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The performance of triangular elements satisfying either compatibility or incom-
patibility conditions in the plate bending analyses is of great importance. To achieve
highly accurate responses, four elements are formulated for the structural analysis in
this study. All of these elements have thirteen nodes with different degree-of-freedom
arrangements. Two of them are displacement-based compatible triangular elements,
which are named Karimi Pour Compatible Triangular (KCT) and Noroozinejad Com-
patible Triangular (NCT) elements. Besides, the other two stress-based incompatible
triangular elements are also suggested with the names of Karimi Pour Incompatible
Triangular (KIT) and Noroozinejad Incompatible Triangular (NIT) elements. In this
study, several benchmark problems are solved by using four proposed elements. These
structures were previously analyzed by analytical or numerical schemes. Findings
clearly indicated the improvement of answers, when various behaviors of the plate
bending structures were studied. Additionally, it is concluded that the solution time is
considerably declined if the recommended stress-based elements are utilized.

1. Introduction

The finite element approach consists of several elements that may be used
to address a wide range of issues. Displacement techniques are one of the most
prevalent methods for creating a new element. The flaw in this technique is that it
frequently results in incorrect stresses. There are numerous options for correcting
this flaw and improving replies [1–9]. In this regard, Öztorun [10] presented a new
rectangular element for elastic plate-bending bodies. The proposed element had

B Ehsan NOROOZINEJAD FARSANGI, e-mail: ehsan.noroozinejad@westernsydney.edu.au
1Innovative Structural Engineering and Mechanics Group, Texas, USA
2Urban Transformations Research Centre (UTRC), Western Sydney University, NSW, Australia

0

© 2024. The Author(s). This is an open-access article distributed under the terms of the Creative
Commons Attribution (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/), which permits
use, distribution, and reproduction in any medium, provided that the author and source are cited.

https://orcid.org/0000-0002-8456-4182
https://orcid.org/0000-0002-2790-526X
mailto:ehsan.noroozinejad@westernsydney.edu.au
https://creativecommons.org/licenses/by/4.0/


2 Arash KARIMI POUR, Ehsan NOROOZINEJAD FARSANGI

six degrees of freedom. Both numerical and experimental tests were utilized to
show the accuracy of the element. Suitable outcomes were achieved using coarse
meshes, and rational convergence was also driven for the evaluated benchmarks.

In 2013, Esen [11] defined a new element for solving thin plates under a
vibration condition. The matrix of the stiffness of the recommended element
was improved using the transverse inertia and Coriolis forces. In this research,
a sixteen-degrees-of-freedom rectangular element was presented. The obtained re-
sults demonstrated the elemental performance improved in predicting the displace-
ment responses of the plate bending problems. In another investigation, Haldar and
Sheikh [12] evaluated the performance of plates using a new finite element formu-
lation. In their proposed element, the impact of shear deformation was considered.
Solving different problems demonstrated the acceptable performance of the indus-
trialized element. To solve the plate bending approaches, Wang and Wang [13]
utilized finite element schemes for several loading conditions. Governing formulas
were established using the Galerkin scheme. To validate their proposed elements,
different problems were solved. They declared that the deformation and stress
components of the plate element have a theatrical requirement on the structural
outstanding surface stress. Moreover, the developed element could be utilized as a
useful tool to predict the plate performances.

In 2011, Flores and Oñate [14] presented novel triangular elements to assess
the bending behavior of thin membranes and shells. A new integration method
was also employed. Besides, all findings were compared with the other previously
available answers. Based on the obtained results, the proposed elements exhibited
satisfactory performance and always converged to the exact solutions. To solve
a sheet-metal member with higher efficiency and flexibility, Franciosa et al. [15]
defined a novel triangular shell element. Proficiency was obtained by combining
the hybrid quadrilateral and triangular elements. They found that new hybrid ele-
ments predict the performance of shell elements better than those of conventional
displacement-based elements. In 2011, Duan et al. [16] analyzed the cracking pat-
terns in plate bending problems by using new triangular elements. The obtained
outcomes demonstrated that their new schemes had very good agreement with
the analytical solutions, even with big mesh sizes. These investigators reported
that their elements exhibited high accuracy and efficiency. In another research,
Mu and Zhang [17] utilized six node triangular elements to assess the cracking
in plate members. They have tested their elements with several benchmarks by
focusing on different mesh sizes. The mesh dependencies illustrated the efficiency
and toughness of the planned new elements. In 2016, Zhuang et al. [18] evaluated
the behavior of thick plates by considering the influence of shear stress over the
thickness using new triangular elements. Their proposed elements had six and nine
degrees of freedom. After presenting the formulation, they evaluated their method
to anticipate the performance of thin plates. Several numerical benchmarks illus-
trated the efficiency and precision of their elements. Ma and Chen [19] developed a
new triangular stress-based element with eighteen degrees of freedom. In addition,
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a refined expected stress element scheme was established to enhance the accuracy
of their element. The obtained outcomes showed that this element certainly had
higher accuracy and could pass the improved patch test compared to those of the
displacement-based elements.

In 2010, Zhao et al. [20] employed energy techniques to develop an eighteen-
degrees-of-freedom triangular element. In this evaluation, a feeble continuousness
state of the axisymmetric uncharacteristic element model was presented using the
couple stress scheme. Numerical consequences demonstrated that their recom-
mended element could be utilized for analyzing the size effect and had appropriate
convergence efficiency. Kaveh and Daei [21] used an optimization technique to
increase the accuracy of triangular elements. For this aim, different examples were
solved and showed the efficiency of their proposed algorithm. Hu et al. [22] defined
a new element using mesh-free-enriched triangular elements for analyzing 2D large
deformation problems. Their numerical results exhibited the high correctness and
efficiency of the suggested displacement-based element. To formulate a rank ade-
quate for the six-node elements, a minimum of six wave modes from three basis
sites is compulsory [23]. These investigators found that the near-exact results could
be obtained by using wavelet techniques. Huang et al. [24] considered drilling
rotation degrees to formulate a triangular element. They declared that the drilling
factor of their element could properly carry over the twisting moment, relative
to those elements proposed previously. To advance the performance of triangu-
lar and rectangular plate bending elements, Kaveh and Koohestani [25] studied
the graph-theoretical for the force scheme. They solved different problems using
their elements and declared that the recommended elements had high accuracy in
predicting the plate behavior.

