
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 72(4), 2024, Article number: e150111
DOI: 10.24425/bpasts.2024.150111

CONTROL, INFORMATICS AND ROBOTICS

Comprehensive online estimation of object signals
for a control system with an adaptive approach

and incomplete measurements

Tadeusz KWATER1 ∗ , Przemysław HAWRO1 , Paweł KRUTYS1 , Marek GOŁĘBIOWSKI2 ,
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Abstract. This paper presents the novel estimation algorithm that generates all signals of an object described by nonlinear ordinary differential
equations based only on easy-to-implement measurements. Unmeasured signals are estimated by using an adaptive approach. For this purpose, a
filtering equation with a continuously modified gain vector is used. Its value is determined by an incremental method, and the amount of correction
depends on the current difference between the generated signal and its measured counterpart. In addition, the study takes into account the aging
process of measurements and their random absence. The application of the proposed approach can be realized for any objects with a suitable
mathematical description. A biochemically polluted river with an appropriate transformation of the notation of partial differential equations
was chosen as an object. The results of numerical experiments are promising, and the process of obtaining them involves little computational
necessity, so the approach is aimed at the needs of control implemented online.
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1. INTRODUCTION

Rivers are crucial to the global hydrological cycle, ecosystems,
and human economy and life. Therefore, river water quality is
of great concern. River water quality is constantly deteriorat-
ing, and the main reason for water pollution is mainly due to
human activities. Every year, millions of tons of waste, indus-
trial, agricultural and municipal wastewater, are discharged into
rivers, making the water unusable and requiring frequent qual-
ity control. In addition to human impacts, the state of water
in rivers is also affected by weather conditions, necessitating
continuous monitoring with control and management functions
for water management in the region [1–5]. Traditional methods
of assessing water quality involve taking samples and testing
them in a laboratory, which is time-consuming as a result of
which information on the state of water quality is usually over-
done. Real-time systems that take measurements easily online
and reproduce unmeasured signals may be the answer to these
challenges. The authors in [6,7] suggest the use of mobile mea-
suring stations and mobile operating systems for real-time mon-
itoring of various water parameters in rivers. In [8] the authors
propose an adaptive sampling algorithm to increase energy ef-
ficiency in automatic monitoring systems while ensuring the
accuracy of the sampled data. Tests conducted in this study in-
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cluded measurement of dissolved oxygen (DO) and water turbid-
ity. Real-time water quality monitoring systems using chemical
sensors have been discussed in [9–11]. The authors emphasize
that systems based on chemical detection or a combination of
chemical and other methods are the most effective. However,
many real-time monitoring systems do not offer the ability to
measure all required signals online. In the case of rivers, one
such signal is the biochemical oxygen demand (BOD) index,
which is approached in different ways. In [12, 13], the authors
propose a method based on biosensors and correlation calcula-
tions to obtain representative information on this indicator. This
article presents another alternative approach that introduces an
adaptive algorithm for river monitoring, extending the LookUp
zonal algorithm approach published in [14], [15]. In addition
to the challenges of estimating BOD in rivers, sudden weather
anomalies also have an impact, introducing various sources of
pollution that are difficult to identify. These sources tend to have
adverse effects on aquatic ecosystems. To address monitoring
issues in ecological systems, machine learning methods, time se-
ries analysis and statistical models are being used to make water
management more objective, reliable and efficient [16–19]. In
addition, some authors have integrated Bayesian networks with
mechanistic models to fully exploit the advantages of statistical
and mechanistic models in analyzing water quality risks during
pollution emergencies. The results have been applied to various
measurement indicators [20, 21]. The main problem in signal
reconstruction for monitoring or control purposes is estimation,
which involves reconstructing a useful signal while eliminating
unwanted interference from another signal. This process aims
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to preserve the quality of the signal containing important infor-
mation by separating it from interference. Direct interference
suppression techniques may inadvertently remove some of the
useful signals. Therefore, optimal filters are used that take ad-
vantage of the statistical properties of the signals. One notable
example is the Kalman filter, which recursively determines the
state vector estimate with minimum variance in linear mod-
els of dynamic systems based on output measurements of the
system [22–24]. It should be noted that the Kalman approach
assumes linearity of the object model and knowledge of the
characteristics of disturbances, which limits its application to
idealized situations that do not fully reflect reality. The linearity
requirement and assumptions about interference characteristics
are limitations for the Kalman filter, since most systems are
nonlinear and measurements are subject to non-Gaussian noise,
such as Levy noise. These limitations are circumvented, among
others, by using the approach proposed in this paper. The struc-
ture of this article is as follows: Section 2 gives the mathemat-
ical model and its transformation reducing the notation to a set
of ordinary differential equations, Section 3 describes the new
approach in the form of an adaptive zonal algorithm with a mea-
surement window, the following section gives the experimental
results including monitoring quality indicators, the final section
summarizes the presented study.

