
FILOZOFIA I NAUKA
Studia filozoficzne i interdyscyplinarne

Tom 11, 2023

B. Jack Copeland, Diane Proudfoot

TURING’S WAGER?
doi: 10.37240/FiN. 2023.11.1.3

ABSTRACT

We examine Turing’s intriguing claim, made in the philosophy journal Mind,

that he had created a short computer program of such a nature that it would be im-

possible “to discover by observation sufficient about it to predict its future behav-

iour, and this within a reasonable time, say a thousand years” (Turing, 1950, p. 457).

A program like this would naturally have cryptographic applications, and we explore

how the program would most likely have functioned. Importantly, a myth has re-

cently grown up around this program of Turing’s, namely that it can be used as the

basis of an argument—and was so used by Turing—to support the conclusion that it

is impossible to infer a detailed mathematical description of the human brain within

a practicable timescale. This alleged argument of Turing’s has been dubbed “Tu-

ring’s Wager” (Thwaites, Soltan, Wieser, Nimmo-Smith, 2017, p. 3) We demonstrate

that this argument—in fact nowhere to be found in Turing’s work—is worthless,

since it commits a glaring logical fallacy. “Turing’s Wager” gives no grounds for pes-

simism about the prospects for understanding and simulating the human brain.

Keywords: Alan Turing; Turing’s Wager; mechanized encryption; laws of be-

haviour; unspecifiability of the mind; brain modelling; whole-brain simulation;

cipher machines; Enigma; Fish; Tunny; early computer-based cryptography.

1. INTRODUCTION

We live in an age of misinformation. This article highlights a tiny, but

important, piece of misinformation. A prominent online “List of things

named after Alan Turing” includes—among many bona fide items such as

“Turing test” and “Turing machine”—something called “Turing’s Wager.”1

Turing’s Wager has a Wikipedia entry (as well as a YouTube video “Turing’s
—————————

1 https://en.wikipedia.org/wiki/List_of_things_named_after_Alan_Turing

24 B. Jack Copeland, Diane Proudfoot

Wager—Know It ALL”2). This tells its readers that Turing’s Wager is a philo-

sophical argument “first given in 1950 by […] Alan Turing in his paper Com-

puting Machinery and Intelligence.”3 The conclusion of Turing’s argument,

readers are told, is that “it is impossible to infer or deduce a detailed math-

ematical model of the human brain within a reasonable timescale, and thus

impossible in any practical sense.” These claims are important because

a number of large scientific research projects are currently trying to achieve

exactly that, a detailed mathematical model of the whole human brain (for

example the European Human Brain Project, Japan’s Brain/MINDS Pro-

ject, the China Brain Project, and the BRAIN Initiative in the United

States). If this argument attributed to Turing is correct, then these whole-

brain projects are wrong-headed and doomed to failure.

A recent article wields this claimed argument of Turing’s against any em-

pirical attempt to arrive at a whole-brain model (Thwaites, Soltan, Wieser,

Nimmo-Smith, 2017). Its authors allege that Turing viewed the project of

describing “the human brain in mathematical terms” with “blunt scepti-

cism” (Thwaites et al., 2017, p. 1). They explain that “Turing’s Wager (as we

refer to it here) is an argument aiming to demonstrate that characterising

the brain in mathematical terms will take over a thousand years,” and they

leave readers in no doubt that they are attributing this argument to Turing

himself: “Turing introduced [...] Turing’s Wager in [his] essay, Computing

Machinery and Intelligence’ (Thwaites et al., 2017, p. 3).

Their statement of the wager argument is concise. They explain that it

utilizes a concrete illustration, by means of which Turing “sought to high-

light the challenges involved.” This is a “short computer program” that he

wrote for the University of Manchester computer; it “accepted a single num-

ber, performed a series of unspecified calculations on it, and returned a sec-

ond number” (Thwaites et al., 2017, p. 1).

“It would be extremely difficult, Turing argued, for anyone to guess these cal-

culations from the input and output numbers alone. Determining the calcula-

tions taking place in the brain, he reasoned, must be harder still: not only

does the brain accept tens-of-thousands of inputs from sensory receptors

around the body, but the calculations these inputs undergo are far more com-

plicated than anything written by a single programmer. Turing underscored

his argument with a wager: that it would take an investigator at least a thou-

sand years to guess the full set of calculations his Manchester program

employed. Guessing the full set of calculations taking place in the brain, he

noted, would appear prohibitively time-consuming (Turing 1950)” (Thwaites

et al., 2017, pp. 1–2).