In 2019, Chen and Li [26] proposed a 3D triangular element using a B-net
system with fifteen nodes. They put the TPS15 element through its paces with
various numerical cases, counting one that comprises the hexahedral element. The
numerical consequences revealed that the spline elements have greater correctness
in most circumstances, notably for deformed models, as compared to the Isopara-
metric elements. Cui et al. [27] were the ones who demarcated using triangular
and quadrilateral elements for structure examination. Additionally, this approach
is used to create high-order quadrilateral transition components. With no need for
the requirement to divide the components into lesser levelling cells, triangular and
quadrilateral high-order CS-FEMs may be formed. They also discovered that in
their formulation, the edge nodes of the high-order elements may be arbitrarily
positioned, which is not allowed in a typical high-order FEM system. In another
evaluation, Zander et al. [28] proposed anisotropic multi-level quadrilateral and
triangular elements. The given findings establish the suggested technique as an
automated, anisotropic multi-level process for quadrilateral and triangular meshes,
with minimal implementation complexity and no limits imposed by subjective
hanging nodes and the accompanying dead-lock difficulties. Kamiski [29] used
the stochastic perturbation-based FEM to perform ambiguity examination in solid
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procedures with unchanging and triangular elements. The structural reactions of
numerous automatic schemes are investigated utilizing their fundamental proba-
bilistic properties, which have been confirmed using a probabilistic semi-analytical
technique. Recently, Cho [30] used the FEM approach to do a non-linear bending
analysis of a plate lying on an elastic basis. These non-dimensional characteristics
are investigated in terms of foundation stiffness, gradient pattern, plate feature and
width-thickness fractions, and boundary state. The parametric tests reveal that such
factors have a large impact on both non-dimensional quantities.

As it is reported in the literature, using the stress function plays an influen-
tial function in improving the elemental response accuracies. Two elements were
formulated using the conventional finite element technique, with the imposition
of compatibility conditions. Moreover, two other elements were established based
on the stress functions. Therefore, two of them are displacement-based compat-
ible triangular elements, which are named Karimi Pour Compatible Triangular
(KCT) and Noroozinejad Compatible Triangular (NCT) elements. Besides, two
other stress-based incompatible triangular elements are also suggested with the
names of Karimi Pour Incompatible Triangular (KIT) KIT and Noroozinejad In-
compatible Triangular (NIT) elements. Compatible elements are those that satisfy
the displacement compatibility requirement. This means that the displacement at all
points is not a function of the path, and there exists a uniquely defined displacement
field. Conversely, incompatible elements violate the displacement compatibility re-
quirement. Incompatible elements were introduced to correct the strains produced
by incompatible displacements, achieving excellent results for elements and for
this aim, formulations have been established based on stress functions. Therefore,
compatible elements provide the displacement responses with higher accuracy, but
incompatible elements provide the stress responses with higher accuracy. This is
the first time that, using the stress function, we can develop elements predicting
both stress and displacement responses with higher accuracy. Based on this fact,
four new triangular elements, compatible and incompatible, are developed for an-
alyzing the plate bending structures. They are named KIT, NIT, KCT, and NCT.
It should be noted that the differences between the proposed elements come from
their degrees-of-freedom arrangements. To show the competence of the projected
elements, several problems are solved with the recommended four elements. Nu-
merical results illustrate that good outcomes for the displacements, and specifically
for the stresses, could be achieved by using these elements. Moreover, using stress
functions to formulate the elements reduces the processing time of analyses.

2. Plate Bending Governing Equations

The deformed shape of a plate could be determined by the displacement
function at different points of the plate. Generally, the following equation could be
utilized to determine the plate deformation, as demonstrated in Fig. 1.
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Fig. 1. Displacement and rotations of an infinitesimal plate bending

{𝜃} =
{
𝜃𝑥

𝜃𝑦
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in which, {𝜃} and {𝑢} indicate the rotational and transitional deformations. Accord-
ing to the Kirchhoff hypothesis, the plate rotations are related to the derivatives
of the displacement function. Besides, the non-zero strains could be defined by
considering the corresponding curvatures, as follows:
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In the transverse directions, both normal (𝜀𝑧𝑧) and shear (𝜀𝑥𝑧 and 𝜀𝑦𝑧) strains
are zero. The integral through the plate thickness is used to outline the moments
at a given position. To satisfy the equilibrium conditions, the moments, {𝑀} and
shear forces, {𝑉} are corresponding to the integrals of out-of-plane shear stresses
according to the following formulas:

{𝑀} =


𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

 =

𝑡/2∫
−𝑡/2

𝑧


𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

 d𝑧, (4)

{𝑉} =
{
𝑉𝑥

𝑉𝑦

}
=

𝑡/2∫
−𝑡/2

{
𝜏𝑥𝑧

𝜏𝑦𝑧

}
d𝑧. (5)

By considering the applied transverse load, 𝑞, the following equilibrium equations
should be satisfied:

𝜕𝑉𝑥

𝜕𝑥
+
𝜕𝑉𝑦

𝜕𝑦
+ 𝑞 = 0, (6)

𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑦𝑥

𝜕𝑦
−𝑉𝑥 = 0, (7)

𝜕𝑀𝑦

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
−𝑉𝑦 = 0. (8)

After eliminating the shear forces, 𝑉𝑥 and 𝑉𝑦 , from the last relations, the following
governing equation is derived:

𝜕2𝑀𝑥

𝜕𝑥2 +
𝜕2𝑀𝑦

𝜕𝑦2 + 2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+ 𝑞 = 0. (9)

The moments and strains are related as follows:

[𝐷𝑚] =
𝐸𝑡3

12(1 − 𝜈2)


1 𝜈 0
𝜈 0 0

0 0
1 − 𝜈

2

 , (10)

{𝑀} =
[
𝐷𝑚

]
{𝜀} . (11)

3. Formulating KCT and NCT elements

In this study, four triangular elements with thirteen nodes are developed. All
elements are exposed in Fig. 2. These new plate-bending elements are presented
based on the demonstrated degrees of freedom. Two of them are compatible, and
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(a) (b)

Fig. 2. Projected triangular elements (a) KCT and KIT (b) NCT and NIT

the other ones are incompatible triangular elements. It should be noted that all
four proposed elements are based on the full 5th-degree function with 21 terms, as
follows:

𝑤
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2
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2
𝑖 𝜉

2
𝑘𝜉 𝑗 + 𝛼10𝜉

2
𝑗 𝜉

3
𝑘 + 𝛼11𝜉

4
𝑗 𝜉𝑖

+ 𝛼12𝜉𝑖𝜉
3
𝑗 𝜉𝑘 + 𝛼13𝜉𝑖𝜉

2
𝑗 𝜉

2
𝑘 + 𝛼14𝜉𝑖𝜉 𝑗𝜉

3
𝑘 + 𝛼15𝜉𝑖𝜉

4
𝑘 + 𝛼16𝜉

5
𝑗

+ 𝛼17𝜉
4
𝑗 𝜉𝑘 + 𝛼18𝜉

3
𝑗 𝜉

2
𝑘 + 𝛼19𝜉

2
𝑗 𝜉

3
𝑘 + 𝛼20𝜉 𝑗𝜉

4
𝑘 + 𝛼21𝜉

5
𝑘 , (12)

where 𝜉𝑖, 𝜉 𝑗 and 𝜉𝑘 are Lagrangian normalized finite element coordinates which
were discussed in previous studies in detail [31]. According to Fig. 2, the element
nodal displacement for KCT, {𝑑}KCT, has the subsequent arrangement:

{𝑑}KCT =
{
𝑤𝑥1 𝑤𝑦1 𝑤1 𝑤𝑥2 𝑤𝑦2 𝑤2 𝑤𝑥3 𝑤𝑦3 𝑤3 𝑤𝑛4 𝑤5 𝑤𝑛6

𝑤𝑛7 𝑤8 𝑤𝑛9 𝑤𝑛10 𝑤11 𝑤𝑛12 𝑤𝑥13 𝑤𝑦13 𝑤13
}
. (13)

In addition, NCT has the following elements nodal displacement, {𝑑}NCT:

{𝑑}NCT =
{
𝑤𝑥1 𝑤𝑦1 𝑤1 𝑤𝑥2 𝑤𝑦2 𝑤2 𝑤𝑥3 𝑤𝑦3 𝑤3 𝑤4 𝑤𝑛5 𝑤6

𝑤7 𝑤𝑛8 𝑤9 𝑤10 𝑤𝑛11 𝑤12 𝑤𝑥13 𝑤𝑦13 𝑤13
}
. (14)

The next equation is established to determine the polynomial matrix, [𝑃]:

𝑤
(
𝜉𝑖 , 𝜉 𝑗 , 𝜉𝑘

)
= [𝑃] {𝛼} , (15)

where, {𝛼} is the unknown parameter. To find the interpolation matrix, [𝑁], the
inverse geometric matrix, [𝐺]−1, is utilized as follows:

[𝑁] = [𝑃] [𝐺]−1. (16)
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Having interpolation functions, the strain matrix, [𝐵], and elemental stiffness, [𝐾],
can be calculated by the next relations:

{𝜀} = [𝐵] {𝑑} , (17)

[𝐵] =



− 𝜕2

𝜕𝑥2

− 𝜕2

𝜕𝑦2

−2
𝜕2

𝜕𝑥𝜕𝑦


[𝑁] , (18)

[𝐾] =
1∫

0

1∫
0

[𝐵]𝑇 [𝐷𝑚] [𝐵] | 𝑗 | d𝜉𝑖 d𝜉 𝑗 . (19)

It should be mentioned that both compatible elements, KCT and NCT, satisfied
another condition. To establish these elements, the following compatibility equation
is imposed on the strains:

𝜕2𝜀𝑥

𝜕𝑥2 +
𝜕2𝜀𝑦

𝜕𝑦2 − 2
𝜕2𝜀𝑥𝑦

𝜕𝑥𝜕𝑦
= 0. (20)

4. Formulating KIT and NIT elements

By taking advantage of the stress functions, two new incompatible elements,
named KIT and NIT, are proposed. The element complementary energy functional
(Π∗

𝐶) is represented in the following arrangement:

Π∗
𝐶 = 𝑈∗

𝐶 +𝑉∗
𝐶 =

1
2

𝑒∬
𝐴

{𝜎}𝑇 [𝐶] {𝜎}𝑡d𝐴 −
∫
Γ

{𝑇}𝑇 [𝑢]𝑡d𝑠, (21)

𝑈∗
𝐶 =

1
2

𝑒∬
𝐴

{𝜎}𝑇 [𝐶]{𝜎}𝑡d𝐴, (22)

𝑉∗
𝐶 = −

∫
Γ

{𝑇}𝑇 [𝑢]𝑡d𝑠, (23)

[𝐶] = (1 − 𝜈2)
𝐸


1 − 𝜈

1 − 𝜈 0

− 𝜈

1 − 𝜈 1 0

0 0 2
(
1 + 𝜈

1 − 𝜈

)

. (24)



Innovative triangular plate elements for enhanced plate bending analyses 9

The matching energy inside the element and sides of the element borders,
correspondingly, are 𝑈∗

𝐶 and 𝑉∗
𝐶 . Furthermore, the elements’ thickness, stress

vector, surface traction force across element borders, and displacement vector
lengthwise element boundaries, as well as the elastic plasticity matrix, are indicated
by 𝑡, 𝜎, 𝑇 , [𝑢], and [𝐶]. In these relations, 𝐸 and 𝜈 are elastic moduli and Poisson’s
ratio, correspondingly. The stress vector {𝜎} may be represented as below using
the stress function, 𝜑:

{𝜎} =


𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

 =



𝜕2𝜑

𝜕𝑦2

𝜕2𝜑

𝜕𝑥2

− 𝜕2𝜑

𝜕𝑥𝜕𝑦


=
{
𝑅̃(𝜑)

}
, (25)

[𝐿] =
[
𝑙 0 𝑚

0 𝑚 𝑙

]
. (26)

The route cosines of the outside normal of each element border, 𝑙 and 𝑚, are
stated in the next forms:

𝑙 =
d𝑦
d𝑠
, 𝑚 = − d𝑥

d𝑠
. (27)

Utilizing the stress function vector,
{
𝑅̃(𝜑)

}
, the complementary energy can be

presented as:

𝑈∗
𝐶 =

1
2

𝑒∬
𝐴

{
𝑅̃(𝜑)

}𝑇 [𝐶]
{
𝑅̃(𝜑)

}
d𝐴, (28)

𝑉∗
𝐶 = −

∫
Γ

[
[𝐿]

{
𝑅̃(𝜑)

}]𝑇
𝑡d𝑠, (29)

Π∗
𝐶 = 𝑈∗

𝐶 +𝑉∗
𝐶 =

1
2

𝑒∬
𝐴

{
𝑅̃(𝜑)

}𝑇 [𝐶]
{
𝑅̃(𝜑)

}
d𝐴 −

∫
Γ

[
[𝐿]

{
𝑅̃(𝜑)

}]𝑇
𝑡d𝑠. (30)

The elemental complementary energy covering the stress function is a valuable
instrument for applying to the finite element technique. For the plate problems
deprived of body forces, the stress purpose could be defined by the following
formula:

∇4𝜑 =
𝜕4𝜑

𝜕𝑦4 + 2
𝜕4𝜑

𝜕𝑥2𝜕𝑦2 + 𝜕
4𝜑

𝜕𝑥4 . (31)
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The methods below should be followed to find acceptable trial stress functions
for creating an innovative element:
1 – the elementary analytical answers of the stress purpose, which contain terms

from the last order to the advanced order, should be chosen [32];
2 – in Cartesian coordinates, the resultant stress areas should be full.