2. MATHEMATICAL MODEL OF THE SPREAD
OF POLLUTANTS IN THE RIVER

The issue of pollutant dispersion in a river is important for
monitoring water quality. However, it is a very complex process
that, when pollutants are discharged, generates processes that
determine their spread and transport. Among these processes
we have advection, diffusion, adsorption, desorption, settling of
suspended substances, chemical reactions and biological pro-
cesses [25]. The primary indicators characterizing the pollution
status of a river include Biochemical Oxygen Demand (BOD)
and Dissolved Oxygen Deficit (DO). These are the two indicators
most commonly used to determine water quality and its ability
to support aquatic life. The BOD index refers to the amount of
oxygen required for microorganisms to oxidize organic matter in
water under certain conditions. It is an indicator that measures
the content of organic substances, such as carbon, nitrogen and
phosphorus compounds, which can come from pollution, in a
water sample. The higher the BOD, the greater the amount of
organic matter present, which can lead to a shortage of oxygen
in the water as microorganisms break it down. The DO deficit
index reflects the amount of dissolved oxygen in the water com-
pared to its full capacity. Dissolved oxygen deficit occurs when
the concentration of oxygen in the water is lower than optimal
for aquatic organisms. It can be caused by various factors, such
as the presence of chemicals, organic pollutants or reduced wa-
ter aeration. Low dissolved oxygen levels can lead to hypoxia
in aquatic organisms and negatively affect aquatic ecosystems.
A water body with very low DO levels is considered a dead
body of water. Both BOD and DO are important water quality
indicators that can be monitored to assess the extent of pollu-

tion and the health of aquatic ecosystems. High BOD values
and low dissolved oxygen levels may indicate the presence of
organic contaminants or other water quality problems that may
require protective or corrective action. Monitoring these indica-
tors can help identify potential risks and take appropriate action
to protect and preserve water health. Further considerations will
include a mathematical model describing these indicators to
support the real-time monitoring process. In online monitoring
issues, solutions are sought that bypass the complexity of calcu-
lations while maintaining the required accuracy of the solution.
Due to the natural nature of the river, the determination of the
dynamics of pollutant concentrations requires an indication of
place and time. Thus, a model that determines the level of pol-
lutant concentration in the form of partial differential equations
is adopted. In the case of a mathematical model of a river, some
simplifications can be made that cause a very slight loss of
accuracy, due to the specifics of the object itself. The general
mathematical model of a river, describing biochemical pollution
and the process of self-purification takes the following form:

𝜕𝑥(𝑙, 𝑡)
𝜕𝑡

+ 𝑣(𝑙, 𝑡) 𝜕𝑥(𝑙, 𝑡)
𝜕𝑙

= A𝑥(𝑙, 𝑡) +𝑤𝑅 (𝑙, 𝑡), (1)

with initial (boundary) conditions:

𝐼𝐶 : 𝑥(𝑙, 𝑡0) = 𝑥0 (𝑙) + 𝑣𝑅 (𝑙), (2)

𝐵𝐶 : 𝑥(0, 𝑡) = 𝑥𝐵 (𝑡) + 𝑣𝑝 (𝑡), (3)