—————————
2 https://www.youtube.com/watch?v=ONxwksicpV8
3 https://en.wikipedia.org/wiki/Turing%27s_Wager

 Turing’s Wager? 25

Our aims are (1) to publicize the fact that there is nothing like this argu-

ment to be found in Turing’s article (nor elsewhere in his writings); (2) to

clarify the nature and purpose of Turing’s—very interesting—short program,

around which Thwaites et al. have arranged their wager argument; and (3)

to assess the implications for the study of the brain of Turing’s actual claims

about this program.

The first appearance in the historical record of Turing’s short program

occurs in some notes (Copeland, 2005) which were taken during a discus-

sion on an autumn evening in 1949, in Manchester, where Turing was di-

recting the university’s Computing Machine Laboratory. In this discussion,

Turing mentioned a program whose nature it would be “impossible” to de-

duce from observations of its input–output behaviour. He used this example

to defeat an argument against the possibility of machine intelligence. Yet he

gave few clues as to how the program worked. What was its structure such

that it could defy analysis for (he said) “a thousand years?” Our suggestion

will be that the program simulated a type of cipher device, and was perhaps

connected with Turing’s post-war work for GCHQ (the UK equivalent of the

US National Security Agency). After our efforts to piece together the textual

clues concerning Turing’s mysterious program, we will go on to investigate

the textual evidence, or lack of it, for the Thwaites et al. interpretation of

Turing’s position.

2. THE 1949 MANCHESTER DISCUSSION

In the notetaker’s record of that 1949 discussion, held at Manchester

University on 27 October, Turing is reported as making the intriguing claim

that, in certain circumstances, “it would be impossible to find the pro-

gramme inserted into quite a simple machine.” That is to say, for the ma-

chine and program Turing was considering, reverse-engineering the pro-

gram from the machine’s behaviour is in practice not possible.

The discussion involved Michael Polanyi, Dorothy Emmet, Max New-

man, Geoffrey Jefferson, J. Z. Young, and others (the notetaker was Wolfe

Mays). At that particular point in the discussion, Turing was responding to

Polanyi’s assertion that “a machine is fully specifiable, while a mind is not.”

The mind is “only said to be unspecifiable because it has not yet been speci-

fied,” Turing replied; and it does not follow from this, he said, that “the

mind is unspecifiable”—any more than it follows from the inability of inves-

tigators to specify the program in his “simple machine” that this program is

unspecifiable. After all, Turing knew the program’s specification.

Polanyi’s assertion is not unfamiliar; other philosophers and scientists

make claims in a similar spirit. Recent examples are “mysterianist” philoso-

phers of mind, who claim that the mind is “an ultimate mystery, a mystery

26 B. Jack Copeland, Diane Proudfoot

that human intelligence will never unravel” (McGinn, 1999, p. 5).4 So, what

was Turing’s machine, such that it might counterexample a claim like Po-

lanyi’s? A machine that—although “quite a simple” one—thwarted attempts

to analyze it?

3. BACKGROUND: TURING’S KNOWLEDGE

OF CIPHER MACHINES

The cipher machines used in the Second World War could certainly be

described as “simple,” despite the monumental difficulty of inferring their

mode of operation from their input–output behaviour. These machines typi-

cally employed a system of rotating code-wheels to encrypt a message. The

best-known example is the German Enigma machine, with its three code-

wheels. Some later Enigma models contained a fourth wheel, with a conse-

quent step-change in the level of security the machine could provide.

The form of Enigma used by the German military was derived from an

earlier commercial version of the machine, by a series of significant en-

hancements that greatly increased security. In Germany, the military ma-

chine had the reputation of being well-nigh unbreakable; yet from 1933,

Polish codebreakers regularly decrypted Enigma messages intercepted from

the German Army’s radio network (Copeland, 2004). The Polish codebreak-

ers, led by mathematician Marian Rejewski, also broke into the Enigma traf-

fic of the German Air Force and Navy. Statistics gathered by the Biuro

Szyfrów—the Polish Cipher Bureau—in 1938 showed that the Poles were by

then successfully decrypting about 75 per cent of all intercepted Enigma

material.