There are different analytical solutions for stress function for the defined de-
grees of freedom. In this article, the stress function is established in terms of
unknown parameters, and in the general following form [33]:

𝜑 =

𝑛∑︁
𝑖=1

𝜑𝑖𝛽𝑖 . (32)

The number of analytical responses for the stress purpose is 𝜑𝑖 (𝑖 = 1 − 𝑛),
while the number of unknown constants is 𝛽𝑖 (𝑖 = 1 − 𝑛). It should be noted that
the number of degrees of freedom is one unit fewer than the value of 𝑛. The stress
function may be calculated as per the number of nodes and degrees of freedom in
the element. The analytical answers for stress function and stresses associated with
KIT and NIT elements are found using the supplied equations. All stress function
constraints are gathered and displayed in Tables 1 and 2 after searching, assessing,
and corresponding. To consider 𝜑𝑖 term in Tables 1 and 2, generally, the authors
assumed a total of 21 terms. The first term was number one (1) (𝜑1 = 1) and
because the derivatives of number (1) are zero, this term is practically ineffective
and is not presented and considered in the table. While, in general, 21 semesters
are considered: the number (1) + 20 terms presented in Table 1 (𝜑1, 𝜑2, . . . , 𝜑20),
for example. The same process was followed and recommended by Fu et al. [33]
for 2D analysis elements, as the basic benchmark and study.

Table 1. Analytical solutions for the KIT’s stress function and stressors

KIT

𝑖 1 2 3 4 5 6 7 8 9 10 11

𝜑𝑖 𝑥2 𝑥𝑦 𝑦2 𝑥3 𝑥2𝑦 𝑦2𝑥 𝑦3 𝑥4 𝑥3𝑦 𝑦3𝑥 𝑦4

𝜎𝑥 0 0 2 0 0 2𝑥 6𝑦 0 0 6𝑥𝑦 12𝑥2

𝜎𝑦 2 0 0 6𝑥 2𝑦 0 0 12𝑦2 6𝑥𝑦 0 0

𝜏𝑥𝑦 0 −1 0 0 −2𝑥 −2𝑦 0 0 −3𝑥2 −3𝑦2 0

𝑖 12 13 14 15 16 17 18 19 20

𝜑𝑖 𝑦3𝑥 𝑦2𝑥2 𝑥5 𝑥5 𝑦4𝑥 𝑥5 𝑥4𝑦 𝑥4𝑦 − 𝑦3𝑥2 𝑥3𝑦2 − 𝑦3𝑥2

𝜎𝑥 6𝑥𝑦 2𝑥2 0 0 12𝑦2𝑥 20𝑦3 0 −6𝑦𝑥2 2𝑥3 − 6𝑦𝑥2

𝜎𝑦 0 2𝑦2 20𝑥3 20𝑥3 0 0 12𝑥2𝑦 12𝑥2𝑦 − 2𝑦3 6𝑥𝑦2 − 2𝑦3

𝜏𝑥𝑦 −3𝑦2 −4𝑥𝑦 0 0 −4𝑦3 0 −4𝑥3 −4𝑥2 + 6𝑦2𝑥 −6𝑥2𝑦 + 6𝑦2𝑥
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Table 2. Analytical solutions for the NIT’s stress function and stressors

NIT

𝑖 1 2 3 4 5 6 7 8 9 10 11

𝜑𝑖 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2 −𝑥2

−𝑦2 𝑥3 −𝑥2𝑦

−𝑥𝑦2 𝑦3 𝑥4 𝑥2𝑦2

𝜎𝑥 0 0 0 0 2 −2 0 −2𝑥 6𝑦 0 2𝑥2

𝜎𝑦 0 0 2 0 0 −2 6𝑥 −2𝑦 0 12𝑥2 2𝑦2

𝜏𝑥𝑦 0 0 0 1 0 2𝑥
+2𝑦 0 2𝑥

+2𝑦 0 0 −4𝑥𝑦

𝑖 12 13 14 15 16 17 18 19 20

𝜑𝑖
−𝑥3𝑦

−𝑥𝑦3 𝑥4 𝑥5 𝑥4𝑦 𝑥𝑦4 𝑦5 −𝑥3𝑦2

−𝑥2𝑦3 𝑥6 𝑥5𝑦

𝜎𝑥 −6𝑥𝑦 0 0 0 12𝑥𝑦2 20𝑦3 −2𝑦𝑥3 0 0

𝜎𝑦 −6𝑥𝑦 12𝑥2 20𝑥3 12𝑥2𝑦 0 0 −6𝑥𝑦2

−2𝑦3 30𝑥4 20𝑥3𝑦

𝜏𝑥𝑦
3𝑥2

+3𝑦2 0 0 −4𝑥3 −4𝑥3 0 6𝑥2𝑦

+6𝑥𝑦2 0 5𝑥4

Upon substitution of Eq. (32) into Eqs. (28) and (29), the succeeding relations
could be found:

𝑈∗
𝐶 =

1
2
{𝛽}𝑇 [𝐹]{𝛽}, (33)

𝑉∗
𝐶 = −{𝛽}[𝐹]{𝛽}𝑇 , (34)

[𝐹] =
𝑒∬

𝐴

[𝑆]𝑇 [𝐶] [𝑆]𝑡d𝐴. (35)

The stress vector forms the matrix [𝑆]. Matrix [𝐹] is found in Eq. (35). After
performing the required calculations, the subsequent outcome for the incompatible
element, KIT, is achieved:

[𝑆]KIT =


0 0 2 0 0 2𝑥 6𝑦 0 0 6𝑥𝑦 12𝑥2 6𝑥𝑦
2 0 0 6𝑥 2𝑦 0 0 12𝑦2 6𝑥𝑦 0 0 0
0 −1 0 0 −2𝑥 −2𝑦 0 0 −3𝑥2 −3𝑦2 0 −3𝑦2

2𝑥2 0 0 12𝑦2𝑥 20𝑦3 0 −6𝑦𝑥2 2𝑥3 − 6𝑦𝑥2

2𝑦2 20𝑥3 20𝑥3 0 0 12𝑥2𝑦 12𝑥2𝑦 − 2𝑦3 6𝑥𝑦2 − 2𝑦3

−4𝑥𝑦 0 0 −4𝑦3 0 −4𝑥3 −4𝑥2 + 6𝑦2𝑥 −6𝑥2𝑦 + 6𝑦2𝑥

 . (36)
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For another element, NIT, the subsequent result is reached:

[𝑆]NIT =


0 0 0 0 2 −2 0 −2𝑥 6𝑦 0 2𝑥2 −6𝑥𝑦
0 0 2 0 0 −2 6𝑥 −2𝑦 0 12𝑥2 2𝑦2 −6𝑥𝑦
0 0 0 1 0 2𝑥 + 2𝑦 0 2𝑥 + 2𝑦 0 0 −4𝑥𝑦 3𝑥2 + 3𝑦2