where: 𝑥(𝑙, 𝑡) – vector 𝑥(𝑙, 𝑡) = col[𝑥1 (𝑙, 𝑡), 𝑥2 (𝑙, 𝑡)] with BOD

and DO components expressed in [mg/l], A =

[
𝑘1 0
𝑘2 𝑘3

]
– co-

efficient matrix 𝑘𝑖 , 𝑖 = 1,2,3, 𝑣𝑅 (𝑙), 𝑣𝑝 (𝑡) – disturbances occur-
ring in boundary conditions, 𝑤𝑅 (𝑙, 𝑡) – disturbances interacting
along the length of the river, 𝑥1 – concentration of biochemical
pollutants expressed in terms of BOD, 𝑥2 – DO dissolved oxy-
gen concentration deficit, which is the difference 𝑥2 = 𝑥2𝑆 −𝑥2𝑁
between the dissolved oxygen concentration 𝑥2𝑆 and the oxygen
content of the water in the saturated state 𝑥2𝑁 . The coefficients
𝑘1, 𝑘2 and 𝑘3 appearing in the equations describe the dynamics
of the river’s natural self-purification process and depend pri-
marily on temperature, in particular, they stand for: 𝑘1 – reaction
rate coefficient of BOD [1/day], 𝑘2 – coefficient of the influence
of BOD on DO [1/day], 𝑘3 – coefficient of change of DO [1/day].
In the implementation of the monitoring task in real-time mode,
it is sought, as far as possible, to reduce the complexity of cal-
culations. Therefore, the authors for this purpose transform the
mathematical model described by partial differential equations
to a simpler form, i.e. ordinary differential equations, keeping
the accuracy of the description unchanged. In particular, it is
proposed to conduct considerations along the so-called charac-
teristics. These characteristics will be lines defined by the flow
velocity 𝑣(𝑙, 𝑡), and the description of the distribution of pollu-
tant concentrations in the river refers to a freely moving volume
of water (Fig. 1).

This interpretation of the model amounts to a transforma-
tion in which the observation of the distribution of pollution
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Fig. 1. The field of solutions using characteristics

in the river is made along the so-called characteristics in the
spatio-temporal domain. To preserve the identity of the function
describing the values of the state coordinates 𝑥 in the spatio-
temporal domain (the solution of hyperbolic partial differential
equations), boundary conditions from the description of the
model by differential equations with distributed parameters are
used. The initial condition and the Dirichlet boundary condition
are used for consideration (see Fig. 1) This means that the values
of these functions are available for any length of the river and at
any time in the area. River water pollution levels considered ac-
cording to the characteristics in the 𝑙, 𝑡 domain become ordinary
differential equations representing the individual characteristics.
The description of the vector 𝑥 in the 𝑙, 𝑡 domain leads to the
solution of a number of spatio-temporal characteristics. As a
result of this interpretation, for a known flow velocity 𝑣 of the
river, the distribution of pollution depends only on time, so, the
characteristics are defined by the relation:

d
d𝑡
(𝑙, 𝑡) = 𝑣(𝑙 (𝑡)). (4)

The characteristics shown in Fig. 1 describe the 𝑥 vector in the
following domain areas (𝑙, 𝑡):
• 𝑖-th characteristic:

𝑣𝑖 (𝑙 (𝑡)) =
d
d𝑡
(𝑙, 𝑡)

����
𝑡=𝑡0

,

𝑙 (𝑡) =
𝑡𝑖∫

𝑡0

𝑣𝑖 (𝑡) d𝑡, 𝑙 (𝑡) ∈ [𝑙𝑖 , 𝐿], (5)

• main characteristic:

𝑣𝑔 (𝑙 (𝑡)) =
d
d𝑡
(𝑙, 𝑡)

����
𝑡=𝑡0

,

𝑙 (𝑡) =
𝑇∫

𝑡0

𝑣𝑔 (𝑡) d𝑡, 𝑙 (𝑡) ∈ [𝑙0, 𝐿], (6)

• 𝑗-th characteristic:

𝑣 𝑗 (𝑙 (𝑡)) =
d
d𝑡
(𝑙, 𝑡)

����
𝑡=𝑡 𝑗

,

𝑙 (𝑡) =
𝑇∫

𝑡 𝑗

𝑣 𝑗 (𝑡) d𝑡, 𝑙 (𝑡) ∈ [𝑙0, 𝑙 𝑗 ] . (7)

This interpretation results in a set of characteristics covering the
entire solution domain, and the equation for each characteristic
takes the form of:

d
d𝑡
𝑥(𝑡) = A𝑥(𝑡) +B𝑤(𝑡), (8)

where: 𝑥 – state vector 𝑥 = col[𝑥1, 𝑥2], A – coefficient matrix as in
equation (1), B – interaction matrix of interference signals, 𝑤 –
system disturbances vector [𝑤1,𝑤2],𝑤1 – intensity of the inflow
of pollutants [mg/l/day], 𝑤2 – intensity of oxygen uptake/supply
from/to water [mg/l/day].