It was around that time that Rejewski, together with the engineer Antoni

Palluth, designed the bomba, an ingenious machine for breaking Enigma

messages. The bomba contained eighteen rotating wheels, each one simulat-

ing an Enigma wheel; thus, the bomba’s wheels collectively simulated six

three-wheel Enigma machines. By mid-November 1938, half a dozen bomby

were in continuous operation at an underground facility near Warsaw. Brit-

ish and French codebreakers were invited to view the bomby, as well as oth-

er items of codebreaking technology, in the summer of 1939. When Turing

joined Bletchley Park—the British wartime headquarters for military code-

breaking—in the autumn of that year, the principles of the bomba were ex-

plained to him, and he went on to design his famous bombe, based on the

bomba but larger, containing more than a hundred rotating drums. Like the

bomba’s wheels, each drum simulated a single Enigma wheel. It was initially

thought the bombe would be able to use the same codebreaking method that

—————————
4 McGinn is here describing, not only the mind, but the “bond between the mind and the brain.”

 Turing’s Wager? 27

the bomba mechanized, until this method became wholly ineffective, due to

a sudden change in German operating procedures in the spring of 1940. The

actual bombe mechanised a very different codebreaking method, devised by

Turing.5

The Enigma machine had operational drawbacks—it was slow to use, as

well as labour-intensive (requiring three operators at each end of the send-

er–receiver link), and moreover the practical upper limit on message size

was only a few hundred characters. From 1940, the German military began

to roll out a new breed of cipher machine (Copeland, 2006). These were

collectively termed “Fish” at Bletchley Park. The British knew of three types

of Fish machine; they named them “Tunny,” “Sturgeon” and “Thrasher.”

The first experimental Tunny radio link went into operation in June 1941,

and soon the Tunny machine was being used for the highest-level German

Army message-traffic, between Berlin and the generals and field-marshals in

charge of the fighting at the various battle-fronts. Tunny had twelve code-

wheels, Sturgeon had ten. The shadowy Thrasher remained unbroken; it

seems to have used a pseudo-random tape produced by a wheeled machine.

Bletchley Park broke both Tunny and Sturgeon. Tunny, in particular, pro-

duced a deluge of intelligence. Breaking into the Tunny system was a team

effort and Turing played a fundamental role (in 1942).

Wheeled cipher machines remained the principal means of encryption

during the post-war years. Enigma was adopted by several Warsaw Pact

countries, including East Germany, where the Stasi used it during the 1940s

and 1950s (Weierud, 2006). It was also used by the Norwegian Security Po-

lice, until the 1960s. Large numbers of Sturgeon machines were employed

by the French, Dutch, Norwegians, Swedes, and others. Tunny, though, was

arguably the most important of the wheeled cipher-machines. The method

of encryption it pioneered was a staple of military and commercial cryp-

tosystems for many decades after the war.

4. MORE INFORMATION ABOUT TURING’S

“SIMPLE MACHINE”

Turing fleshed out his example a little in his 1950 article Computing Ma-

chinery and Intelligence (Turing, 1950). He was arguing against the propo-

sition that “given a discrete-state machine it should certainly be possible to

discover by observation sufficient about it to predict its future behaviour,

and this within a reasonable time, say a thousand years” (Turing, 1950,
—————————

5 Rejewski’s method attacked what was called the message’s indicator. This consisted of enci-
phered information about how the sender’s machine was configured, and the indicator was trans-
mitted to the receiver immediately prior to the message itself. Turing’s method, on the other hand,
attacked the message text directly, by means of what he called “closures” in the relationship between
the enciphered characters and their unenciphered equivalents.

28 B. Jack Copeland, Diane Proudfoot

p. 457). This “does not seem to be the case,” he said, and he went on to de-

scribe a counterexample:

“I have set up on the Manchester computer a small programme using only

1000 units of storage, whereby the machine supplied with one sixteen figure

number replies with another within two seconds. I would defy anyone to

learn from these replies sufficient about the programme to be able to predict

any replies to untried values” (Turing, 1950, p. 457).

These passages occur in a short section titled “The Argument from In-

formality of Behaviour,” in which Turing’s aim was to refute an argument

purporting to show that “we cannot be machines” (1950, p. 457). The argu-

ment, as Turing explained it, is this:

(1) If each man had a definite set of laws of behaviour which regulate his

 life, he would be no better than a machine.

(2) But there are no such laws.

 (3) Men cannot be machines.6

Turing agreed that “being regulated by laws of behaviour implies being some

sort of machine (though not necessarily a discrete-state machine),” and that

“conversely being such a machine implies being regulated by such laws”

(1950, p. 457). If this biconditional serves as a reformulation of the argu-

ment’s first premiss, then the argument is plainly valid.