0 0 0 12𝑥𝑦2 20𝑦3 −2𝑦𝑥3 0 0
12𝑥2 20𝑥3 12𝑥2𝑦 0 0 −6𝑥𝑦2 − 2𝑦3 30𝑥4 20𝑥3𝑦

0 0 −4𝑥3 −4𝑥3 0 6𝑥2𝑦 + 6𝑥𝑦2 0 5𝑥4

 . (37)

By defining the matrix [𝐻], the elemental complementary energy containing the
nodal displacements can be formed:

[𝐻] =
∫
Γ𝑖 𝑗

[𝑆]𝑇 [𝐿]𝑇 [𝑁]𝑡d𝑠 +
∫
Γ 𝑗𝑘

[𝑆]𝑇 [𝐿]𝑇 [𝑁]𝑡d𝑠 +
∫
Γ𝑘𝑙

[𝑆]𝑇 [𝐿]𝑇 [𝑁]𝑡d𝑠. (38)

Here, Γ𝑖 𝑗 , Γ 𝑗𝑘 and Γ𝑘𝑙 denote the element edges. By inserting Eq. (33) and (34) into
Eq. (30), the succeeding element complementary energy purpose is originated:

𝑉∗
𝐶 = −{𝛽}𝑇 [𝐻]{𝑑}, (39)

Π∗
𝐶 =

1
2
{𝛽}𝑇 [𝐹] {𝛽} − {𝛽}𝑇 [𝐻] {𝑑} . (40)

To calculate the elemental answer, by utilizing the value of the lowermost
matching energy, Π∗

𝐶 must be diminished:

𝜕Π∗
𝐶

𝜕𝛽
= 0. (41)

After scheming the nodal displacement, {𝑑}, the unidentified constant, {𝛽}, can be
attained by the subsequent formula:

{𝛽} = [𝐹]−1 [𝐻] {𝑑} . (42)

Substitution of Eq. (42) into Eq. (40) yields:

Π∗
𝐶 =

1
2
{𝑑}𝑇 [𝐾∗] {𝑑} , (43)

[𝐾∗] =
[
[𝐹]−1 [𝐻]

]𝑇 [𝐻], (44)

in which, matrix [𝐾∗] could be measured as the corresponding stiffness matrix.
This matrix is utilized in a common finite element analysis. After the discovery of
the element nodal displacements, the element stresses could be printed as:

{𝜎} = [𝑆] [𝐹]−1 [𝐻] {𝑑} . (45)

Having the stress function for each element, the stresses for all structural points
will be in hand.
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5. Numerical tests

In this part, the presentation of the recommended elements is shown by an-
alyzing eleven well-known benchmark problems. The following subsections will
describe all the specifications of the plate-bending structures. Moreover, proper
discussions will be provided about the abilities of the new formulations.

5.1. Example #1

As illustrated in Fig. 3, a simply supported plate is considered and evaluated.
The modulus of elasticity, Poisson’s ratio, and the thickness of the plate are 1.00,
0.30, and 0.05, correspondingly. This structure is exposed to a load established
based on Hybrid Equilibrium Elements for Kirchhoff plates [31]. On the plate,
three loadings are well-thought-out: a uniform distributed load (UDL), two-unit
line loads laterally the axis of symmetry, and a unit point load in the center, all
designated in a steady arrangement of units. Line loads of two units are equivalent
to 0.5 units of force each unit length. A point load is 0.25 units of force per
unit length. After utilizing the proposed elements, the obtained consequences are
represented in Tables 3 and 4 for different meshes.

Fig. 3. Simply supported rectangular plate

Table 3. Computed displacement at the plate center

KCT NCT KIT NIT EXACT
UDL 1.42853E+04 1.42954E+04 1.42882E+04 1.42960E+04 1.42962E+04
Line 1.83716E+04 1.84857E+04 1.84016E+04 1.84888E+04 1.84892E+04
point 5.77254E+03 5.77824E+04 5.77542E+03 5.77909E+04 5.77915E+04

Average
time (s) 21 16.9 12.4 8.6 –

To compare the elemental abilities, the analysis time is also evaluated, which
shows the speed of solutions. The twisting moment at the junction of the two up-
right descending supports is zero in this example. As a result, the basic requirement
is kinematic, and any suitable solution is highly sensitive to it. Based on this fact,
the achieved results reveal that two new compatible displacement-based proposed
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Table 4. Stress and displacement products at the center

Element Mesh Displacement Stress Time (s)

KCT

8 × 8 1.20712 1.81701 6.8447
12 × 12 1.21539 1.83670 7.4197
16 × 16 1.21726 1.84353 8.3972
32 × 32 1.22382 1.85016 9.7197

KIT

8 × 8 1.21134 1.82812 7.3967
12 × 12 1.21399 1.83982 8.6157
16 × 16 1.21758 1.84626 9.6047
32 × 32 1.22054 1.85620 10.697

NCT

8 × 8 1.22803 1.85328 5.0737
12 × 12 1.23536 1.85718 5.6947
16 × 16 1.23723 1.86459 6.8562
32 × 32 1.23910 1.86946 7.5577

NIT

8 × 8 1.22956 1.85992 5.0000
12 × 12 1.23645 1.86142 5.5986
16 × 16 1.23864 1.86558 6.3548
32 × 32 1.23938 1.86976 6.9875

Exact 1.23942 1.86985 –

elements (NCT and KCT) have the apt act. Furthermore, all answers prove that
supplementary precise answers could be reached by using stress-based functions.
NIT provides near-exact solutions for both displacements and stresses, while the
other two components provide precise answers, comparative to those of compati-
ble displacement-based elements, KCT and NCT. It is worth mentioning that the
analysis time has considerably declined as a result of using stress-based suggested
elements.

5.2. Example #2

In this benchmark, a double symmetry rectangular plate in Fig. 4 is consid-
ered. The answer for this structure, which agrees with one of the relations of the
Levy-type answer [31]. The elastic moduli, Poisson’s ratio, and the thickness of
the plate are assumed to be 1.00, 0.30, and 0.05, respectively. As reported, the
precise value of the normal rotations corresponding to the exact displacements
is ∓610.957276165364 sin(5.49778714378214𝑥), according to Ref. [32]. At the
simply supported sides with unchanging 𝑦, it is described that if this example is
scrutinized with equilibrium elements, the consistent answers are not severely bal-
anced. As the polynomial moment is unable precisely to epitomize the sinusoidal
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load. However, it is likely to get nearby balanced answers by seeing the delinquent
with levied displacements. For the suggested formulations, the achieved responses
for the diverse elements are represented in Table 5. Regarding the computed re-
sponses, the new stress-based elements KIT and NIT have more truthful stress and
displacement answers, compared to those of compatible displacement-based ele-
ments (KCT and NCT). Achieved responses after solving this problem demonstrate
that both presented stress-based elements play an important role in reducing the
analyzing time.

