-
neering and Electrical Equipment, 68:11–15, 2007. (in Ukrainian).

[11] Naidenko E.V. Electric drive control of horizontal movement mechanisms with a suspended
load. Electric Machine Building and Electric Control, 69:17–22, 2007.

[12] M. Čolić, N. Pervan, M. Delić, A.J. Muminović, S. Odžak, and V. Hadžiabdić. Mathematical
modelling of bridge crane dynamics for the time of non-stationary regimes of working hoist
mechanism. Archive of Mechanical Engineering, 69(2):189–202, 2022. doi: 10.24425/ame.
2022.140415.

[13] S. Chwastek. Optimization of crane mechanism to reduce vibration. Automation in Construction,
119:103335, 2020. doi: 10.1016/j.autcon.2020.103335.

[14] V. Loveikin, Yu. Romasevych, A. Loveikin, A. Lyashko,and M. Korobko. Minimization of high
frequency oscillations of trolley movement mechanism during steady tower crane slewing. UPB
Scientific Bulletin, Series D: Mechanical Engineering, 84(1):31-44, 2022.

[15] Z. Liu, T. Yang, N. Sun, and Y. Fang. An antiswing trajectory planning method with state
constraints for 4-DOF tower cranes: Design and experiments. IEEE Access, 7: 62142–62151,
2019. doi: 10.1109/ACCESS.2019.2915999.

[16] T.K. Nguyen. Combination of feedback control and spring-damper to reduce the vibration
of crane payload. Archive of Mechanical Engineering, 68(2):165–181, 2021. doi: 10.24425/
ame.2021.137046.

[17] G. Rigatos, M. Abbaszadeh, and J. Pomares. Nonlinear optimal control for the 4-DOF underac-
tuated robotic tower crane. Autonomous Intelligent Systems, 2:21, 2022. doi: 10.1007/s43684-
022-00040-4.

[18] A. Al-Fadhli and E. Khorshid. Payload oscillation control of tower crane using smooth com-
mand input. Journal of Vibration and Control, 29(3-4):902–915. 2023. doi: 10.1177/10775
463211054640.

[19] S.-J. Kimmerle, M. Gerdts, and R. Herzog. An optimal control problem for a rotating elas-
tic crane-trolley-load system. IFAC-PapersOnLine, 51(2):272-277, 2018, doi: 10.1016/j.ifacol.
2018.03.047.

[20] Y. Romasevych, V. Loveikin, and Y. Loveikin. Development of a PSO modification with varying
cognitive term. 2022 IEEE 3rd KhPI Week on Advanced Technology, KhPI Week 2022 – Con-
ference Proceedings, Kharkiv, Ukraine, 2022. doi: 10.1109/KhPIWeek57572.2022.9916413.

https://doi.org/10.24425/ame.2022.140424
https://doi.org/10.1007/s11071-016-2634-3
https://doi.org/10.1109/AIM.2016.7576860
https://doi.org/10.24425/ame.2022.140415
https://doi.org/10.24425/ame.2022.140415
https://doi.org/10.1016/j.autcon.2020.103335
https://doi.org/10.1109/ACCESS.2019.2915999
https://doi.org/10.24425/ame.2021.137046
https://doi.org/10.24425/ame.2021.137046
https://doi.org/10.1007/s43684-022-00040-4
https://doi.org/10.1007/s43684-022-00040-4
https://doi.org/10.1177/10775463211054640
https://doi.org/10.1177/10775463211054640
https://doi.org/10.1016/j.ifacol.2018.03.047
https://doi.org/10.1016/j.ifacol.2018.03.047
https://doi.org/10.1109/KhPIWeek57572.2022.9916413

	Introduction
	Optimization Problem Statement
	Optimization Problem Solving
	Results and Discussion
	Conclusions