Turing’s strategy was to challenge the argument’s second premiss. He

said:

“… we cannot so easily convince ourselves of the absence of complete laws of

behaviour [...] The only way we know of for finding such laws is scientific ob-

servation, and we certainly know of no circumstances under which we could

say ‘We have searched enough. There are no such laws’” (1950, p. 457).

Turing then offered his example of the “small programme” that cannot be

reverse-engineered, in order to demonstrate “more forcibly” that the failure

to find laws of behaviour does not imply that no such laws are in operation

(Turing, 1950, p. 457).

These are the only appearances of Turing’s “simple machine” in the his-

torical record (at any rate, in the declassified record). How could Turing’s

mysterious program have worked, such that in practice it defied analysis?

And what implications might the program have for the study of the brain—

beyond Turing’s uses of it against Polanyi’s bold assertion and against the

“informality of behaviour” argument? We discuss these questions in turn.

—————————
6 Turing first stated the argument in this form: “If each man had a definite set of rules of conduct

by which he regulated his life he would be no better than a machine. But there are no such rules, so
men cannot be machines” (1950, p. 457). He then considered the argument that results if “we substi-
tute ‘laws of behaviour which regulate his life’ for ‘laws of conduct by which he regulates his life’ ”
(ibidem).

 Turing’s Wager? 29

One obvious point about Turing’s mysterious program (henceforward:

XX) is that it amply meets the specifications for a high-grade cipher ma-

chine. It is seldom noted that Turing’s career as a cryptographer did not end

with the defeat of Hitler. During the post-war years, as well as playing

a leading role in the Manchester Computing Machine Laboratory, Turing

worked as a consultant for GCHQ, Bletchley Park’s peacetime successor

(Copeland, 2017, p. 37). With the development of the first all-purpose elec-

tronic computers, two of Turing’s great passions, computing and cryptog-

raphy, were coalescing. He was an early pioneer in the application of elec-

tronic stored-program computers to cryptography.

The Manchester computer’s role in Cold War cryptography remains

largely classified. We know, however, that while the computer was at the

design stage, Turing and his Manchester colleague Max Newman—both had

worked on breaking the Tunny cipher system at Bletchley Park—directed the

engineers to include special facilities for cryptological work.7 These included

operations for differencing, a now familiar cryptological technique that orig-

inated in Turing’s wartime attack on Tunny, and was known at Bletchley

Park as “delta-ing.” GCHQ itself took a keen interest in the Manchester

computer. Jack Good, who in 1947 had a hand in the design of Manchester’s

prototype “Baby” computer, joined GCHQ full-time in 1948 (Copeland,

2011, pp. 5–6, 28–29). Others at Manchester who were closely involved with

the computer also consulted for GCHQ (Copeland, 2011, p. 6); and a contin-

gent from GCHQ attended the inaugural celebration for what Turing called

the Mark II8 version of the Manchester computer, installed in Turing’s lab in

1951. The idea of programming electronic digital computers to encrypt mili-

tary and commercial material was new and promising. GCHQ installed

a Mark II at its new headquarters in Cheltenham.9

5. XX AS AN ENCRYPTION DEVICE

How might XX be used for encryption? A hypothetical example illus-

trates the general principles. Suppose Alice wishes to encipher her message

“I LUV U” (the “plaintext”) before sending the result (the “ciphertext”) to

Bob. Bob, who knows Alice’s enciphering method, will uncover the plaintext

by using Alice’s method in reverse.

Alice’s first step is to convert the plaintext into binary. Turing would have

done this using teleprinter code (also known as Baudot-Murray code). Em-
—————————

7 Tom Kilburn in interview with Copeland, July 1997; G. C. Tootill, Informal Report on the De-
sign of the Ferranti Mark I Computing Machine, November 1949, National Archive for the History
of Computing, University of Manchester, p. 1.

8 The computer that Turing called the Mark II is also known as the Ferranti Mark I, after the
Manchester engineering firm that built it.

9 The manufacturer’s name for the model installed at GCHQ was the Ferranti Mark I Star.

30 B. Jack Copeland, Diane Proudfoot

ployed worldwide in communications systems at that time, teleprinter code

transformed each keyboard character into a different string of five bits; for

example, “A” was 11000 and “B” was 10011. Teleprinter code is the ancestor

of the ASCII and UTF-8 codes used today to represent text digitally. Turing

was very familiar with teleprinter code from his time at Bletchley Park, since

the German Tunny system used it. In fact, Turing liked teleprinter code so

much that he chose it as the basis for the Manchester computer’s program-

ming language.