Fig. 4. With a sinusoidal action, a double symmetry simplification
of the rectangular plate is achieved

Table 5. Moments computed in the double symmetry plate’s center

𝑚𝑥𝑥 𝑚𝑦𝑦 𝑚𝑥𝑦 Time

UDL
KCT 2.27574E-01 4.25147E-01 1.04587E-03 9.94

NCT 2.31478E-01 4.92548E-01 2.14587E-02 9.72

Line
KCT 2.645874E-01 5.75645E-01 2.87489E-02 8.45

NCT 2.96654E-01 6.02577E-01 3.84156E-02 8.19

Point
KCT 1.28258E-01 1.92547E-01 –1.00081E-02 7.85

NCT 1.37895E-01 2.12587E-01 1.43289E-02 7.50

UDL
KIT 2.29574E-01 4.49147E-01 1.83278E-03 8.42

NIT 2.32178E-01 4.93548E-01 2.15002E-02 8.15

Line
KIT 2.75162E-01 5.96681E-01 3.18754E-02 7.98

NIT 2.96892E-01 6.13578E-01 3.85119E-02 6.82

Point
KIT 1.32324E-01 1.99857E-01 1.22854E-02 5.65

NIT 1.39588E-01 2.13354E-01 1.44295E-02 5.02

UDL 2.32280E-01 4.93748E-01 2.15210E-02

Line Exact 2.96987E-01 6.15874E-01 3.85248E-02 –

Point 1.40581E-01 2.13587E-01 1.44358E-02
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5.3. Example #3

In this subsection, another rhombic and symmetric plate bending is analyzed.
All sides of this structure have a unit length. There are two free and two simply sup-
ported edges in this plate. This structure is proved in Fig. 5 [31]. The performance
of this plate is studied under a uniformly distributed load. It should be noted that
because of the regularity of the plate, only one-half of the structure is evaluated by
considering sliding support on the symmetry line. Furthermore, the elastic moduli
(𝐸) and Poisson’s ratio (𝜈) of the plate were 1.0 and 0.3, correspondingly. Here,
both displacement and stress mechanisms along the diagonals of the plate are mea-
sured. The obtained consequences are signified in Table 6. These responses are also
compared with each other. According to the obtained outcomes, the stress-based
elements, KIT and NIT, give very good outcomes against the suggested compatible
displacement-based elements. When utilizing the NIT element, the solution time is
significantly dropped. This is a good merit of the suggested element, which reduces
the computational time required for solving complex problems.

Fig. 5. Rhombic and symmetric plate bending

Table 6. Stress and displacement conclusions of rhombic and symmetric plate bending

Element Displacement Stress Time
KCT 1.506829 2.462964 8.0017
KIT 1.512062 2.497962 8.5537
NCT 1.522757 2.501928 6.2307
NIT 1.533489 2.518971 3.5487

Exact 1.536881 2.524298 –

5.4. Example #4

In this portion, one quadrant of a circular plate is evaluated with diverse
meshes, as illustrated in Fig. 6. All obtained outcomes along with the measured
analysis time, are listed in Table 7. Moreover, the responses of the simply supported
border circumstances are figured for a thick (𝑅/𝑡 = 5/1) and a moderately thin



Innovative triangular plate elements for enhanced plate bending analyses 17

(𝑅/𝑡 = 5/0.1) plate [35]. The material characteristics are 𝐸 = 10.92, 𝜈 = 0.3. The
uniform load 𝑞 is 1.0. It is observed from Table 7 that the presented elements own
high correctness. Once more, the responses illustrate that the new elements are

Fig. 6. Characteristic mesh for the quadrant of a circular plate

Table 7. Deformation and stress outcomes for the quadrant of a circular plate

Element Mesh 𝑤 (×102𝑞𝑙4/𝐷) 𝑀𝑦 (×10𝑞𝑙2) Time

KCT

8 × 8 0.7840 0.9422 4.80
12 × 12 0.7875 0.9479 5.30
16 × 16 0.7888 0.9526 6.15
32 × 32 0.7905 0.9548 7.30

KIT

8 × 8 0.7860 0.9489 5.28
12 × 12 0.7892 0.9502 6.34
16 × 16 0.7918 0.9542 7.20
32 × 32 0.7926 0.9568 8.15

NCT

8 × 8 0.7872 0.9504 3.26
12 × 12 0.7919 0.9524 3.80
16 × 16 0.7931 0.9562 4.81
32 × 32 0.7943 0.9587 5.42

NIT

8 × 8 0.7901 0.9518 1.14
12 × 12 0.7926 0.9545 2.85
16 × 16 0.7940 0.9572 3.54
32 × 32 0.7944 0.9589 4.12

Exact 0.7945 0.9589 –
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accomplished of trappings the meticulous answers for the plate bending problems.
In addition, less time is needed when the NIT element is utilized.

5.5. Example #5

In this portion, when the structure is under uniform loading, an angle plate
that is simply supported on all ends is examined (𝑞). Inner apex angles of 30′′
and 150′′ come from the skew angle. A typical mesh is illustrated in Fig. 7. The
simply supported boundaries are preserved as easy, and the obtained answers are
listed in Table 8 for the displacement at the plate center. It should be stated that the
thickness of the plate is taken to be 1.0. The obtained results for a customary of
meshes are associated with those of other elements and with the answer assumed
in [35] for the ‘thin’ plate. For this example, the characteristics of the material
are 𝐸 = 10 · 106, 𝜈 = 0.3 and 𝑎 = 100, respectively. Based on the accomplished
answers, the formulations presented in this paper provide outstanding consequences
at the slightest cost for all the suggested elements. According to Table 8, good
performances are achieved by using new stress-based elements of KIT and NIT.

Fig. 7. A simply supported Angle plate

Table 8. A simply supported skew plate

Deflection at location
1 2 3 4 5 6

KCT 0.264 0.174 0.084 0.068 0.029 0.011
KIT 0.279 0.182 0.102 0.098 0.041 0.016
NCT 0.295 0.200 0.119 0.125 0.050 0.020
NIT 0.297 0.203 0.120 0.128 0.056 0.021

Exact 0.297 0.204 0.121 0.129 0.056 0.022

5.6. Example #6

Fig. 8 indicates a four-sided plate with a span-thickness fraction of 𝑎/𝑡 = 50.
The material characteristics of the plate are considered as 𝐸 = 0.5 and the Poisson’s
ratio 𝜈 = 0.3. This structure is exposed to a regularly spread diagonal loading 𝑞.
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Since this plate has a symmetric shape, only a quarter of it is assessed in this
subsection. Note that the edge consequence occurs in the regions close to the side
AD. Accordingly, the dedicated element should be utilized for modeling the side
sectors. Shang et al. [36] systematically investigated this target test by utilizing
the semi-analytical segmentation technique. In this study, the obtained results by
using different elements are provided for comparison purposes. All the answers
are listed in Table 9. Numerical results indicate that NIT can reach the meticulous
answers for this plate-twisting problem. As anticipated, by increasing the number
of meshes, the accuracy of outcomes can be improved.