Experimental studies use a set of equations (8) in the con-
sidered spatio-temporal domain, the number of which results
from the density of these characteristics. It can be assumed that
the discretization step on length 𝑙 for a partial differential equa-
tion (1) is a parameter that determines the size of the set of
ordinary differential equations (8).

The above assumptions make equation (8) a nonlinear ordi-
nary differential equation, which will be used in further consid-
erations. For the purposes of online monitoring, such measure-
ments are chosen that can be made directly and without delay.
For the issues under consideration, such a signal is 𝑥2 (𝑡). The
general notation of the measurement equation takes the form:

𝑦(𝑡) = 𝐶𝑥 + 𝑣𝑝 , (9)

where: 𝐶 = [01] – measurement matrix, 𝑣𝑝 – measurement
disturbances.

It should be noted that both the measurement and 𝑥 signals
are subject to noises with a Gaussian distribution [26].

3. ADAPTIVE ZONAL ALGORITHM WITH MEASUREMENT
WINDOW

The proposed adaptive algorithm with a measurement window
(LookUpWindow) generates all signals of the object, including
those for which measurements are not made due to the difficulty
of online measurement. The concept of the algorithm is to use a
filtering equation with the structure as used in the Kalman filter.
However, the gain value will be determined adaptively by incre-
mentally modifying the gain Δ𝐾 . Specifically, the modification
of the gain coefficient is carried out at each measurement step
taking into account the current adaptation error 𝜖𝑖 , the history of
measurements, and considering cases of their random absence.
The adaptation error is a real, measurable signal, representing
the difference between the current measurement 𝑦(𝑡) and the
corresponding coordinate of the monitored signal vector 𝑥̂ and
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was expressed by the equation:

𝜖𝑖 = 𝑦𝑖 −𝐶𝑥̂𝑖 , (10)

where: 𝜖𝑖 – adaptation error in the 𝑖-th step. On the basis of the
adaptive error 𝜖𝑖 equation (10), which is determined on the fly,
an appropriate selection is made of the value of gain correction
Δ𝐾 depending on the error’s belonging to the designated error
zones as illustrated in Fig. 2.

Fig. 2. Zones and their corresponding gain corrections Δ𝐾𝑖

in the correction table for zones

If the error value 𝜖 is less than the assumed error range 𝐸𝑅0
(zone “0”), then the gain factor correction is zero. This means
that the actual monitoring error is at most equal to the permis-
sible error range. Depending on the current adaptation error is
selected gain factor correction from the adopted correction table
for zones. In special cases of missing measurements, the gain
update is skipped.

It is worth noting that the gain is updated using corrections de-
rived from the value of the adaptation error, and an adjustment is
made to take into account several previous measurements. This
is due to the use of a measurement window in the algorithm,
which includes the history of measurements. Figure 3 shows a
diagram of the moving measurement window 𝐷 and the weight
distributions of the measurements. The presented moving mea-
surement window 𝐷 includes 𝑞 measurements. which means
that the history of measurements is taken into account. However,
the adopted distribution of weights for individual measurements
causes that we get the effect of “aging” of measurements as the
window moves. This means that a measurement that was cur-
rent previously is now treated as “obsolete”. Assigning smaller

Fig. 3. Variability of the distribution of measurement weight values
in a moving measurement window

and smaller weights corresponds to increasingly older measure-
ments in the measurement window (see Fig. 3). If there is no
measurement, the distribution of weights in the window is mod-
ified, which means that the remaining weights of measurements
in the window are increased accordingly. The measurement win-
dow 𝐷𝑖 includes the measurement at the current step 𝑡𝑖 and the
measurements from previous steps 𝑡𝑖−1, and 𝑡𝑖−3, and as a result
of the absence of a measurement at time 𝑡𝑖−2, the weight for that
measurement is zero.