To convert the plaintext into binary, Alice needs to know the following

teleprinter code equivalences: “I” is 01101; “L” is 01001; “U” is 11100; “V” is

01111; and space is 00100. To do the conversion, she first writes down the

teleprinter code equivalent of “I,” and then (writing from left to right) the

teleprinter code equivalent of space, and then of “L,” and so on, producing:

01101001000100111100011110010011100

This string of 35 figures (or bits) is called the “binary plaintext.”

So far, there has been no encryption, only preparation. The encryption

will be done by XX. Recall that XX takes a sixteen-figure number as input

and responds with another sixteen-figure number. Alice readies the binary

plaintext for encryption by splitting it into two blocks of sixteen figures, with

three figures “left over” on the right:

0110100100010011 1100011110010011 100

Next, she pads out the three left-over figures so as to make a third sixteen-

figure block. To do this, she first adds “/” (00000), twice, at the end of the

binary plaintext, so swelling the third block to thirteen figures, and then she

adds (again on the far right of the third block) three more bits, which she

selects at random (say 110), so taking the number of figures in the third

block to sixteen. The resulting three blocks form the “padded binary

plaintext”:

0110100100010011 1100011110010011 1000000000000110

Alice now uses XX to encrypt the padded binary plaintext. She inputs the

left-hand sixteen-figure block and writes down XX’s sixteen-figure response;

these are the first sixteen figures of the ciphertext. Then she inputs the mid-

dle block, producing the next sixteen figures of the ciphertext, and then the

third block. Finally, she sends the ciphertext, 48 figures long, to Bob. Bob

splits up the 48 figures of ciphertext into three sixteen-figure blocks and

decrypts each block using his own XX (configured identically to Alice’s); and

then, working from the left, he replaces the ensuing five-figure groups with

their teleprinter code equivalent characters. He knows to discard any termi-

nal occurrences of “/,” and also any group of fewer than five figures follow-

ing the trailing “/.” Bob is now in possession of Alice’s plaintext.

 Turing’s Wager? 31

This example illustrates how XX could have been used for cryptography;

but it gets us no closer, however, to knowing how XX generated its sixteen-

figure output from its input. Probably this will never be known—unless the

classified historical record happens to include information about XX, but this

seems unlikely. However, let us speculate. As previously mentioned, the lead-

ing cipher machines of that era—Enigma, Tunny, and Sturgeon, as well as the

Hagelin, the British Typex and Portex, and Japanese machines such as Pur-

ple—all used a system of wheels to produce the ciphertext from the plaintext.

We shall focus on Tunny, since it is the simplest of these machines to de-

scribe, and also because of its importance post-war. At Bletchley Park, Turing

had invented the first systematic method for breaking the German Army’s

Tunny messages; it is quite possible that he was interested after the war in

refining the machine’s principles of encryption for future applications.

6. SIMULATING CODE-WHEEL CIPHER-MACHINES

The Tunny machine had at its heart twelve code-wheels, but here we

shall focus on a form of the Tunny machine with only ten code-wheels. Tu-

ring’s wartime Tunny-breaking colleagues Jack Good and Donald Michie

have argued persuasively that if (counterfactually) the Germans had used

this ten-wheel version of the machine, it would have offered a far higher

level of crypto-security than the twelve-wheel machine (Good, Michie,

2006). In fact, Michie remarked that, had the Germans used the ten-wheel

version, “it is overwhelmingly probable that Tunny would never have been

broken.” With the ten-wheel machine, he said, there would be no “practical

possibility of reverse-engineering the mechanism that generated it” (Good,

Michie, 2006, p. 409). Assuming that the machine was not compromised by

security errors, and that the state of the art in cryptanalysis persisted much

as it was in 1949, then the ten-wheel Tunny might indeed have remained

unbroken for Turing’s “a thousand years.” If Turing was interested in Tunny

post-war, it was most probably in this form of the machine.

As far as the user is concerned, the Tunny machine (both the ten- and

twelve-wheel versions) is functionally similar to XX. When supplied with

one five-figure number, the Tunny machine responds with another. When

the number that is supplied (either by keyboard or from punched paper

tape) is the teleprinter code of a letter of plaintext, the machine’s reply pro-

vides the corresponding five figures of ciphertext. If, on the other hand, the

machine is being used, not to encrypt the plaintext, but to decrypt the ci-

phertext, then its reply to five figures of ciphertext is the teleprinter code of

the corresponding plaintext letter.