Fig. 8. Hardly supported square plate with two opposing edges

Table 9. Dimensionless deflections and stress

Mesh 𝑁 × 𝑁 16 × 16 32 × 32 100 × 100 Exact

𝑤𝐷

𝑞𝑎4

KCT 0.1088 0.1070 0.1068

0.1050
KIT 0.1072 0.1062 0.1055
NCT 0.1060 0.1055 0.1051
NIT 0.1058 0.1053 0.1050

𝑀𝑥𝐶

𝑞𝑎2

KCT 0.0321 0.0301 0.0291

0.0268
KIT 0.0290 0.0282 0.0278
NCT 0.0277 0.0273 0.0269
NIT 0.0275 0.0271 0.0268

𝑀𝑦𝐶

𝑞𝑎2

KCT 0.1289 0.1279 0.1268

0.1220
KIT 0.1275 0.1268 0.1256
NCT 0.1259 0.1251 0.1240
NIT 0.1242 0.1237 0.1222

𝑉𝑦𝐵

𝑞𝑎2

KCT 0.1397 0.1369 0.1358

0.1300
KIT 0.1380 0.1368 0.1336
NCT 0.1365 0.1350 0.1320
NIT 0.1338 0.1319 0.1308
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5.7. Example #7

A 60◦ rhombic plate is measured under a regularly dispersed oblique load
(𝑞) [36] (Fig. 9). The structural properties are, the thickness 𝑡 = 0.1, span width
𝑎 = 5, and Poisson’s ratio 𝜈 = 0.3. It should be mentioned that the two boundaries,
AB and DC, are simply supported, and the rest of them are free. All structural
elements are twisted because of the plate’s rhombic figure, and it has four sides
of the same length. Here, it is aimed to test the new formulations in the oblique
meshes. After performing the analyses, the obtained numerical consequences are
demonstrated in Table 10. Another time, it is detected that a respectable arrange-

Fig. 9. The 60◦ skew plate with two contradictory boundaries

Table 10. Dimensionless deflections and stress result

Mesh 𝑁 × 𝑁 16 × 16 32 × 32 100 × 100 Exact

𝑤𝑜

𝑞𝑎4

KCT 0.0076 0.0068 0.0061

0.0041
KIT 0.0058 0.0050 0.0045
NCT 0.0452 0.0447 0.0042
NIT 0.0449 0.0444 0.0040

𝑀𝑥𝐶

𝑞𝑎2

KCT 0.0524 0.0517 0.0508

0.0481
KIT 0.0518 0.0509 0.0498
NCT 0.0496 0.0488 0.0482
NIT 0.0494 0.0487 0.0480

𝑀𝑦𝐶

𝑞𝑎2

KCT 0.0527 0.0519 0.0501

0.0482
KIT 0.0508 0.0498 0.0490
NCT 0.0498 0.0490 0.0483
NIT 0.0496 0.0488 0.0481

𝑉𝑦𝐵

𝑞𝑎

KCT 0.4251 0.4243 0.4232

0.4190
KIT 0.4241 0. 4229 0.4219
NCT 0.4254 0.4231 0.4210
NIT 0.4227 0.4202 0.4189
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ment with the exact solutions is obtained by using the new proposed elements.
Better answers for the displacement and also stress responses are taken when the
incompatible stress-based elements, KIT and NIT, are used.

5.8. Example #8

As shown in Fig. 10, another 60◦ rhombic plate is exposed to a homogeneously
dispersed oblique loading 𝑞, with the 𝑡 = 0.1, 𝑎 = 5, and 𝜈 = 0.3 [36]. The plate
boundaries, AB and DC, are simply supported, and the other two are both free
or both soft and simply supported. Since elements are entirely skewed, since the
plate’s rhombic form, it could measure and validate the present formulations for
the sloping meshes. The obtained outcomes are illustrated in Table 11. There,

Fig. 10. Soft simply-supported plate

Table 11. Deflections and stress resultants for soft simply-supported plate

Mesh 16 × 16 32 × 32 100 × 100 Exact

𝑤𝑂

𝑞𝑎4

KCT 0.0162 0.0156 0.0147

0.0141
KIT 0.0151 0.0148 0.0145
NCT 0.0154 0.0150 0.0142
NIT 0.0148 0.0142 0.0140

𝑀𝑥𝐶

𝑞𝑎2

KCT 0.0624 0.0612 0.0587

0.0581
KIT 0.0614 0.0601 0.0585
NCT 0.0613 0.0604 0.0582
NIT 0.0601 0.0586 0.0580

𝑀𝑦𝐶

𝑞𝑎2

KCT 0.0638 0.0621 0.0587

0.0582
KIT 0.0611 0.0589 0.0585
NCT 0.0613 0.0602 0.0583
NIT 0.0598 0.0586 0.0581

𝑉𝑦𝐵

𝑞𝑎

KCT 0.4367 0.4348 0.4321

0.4290
KIT 0.4328 0.4302 0.4280
NCT 0.4351 0.4339 0.4310
NIT 0.4334 0.4321 0.4289
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the stress-based elements, KIT and NIT, give very good results, relative to those
found by the compatible displacement-based elements (KCT and NCT). According
to the responses, it could be realized that the recommended elements have great
correctness as a consequence of using the proper recommended purposes.

5.9. Example #9

Fig. 11 expressions a quarter of a 4× 4 sheet with a central circular opening of
one radius. Lengthways 𝑥1 = 4 and 𝑥2 = 4, traction and double-traction, resulting
from the succeeding axile equal displacement arena [37]:{

𝑢1

𝑢2

}
=

𝑃

2𝜇𝑟 𝑓3

[
𝑓1 −

𝑎

1 − 2𝑣 𝑓2

] {
cos 𝜃
sin 𝜃

}
, (46)

𝑓1 = (𝜈 − 1)𝑎4 + (2𝜈 − 1)
[
2𝑙2 − 𝑟2(𝜈 − 1)

]
𝑎2

− 4(𝜈 − 1)𝑟2𝑙2(2𝜈 − 1)𝑘1

(𝑎
𝑙

)
, (47)

𝑓2 =
[
𝑎2 − 𝑟2(𝜈 − 1)

]
𝐾0

(𝑎
𝑙

)
− 2𝑙𝑟 𝐾1

(𝑟
𝑙

)
, (48)

𝑓3 = 𝑎2 + 4𝑙2(𝜈 − 1)𝐾1

(𝑎
𝑙

)
+ 2𝑎𝑙

(
𝜈 − 1

2

)
𝐾0

(𝑎
𝑙

)
. (49)

Here, 𝑎 = 1, 𝜌 is the radial stress at 𝑟 = ∞, 𝐾𝑛 is the 𝑛-th directive adapted
Bessel function of another type. The found consequences are demonstrated in
Table 12 for different meshes. Numerical results illustrate that KIT and NIT can
range the meticulous answers for the plate twisting with an opening region.