According to the assumptions for determining gain values, an
update is made to the current gain resulting from the adaptation
error (see Fig. 2) according to the relation:

𝐾𝑠𝑖+1 = 𝐾𝑠𝑖 +Δ𝐾 𝑗 , (11)

where: 𝐾𝑠𝑖 – current value of gain, Δ𝐾 𝑗 – gain correction for
the 𝑗-th zone from the adopted zone table. Then, the correction
forcing of the estimate 𝑀𝑖+1 resulting from the measurement
window for the next measurement step is determined according
to the equation:

𝑀𝑖+1 =
𝑞∑︁
𝑗=0
𝑤 𝑗𝐾𝑠𝑖− 𝑗

(
𝑦𝑖− 𝑗 −𝐶𝑥̂𝑖− 𝑗

)
. (12)

𝐾𝑠𝑖− 𝑗 – gain in the measurement window from the current𝐾𝑠𝑖 to
the last in the window 𝐾𝑠𝑖−𝑞 , 𝑤 𝑗 – measurement weights from
𝑤0 to 𝑤𝑞 , 𝑞 – quantity of measurements in the measurement
window.

In the next iteration, the correction forcing of the estimate
takes the index 𝑖, and the equation that generates the object
signals in the monitoring system takes the form of:

¤̂𝑥𝑖 = A𝑥̂𝑖 +𝑀𝑖 (13)

𝑀𝑖 – correction forcing of the estimate.
A detailed description of the algorithm for monitoring an

object with randomly missing measurements is presented in
pseudo-code form in Algorithm 1.

In cases of obtaining information from the object in the form
of measurements, Algorithm 1 updates the filter gain coefficient
𝐾𝑠𝑖 by the adopted gain correction Δ𝐾 𝑗 depending on the affili-
ation of the current adaptation error 𝜖𝑖 to the zone defined by the
value of the error range 𝐸𝑅𝑖 (lines 9 and 12). Then, the correc-
tion forcing of the estimate resulting from the application of the
measurement window is determined (line 15). If the value of the
adaptation error 𝜖 is less than the error limit 𝐸𝑅0, then the gain
update resulting from the adaptation error is not performed (line
6). Calculation of the correction forcing of the estimate derived
from the measurement window is performed in each iteration.
The algorithm can be easily extended to additional zones, which
can be implemented in line 14.

3.1. Measures of the quality of monitoring

Two indicators, i.e. Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE), were adopted to measure the quality of
online monitoring of the time courses of BOD and DO signals
using the presented algorithm.
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Algorithm 1 Adaptive zonal algorithm with measurement win-
dow (LookUpWindow)

𝑥̂0,𝐾𝑠0, 𝑀,Δ𝐾,𝐸𝑅, 𝑞, 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜 𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝑤0, . . . ,𝑤𝑞),
𝑖, 𝑛, 𝐴 // setting the initial conditions

Input: 𝑦𝑖 //measurements
Output: 𝑥̂

1: while 𝑖 < 𝑛 do
2: ¤̂𝑥𝑖← A𝑥̂𝑖 +𝑀𝑖 // determination of the estimate
3: if 𝑚𝑒𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 then
4: 𝜖𝑖← 𝑦𝑖 −𝐶𝑥̂𝑖;
5: if 𝜖𝑖 ≤ 𝐸𝑅0 then
6: 𝐾𝑠𝑖+1← 𝐾𝑠𝑖;
7: end if
8: if 𝐸𝑅0 < 𝜖𝑖 ≤ 𝐸𝑅1 then
9: 𝐾𝑠𝑖+1← 𝐾𝑠𝑖 +Δ𝐾1;

// Δ𝐾 selection and gain updating
10: end if
11: if 𝐸𝑅1 < 𝜖𝑖 ≤ 𝐸𝑅2 then
12: 𝐾𝑠𝑖+1← 𝐾𝑠𝑖 +Δ𝐾2;

// Δ𝐾 selection and gain updating
13: end if
14: . . . more zones
15: 𝑀𝑖+1←

𝑞∑
𝑗=0
𝑤 𝑗𝐾𝑠𝑖− 𝑗 (𝑦𝑖− 𝑗 −𝐶𝑥̂𝑖− 𝑗 );

// calculation of the correction forcing
of the estimate from the 𝐷𝑖 window

16: else
17: 𝑚𝑜𝑑𝑖 𝑓 𝑦𝑖𝑛𝑔 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜 𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠

𝑖𝑛 𝑡ℎ𝑒 𝐷𝑖 𝑤𝑖𝑛𝑑𝑜𝑤 𝑤𝑖𝑡ℎ 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠;

18: 𝑀𝑖+1←
𝑞∑
𝑗=0
𝑤 𝑗𝐾𝑠𝑖− 𝑗 (𝑦𝑖− 𝑗 −𝐶𝑥̂𝑖− 𝑗 );

// calculation of the correction forcing
of the estimate from the 𝐷𝑖 window

19: end if
20: 𝑖← 𝑖 +1;
21: end while

The first indicator is a mean-square error and has a high
sensitivity to estimation deviations from actual values. The value
of the RMSE indicator is more influenced by large errors. In
addition, RMSE always takes a positive value and is expressed
in units of forecast signals [27].