The machine produces its reply by first generating five figures internally,

and then “adding” these to the number that is supplied as input. Tunny “ad-

32 B. Jack Copeland, Diane Proudfoot

dition” is better known to logicians as exclusive disjunction: 0 + 0 = 0, 1 + 0

= 1, 0 + 1 = 1, and 1 + 1 = 0. For example, if the incoming five figures are

01101, and the internally generated five figures are 00100, then the ma-

chine’s reply is 01001 (i.e. 01101 + 00100).

The function of the code-wheels is to generate the five figures that are

added to the incoming number. A simple way to generate five figures is to

use an arrangement of five wheels, each of which contributes one figure.

However, the set-up actually used in the ten-wheel Tunny machine (and the

same in the twelve-wheel version) is more complicated, the aim being great-

er security. Rather than a single group of five wheels, there are two groups,

with five wheels in each group. In Bletchley Park jargon, the two groups

were known respectively as the “-wheels” and the “-wheels.” Each group

of wheels produces five figures; and these two five-figure numbers are then

added together. It is the result of this addition that the machine goes on to

add to the incoming number.

The Tunny machine’s action is transparently described by the machine’s

so-called “encipherment equation:”
( + ) + P = C

Adding the number  that is produced by the -wheels to the number 

produced by the -wheels, and then adding the resulting number to P—the

incoming five figures of binary plaintext—produces C, the corresponding

five figures of ciphertext. With each incoming five-figure number, every

wheel of the 10-wheel machine turns forwards a step; this has the result that

the internally-generated number  +  is always changing. (Incidentally,

the function of the twelve-wheel Tunny’s two extra wheels was quite differ-

ent. Known as the “motor wheels,” these served to create irregularities in the

motions of the -wheels. No doubt the engineers at Lorenz10 thought this

arrangement would enhance the security of the machine, but they were bad-

ly mistaken. The motor wheels introduced a serious weakness, and this be-

came the basis of Bletchley Park’s highly successful attack on the twelve-

wheel Tunny machine.)

One last relevant detail about Tunny’s wheels. Each wheel had pins

spaced regularly around its circumference. An operator could set each pin

into one of two different positions, protruding or not protruding. (For secu-

rity, the positions were modified daily.11) An electrical contact read figures

from the rotating wheel (one contact per wheel): a pin in the protruding

position would touch the contact, producing 1 (represented by electricity

flowing), while a non-protruding pin would miss the contact, producing 0

—————————
10 The Tunny machine was manufactured by the Berlin engineering company C. Lorenz AG. For

that reason it was also called the “Lorenz machine” at post-war GCHQ (although never at wartime
Bletchley Park, where the manufacturer was unknown and the British codename “Tunny machine”
was invariably used).

11 From 1 August 1944.

 Turing’s Wager? 33

(no flow). As a group of five wheels stepped round, the row of five contacts

delivered five-figure numbers. Each wheel had a different number of pins,

ranging from 23 to 61; at Bletchley Park, this number was referred to as the

length of the wheel.

It would have been completely obvious to the post-war pioneers of com-

puterized cryptography that one way to create a secure enciphering program

was to simulate an existing secure machine. Turing’s mysterious program

may well have been a simulation of the ten-wheel Tunny machine, or of

some other wheeled cipher machine.

Turing’s brief descriptions of XX contain some small numerical clues. He

gave in effect an upper bound on the number of instruction-executions that

were performed in the course of encrypting one sixteen-figure number: XX

gives its reply “within two seconds,” he said. In 1949-1950, most of the Man-

chester computer’s instructions took 1.8 milliseconds to execute; so approx-

imately 1000 instructions could be implemented in two seconds. He also

said that XX required 1000 units of storage. In the Manchester computer as

it was in 1949–1950, a unit of high-speed storage consisted of a line of 40

bits spread horizontally across the screen of a Williams tube (Turing

c.1950).12 (A Williams tube, the basis of the computer’s high-speed memory,

was a cathode ray tube; a small dot of light on the tube’s screen represented

1 and a large dot 0.) 1000 units is therefore 40,000 bits of storage. To simu-

late the ten-wheel Tunny on the Manchester computer, Turing would have

needed ten variable-length shift registers to represent the wheels. Since the

lengths of the ten wheels were, respectively, 41, 31, 29, 26, 23, 43, 47, 51, 53,

and 59, a total of 403 bits of storage would be required for the pin patterns.

This leaves more than 39 kilobits, an ample amount for storing the instruc-

tions—which add ,  and P, shift the bits in the wheel registers (simulating

rotation), and perform sundry control functions—and for executing them.