Table 12. Stress and displacement consequences of a square sheet with a dominant
circular opening

Mesh KCT KIT NCT NIT

Normalized stress

4 × 4 1.21 1.18 1.11 1.09

8 × 8 1.19 1.15 1.05 1.03

16 × 16 1.17 1.12 1.01 1.00

Normalized displacement

4 × 4 1.15 1.11 1.09 1.05

8 × 8 1.11 1.08 1.05 1.03

16 × 16 1.07 1.04 1.03 1.01
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Fig. 11. A quarter of a square panel with a central circular cutout

5.10. Example #10

In this test, an L-shaped plate is measured, which was solved by previous
investigators [37]. This structure is measured as one-quarter of a double-symmetric
edge, that is equally loaded on its perpendicular borders. At the Neumann frontier,
a continuous load in the straight path 𝑡𝑃1 = −𝐿−1 kN/mm is performed (The load
was performed as a thickness and dimension, as explained in Ref. [29]). For
this plate, the maximum values of stress and displacement are evaluated, and
represented in Table 13. As it is understood from the outcomes, the consequences
of both displacement and stress can be predicted accurately by KIT and NIT. This

Fig. 12. Geometry of the center L-shaped domain plate

Table 13. Maximum value of stress and displacement for L-shaped plate

Mesh 100 × 100 Time Exact

Stress

KCT 0.012 2.845

0.010
KIT 0.010 1.846
NCT 0.010 1.284
NIT 0.010 0.574

Displacement

KCT 0.126 3.597

0.120
KIT 0.120 2.047
NCT 0.120 2.005
NIT 0.120 0.975
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fact demonstrates the efficiency of the offered stress functions. These obtained
answers are also better than the compatible displacement-based elements’ responses
(KCT and NCT).

5.11. Example #11

In this benchmark problem, an L-shaped plate is measured with a hole. This
structure was also analyzed previously [37]. The sheet is a quarter of a double-
symmetric edge with vertical bounds that are correspondingly loaded. As seen
in Fig. 13, Dirichlet boundary circumstances related to equilibrium planes are
enforced on the bottom border and right-hand side. The realized mathematical
consequences are demonstrated in Table 14. According to the accomplished an-
swers, the calculated stress components have high accuracy. It is also discovered
that the NIT exhibits well acts. In fact, the proposed elements in this study could
predict the stress components in different points of structures with low error. Lower
analysis time is required if utilizing the NIT element.

Fig. 13. Plate with a hole

Table 14. Stress and displacement products of the plate with a hole

Element Displacement Stress Time
KCT 0.9388 1.23747 9.372
KIT 0.9405 1.23981 8.108
NCT 0.9531 1.24631 6.233
NIT 0.9532 1.24650 3.246

Exact 0.9534 1.24657

6. Conclusion

Existing literature indicates that numerous research studies have demonstrated
the limited suitability of displacement-based elements in accurately determin-
ing stress responses, despite their widespread popularity and applicability. This
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research aims to introduce four innovative elements designed for the assessment
of plate-bending structures. Each of the recommended elements possesses thir-
teen degrees of freedom. Two elements were formulated using the conventional
finite element technique, with the imposition of compatibility conditions. More-
over, two other elements were established based on the stress functions. Therefore,
two of them are displacement-based compatible triangular elements, which are
named Karimi Pour Compatible Triangular (KCT) and Noroozinejad Compatible
Triangular (NCT) elements. Besides, other two stress-based incompatible trian-
gular elements are also suggested with the names of Karimi Pour Incompatible
Triangular (KIT) KIT and Noroozinejad Incompatible Triangular (NIT) elements.
Compatible elements are those that satisfy the displacement compatibility require-
ment. This means that the displacement at all points is not a function of the path, and
there exists a uniquely defined displacement field. Conversely, incompatible ele-
ments violate the displacement compatibility requirement. Incompatible elements
were introduced to correct the strains produced by incompatible displacements,
achieving excellent results for elements and for this aim, formulations have been
established based on stress functions. Therefore, based on stress functions, for-
mulas for elements are developed. For the structural stresses, some fundamental
analytical answers are assigned in this inquiry. The trial functions are aligned with
each element by considering the degrees-of-freedom numbers. Unknown coef-
ficients are ascertained by minimizing the complementary energy to achieve an
accurate solution. A comparison is made between the outcomes obtained through
these methods and those obtained through displacement-based approaches. In these
elements, the degrees of freedom for vertex nodes do not involve curvatures. The
establishment of elements is accomplished by approximating the displacement field
through piecewise functions.

To build these elements, a complementary energy function was used within
the element. In this energy expression, the proper stress function was utilized as
a practical capricious. In other words, some elementary systematic answers were
allocated for stress purposes. These trial purposes were coordinated with each
element’s number of degrees of freedom. After some mathematical operations,
the element equation was established. To demonstrate the performances of the
proposed elements, several benchmarks were analyzed. Comparison studies were
performed with two previously offered compatible and displacement-based ele-
ments. All numerical solutions showed good results, and could be obtained for the
displacements, as well as the stress, by using new elements. While the previous
elements could only determine only stress or displacement responses. Both dis-
placement and stress responses could be accurately determined using the proposed
elements in this study. It should be emphasized that all four suggested elements
led to satisfactory outcomes, and always converged to the exact solutions. In the
majority of the analyzed benchmark structures, the KIT and NIT elements were
the ones that provided better solutions. This merit was due to the recommended
analytical stress functions. Considering the computational costs and the quality of
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the obtained results, the NIT is the best-suggested element. It is found that if the
solutions in highly refined meshes are required, the NIT element takes less time
than the KIT element. As a result, the novel presented elements are able to predict
the stress and deformation of plates by the average error of 0.21% and 0.42%,
respectively, in comparison with the exact answers which highlight and robustness
of the presented elements.

Finally, the element proposed in this study has been established based on previ-
ous stress functions. So, for further investigations in the future, it is recommended
to establish Airy’s stress function based on new compatible and incompatible shape
functions.
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