For the investigated signals, the value of the RMSE index is
determined according to the formula:

𝑅𝑀𝑆𝐸𝑖 =

√√√
1
𝑛

𝑛∑︁
𝑗=1
𝑒2
𝑖, 𝑗
, (14)

where: 𝑖 – index of monitored signal, 𝑒𝑖, 𝑗 = 𝑥𝑖, 𝑗 − 𝑥̂𝑖, 𝑗 – esti-
mation error of the 𝑖-th signal in the 𝑗-th step, 𝑛 – number
of simulation steps. The second indicator is the mean absolute
estimation error of the MAE determined according to the rela-
tionship:

𝑀𝐴𝐸𝑖 =
1
𝑛

𝑛∑︁
𝑗=1

�� 𝑒𝑖, 𝑗 �� . (15)

MAE is easier to interpret its value. In addition, it is less sensitive
to large errors, which have little effect on the MAE value [24].

4. RESULTS OF SIMULATION STUDIES

Simulation experiments were conducted for a hypothetical river
described by ordinary differential equations, according to the
so-called characteristics. A river flowing at an average velocity
of 𝑣 = 30 [km/day] with two large polluted tributaries and an area
of several tens of kilometers with an intense inflow of pollutants
were considered.

The simulation studies presented here cover signals obtained
from the assumed mathematical model and signals generated
using adaptive algorithms: zonal LookUpz [15] and the pro-
posed zonal with measurement window LookUpw, as well as the
Kalman filter. The results also include cases of random missing
measurements with different frequencies of occurrence.

Figure 4 shows the waveforms of BOD and DO signals on the
selected characteristic over a 36-day period, where the influence
of lateral inflows is evident in the form of large BOD values at
the beginning of the simulation period and on day 24. A sudden
increase in BOD also occurs on day 12 and continues for several
days. The interpretation of such a situation relates to intensive
inflows of pollutants caused by large rainfalls lasting in the area
of the river’s course. It should be emphasized that such a charac-
ter of changes in the forcing of BOD concentrations makes large,
even quite unnatural, demands on the estimated signals. The un-
measured BOD signals obtained with different algorithms take
on positive values. The negative signals relate to the DO deficit,
the measurement of which is easy to implement, hence the high
similarity of the obtained waveforms. The measurement window
and zonal algorithms (red and black, respectively) generate sig-
nals of comparable quality, i.e., the generated signals are close
to the model values, while the signals from the Kalman filter
(green) show greater discrepancies.
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Fig. 4. BOD and DO signals obtained with LookUpWindow, LookUp
and Kalman filter algorithms

The resulting BOD and DO signals in Fig. 4 result from dif-
ferent values of the gains generated by the algorithms, and their
waveforms are presented in Fig. 5. The highest values of ampli-
fications appear after sudden large changes in the forcing, which
means the natural response of the algorithm, to the occurrence

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150111, 2024 5



T. Kwater, P. Hawro, P. Krutys, M. Gołębiowski, and G. Drałus

of large errors. A characteristic feature of the considered cases
is the amplifications of different signs and amplitudes for BOD
and DO signals.
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Fig. 5. Gain coefficients generated by LookUpWindow and LookUp
algorithm

The study includes cases of random lack of delivery of mea-
surements. In practice, such a situation can refer to the failure
of the measurement system caused, for example, by temporary
shortages of power supply or transmission of signals.