Why, one might wonder, are the numbers encrypted by XX sixteen fig-
ures long? This might indicate that XX simulated a cipher machine with
more than ten wheels—possibly a Tunny-like machine with modifications

introduced by Turing for greater security: he might have increased the num-
ber of -wheels and -wheels (and also the lengths of the wheels), or made
other modifications that are impossible now to reconstruct. On the other

hand, however, the number sixteen might in fact be no guide at all to the
number of wheels. During 1941, when Tunny was first used for military traf-
fic, it was relatively obvious to the Bletchley Park codebreakers that the new

machine had twelve wheels—invaluable information. Turing’s choice of six-
teen-figure numbers (rather than some number of figures bearing an imme-
diate relationship to the number of wheels) might simply have been a way of

masking the number of wheels.
—————————

12 Turing described the computer as it was at that time in an Appendix to (Turing, c.1950) entitled
“The Pilot Machine (Manchester Computer Mark I).”

34 B. Jack Copeland, Diane Proudfoot

Our first question about Turing’s mysterious program was: how could it

have worked, such that in practice it defied analysis? One plausible answer

is: by simulating a Tunny or other wheeled cipher-machine. We turn now to

the question: does XX have implications concerning the feasibility of whole-

brain simulation?

7. XX AND BRAIN SIMULATION

According to Thwaites, Soltan, Wieser and Nimmo-Smith, the answer to

that question is a resounding yes. As we mentioned earlier, they claim to

find in Turing “an argument aiming to demonstrate that characterising the

brain in mathematical terms will take over a thousand years” (Thwaites et

al., 2017, p. 3), and they say that XX serves as a practical illustration of the

challenges involved.

However, the only conclusion that Turing drew from the XX example was

(as we described above) that failing to find the laws of behaviour or a full

specification does not imply that none exist. Contrary to what Thwaites and

his co-authors say, there is no argument in “Computing Machinery and In-

telligence” (nor elsewhere in Turing’s writings) aiming to demonstrate that

“characterising the brain in mathematical terms will take over a thousand

years.” It is false that Turing noted (as Thwaites and his co-authors claim)

anything to the effect that “[g]uessing the full set of calculations taking place

in the brain would appear prohibitively time-consuming,” or that he rea-

soned in “Computing Machinery and Intelligence” about the difficulty of

determining “the calculations taking place in the brain” (Thwaites et al.,

2017, pp. 1, 2). Thwaites and his co-authors tell us that Turing was not

“optimistic about [the] chances of beating Turing’s Wager” (Thwaites et al.,

2017, p. 3), but this is an extraordinary claim—Turing never mentioned the

so-called Wager.

A defender of Turing’s Wager might perhaps respond that the fact that

Turing himself did not state or suggest “Turing’s Wager” is of only historical

or scholarly importance. If valid, the wager argument is certainly significant,

owing to its powerful negative implications about the feasibility of whole-

brain simulation, as discussed above. But is the wager argument valid?

Set out explicitly, the wager argument is as follows:

(1) It would take at least 1000 years to determine the calculations occur-

ring in XX.

(2) The calculations occurring in the brain are far more complicated

than those occurring in XX.

 (3) It would take well over 1000 years to determine the calculations

occurring in the brain.

 Turing’s Wager? 35

Both (1) and (2) are true, we may assume—certainly the calculations done

by the ten-wheel Tunny are extremely simple in comparison with those tak-

ing place in the brain. However, these premises do not entail (3). If XX sim-

ulates a cryptographic machine, something carefully and cleverly designed

to thwart any efforts to determine the calculations taking place within it,

there is no reason why a more complicated but potentially more transparent

machine should not succumb to analysis more quickly than XX. The mere

possibility that XX simulates a cipher-machine, a machine designed to be

unfathomable, shows that in some possible world (1), (2), and the negation

of (3) are true, and thus that the Turing’s wager argument is invalid.

The answer to our second question, then, is no: XX has nothing to tell us

about the prospects of whole-brain simulation.

8. CONCLUSION

In the 1949 Manchester discussion, Turing employed one of his hallmark

techniques: attacking a grand thesis with a concrete counterexample. He

used XX to undermine both Polanyi’s claim that “a machine is fully specifia-

ble, while a mind is not” and the Informality of Behaviour Argument against

machine intelligence. But his writings contain no trace of an attempt to use

XX to undermine whole-brain modelling. “Turing’s Wager” is a fabrication,

as is the claim by Thwaites and his co-authors that Turing “noted” that a

quest for “the full set of calculations taking place in the brain [...] would

appear prohibitively time-consuming.” Moreover, as we have just argued,

the attempt by Thwaites et al. to recruit XX to their effort to undermine the

viability of whole-brain modelling is deeply misguided.

Although Turing himself made no connection between XX and the pro-

spects for brain-modelling, one may still ask: What might Turing have

thought of the BRAIN Initiative and other large-scale brain-modelling pro-

jects? It is impossible to say—but Turing was, after all, an early pioneer of

brain-modelling. Not long after the war, he wrote:

“In working on the ACE I am more interested in the possibility of producing

models of the action of the brain than in the practical applications to compu-

ting. [...] [A]lthough the brain may in fact operate by changing its neuron

circuits by the growth of axons and dendrites, we could nevertheless make

a model, within the ACE, in which this possibility was allowed for, but in

which the actual construction of the ACE did not alter.”13

Turing might well have cheered on his 21st century descendants.14
—————————

13 Letter from Turing to W. Ross Ashby, undated, circa 1947 (Woodger Papers, Science Museum,
London, catalogue reference M11/99). Cf. The Essential Turing, B. J. Copeland (Ed.), Oxford Uni-
versity Press, 2004, p. 375.

14 This article is a derivative of one that appeared in the 2019 APA Newsletter on Philosophy and
Computers.

36 B. Jack Copeland, Diane Proudfoot

REFERENCES

Copeland, B. J., Enigma, in: The Essential Turing, B. J. Copeland (ed.), Oxford University
Press, Oxford–New York 2004.

____ , The German Tunny Machine, in: Colossus: The Secrets of Bletchley Park’s Codebreak-
ing Computers, B. J. Copeland et al., Oxford University Press, Oxford–New York 2006.

____ , The Manchester Computer: A Revised History, IEEE Annals of the History of Compu-
ting, 2011, 33, pp. 4–37.

____ , Crime and Punishment, in: Copeland, B. J., J. Bowen, M. Sprevak, R. Wilson, et al.,
The Turing Guide, Oxford University Press, Oxford–New York 2017.

Copeland, B. J. (ed.), The Essential Turing: Seminal Writings in Computing, Logic, Philoso-
phy, Artificial Intelligence, and Artificial Life, Oxford University Press, Oxford–New York
2004.

Copeland, B. J. (ed.), “The Mind and the Computing Machine,” by Alan Turing and Others,
The Rutherford Journal: The New Zealand Journal for the History and Philosophy of Sci-
ence and Technology, vol. 1, 2005; http://www.rutherfordjournal.org/ article010111.html

Copeland, B. J., et al., Colossus: The Secrets of Bletchley Park’s Codebreaking Computers,
Oxford University Press, Oxford–New York 2006.

Copeland, B. J., Bowen, J., Sprevak, M., Wilson, R. et al., The Turing Guide, Oxford University
Press, Oxford–New York 2017.

Good, I. J., Michie, D., Motorless Tunny, in: Copeland, B. J., et al., Colossus: The Secrets of
Bletchley Park’s Codebreaking Computers, Oxford University Press, Oxford–New York
2006.

McGinn, C., The Mysterious Flame: Conscious Minds in a Material World, New York: Basic
Books, 1999.

Thwaites, A., Soltan, A., Wieser, E., Nimmo-Smith, I., The Difficult Legacy of Turing’s Wager,
Journal of Computational Neuroscience, 2017, 43, pp. 1–4.

Turing, A. M., Programmers’ Handbook for Manchester Electronic Computer Mark II. Com-
puting Machine Laboratory, University of Manchester; no date, c. 1950; http://www.
alanturing.net/turing_archive/archive/m/m01/M01-001.html

____ , Computing Machinery and Intelligence (1950), in: The Essential Turing, B. J.
Copeland (ed.), Oxford University Press, Oxford–New York 2004.

Weierud, F., Bletchley Park’s Sturgeon—the Fish that Laid No Eggs, in: Copeland, B. J., et al.,
Colossus: The Secrets of Bletchley Park’s Codebreaking Computers, Oxford University
Press, Oxford–New York 2006.

ABOUT THE AUTHORS:

B. Jack Copeland — FRS NZ: Distinguished Professor of Philosophy, University

of Canterbury, New Zealand.

Email: jack.copeland@canterbury.ac.nz

Diane Proudfoot — Professor of Philosophy, University of Canterbury, New Zea-

land.

Email: diane.proudfoot@canterbury.ac.nz