Figure 6 shows measurement moments with missing measure-
ments as points on the time axis. Despite the random absence of
20% of measurements, the algorithms generated waveforms of
similar quality (compare with Fig. 4). The experiments extend
the cases where missing measurements amounted to several tens
of percent (see Table 1) Despite the large lack of measurements
(69%), the algorithms do not lose stability of performance. To
illustrate the correctness of the algorithms for difficult situa-
tions caused by the absence of a large number of measurements,
selected waveforms of generated signals and gains are shown
in Fig. 7 and Fig. 8. The zone algorithm, in the absence of
a large number of measurements, showed a larger amplitude
of change in gain coefficients compared to the algorithm with a
measurement window. Despite this behaviour, the quality of sig-
nals generated by the algorithm with the measurement window
is much better compared to the other algorithms. The quality
of the results obtained in the algorithm with a measurement
window also depends on the assumed distribution of measure-
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Fig. 6. BOD and DO signals obtained with the tested algorithms at
random lack of 20% of measurements
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Fig. 7. BOD and DO signals and gains generated by the tested algo-
rithms at a random lack of 185 out of 360 possible measurements
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Fig. 8. BOD and DO signals and gains generated by the tested algo-
rithms at a random lack of 262 out of 360 possible measurements
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Table 1
Monitoring quality of BOD and DO signals for different numbers of

randomly missing measurements

LookUpWindow RMSE MAE
estimated signal BOD DO BOD DO
all 360 measurements 3.765 0.598 1.850 0.272
20% (lack of 71) 3.553 0.629 1.848 0.275
49% (lack of 176) 3.722 0.695 1.879 0.326
69% (lack of 250) 3.986 0.649 2.102 0.314

LookUpz RMSE MAE
estimated signal BOD DO BOD DO
all 360 measurements 3.697 0.697 1.904 0.323
20% (lack of 71) 4.139 0.805 1.972 0.357
49% (lack of 176) 4.284 0.833 2.147 0.395
69% (lack of 250) 4.718 0.996 2.392 0.505

Kalman filter RMSE MAE
estimated signal BOD DO BOD DO
all 360 measurements 5.293 0.604 3.110 0.306
20% (lack of 71) 5.520 0.707 3.227 0.360
49% (lack of 176) 5.972 0.898 3.562 0.492
69% (lack of 250) 6.139 0.958 3.794 0.595

ment weights. Table 2 shows the values of the RMSE and MAE
quality indicators for different distributions of the measurement
window weights. Increasing the values of the weights slightly
improves the quality of the estimation assessed by the RMSE in-
dex, but in the case of the MAE index, a deterioration in quality
can be observed with larger values of the measurement weights.

Table 2
Monitoring quality of BOD and DO signals for different distributions

of the measurement window weights

RMSE LookUpWindow LookUpz Kalman filter
estimated signal BOD DO BOD DO BOD DO
0.6; 0.35; 0.15; 0.05 3.488 0.662
1.2; 0.7; 0.3 ;0.1 3.189 0.577 4.21 0.88 5.20 0.62
2.4; 1.4; 0.6; 0.2 3.110 0.564

MAE LookUpWindow LookUpz Kalman filter
estimated signal BOD DO BOD DO BOD DO
0.6; 0.35; 0.15; 0.05 1.407 0.297
1.2; 0.7; 0.3; 0.1 1.419 0.271 1.75 0.41 3.00 0.34
2.4; 1.4; 0.6; 0.2 1.647 0.302

5. CONCLUSIONS

This paper presents an adaptive algorithm that generates on-
line object signals based on online measured state coordinates.
A mathematical model of a river described by ordinary differ-

ential equations, for which water quality is represented by BOD
and DO deficit indicators, was used as a test object.

The algorithm estimates the BOD signal based on the DO
signal measurements made online. During the estimation of sig-
nals in the algorithm, adaptive changes are made to the gain
coefficients using an incremental method. The correction values
are determined for the zones in the array, and also result from
updating the weights in the measurement window. The proposed
algorithm does not require knowledge of the characteristics of
the enforcing signals that interact with the object and measure-
ments. The algorithm is in the form of additive filter gain cor-
rection, and it uses a predefined adaptive error and a history of
measurements that takes into account their weights. In addition,
the approach takes into account random lack of measurements,
which did not much deteriorate the quality of the estimation.
In all cases studied, the zonal algorithm with a measurement
window provided better estimation results, as measured by the
RMSE and MPE quality indicators, than the zonal algorithm
without a measurement window and Kalman filter. This was
particularly evident for the estimation of the unmeasured state
coordinate, BOD.

The presented concept of a zonal algorithm with a measure-
ment window applied to monitoring an object described by a
mathematical model representing only two water quality indica-
tors, i.e. BOD and DO, works well. Satisfactory results should
also be expected with further expansion of the mathematical
model to include other water quality indicators.
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