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On applications of computer algebra systems
in queueing theory calculations
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Abstract. In the present paper, the most important aspects of computer algebra systems applications in complicated calculations for classical
queueing theory models and their novel modifications are discussed. We mainly present huge computational possibilities of Mathematica
environment and effective methods of obtaining symbolic results connected with the most important performance characteristics of queueing
systems. First of all, we investigate effective solutions to computational problems appearing in queueing theory such as: finding final probabilities
for Markov chains with a huge number of states, calculating derivatives of complicated rational functions of one or many variables with the use of
classical and generalized L’Hospital’s rules, obtaining exact formulae of Stieltjes convolutions, calculating chosen integral transforms used often
in the above-mentioned theory and possible applications of generalized density function of random variables and vectors in these computations.
Some exemplary calculations for practical models belonging both to classical models and their generalizations are attached as well.

Keywords: classical queueing models; queueing systems with random volume customers and sectorized memory buffer; generalized L’Hospital’s
rule; Stieltjes convolution; Laplace and Laplace–Stieltjes transforms.

1. INTRODUCTION

Queueing theory is the field of applied mathematics that has been
experiencing great development in recent years. This scientific
direction, started in the 1920s by A.K. Erlang, had initially im-
portant meaning mainly for telecommunication engineers (they
used obtained theoretical results to calculate performance char-
acteristics of telephone exchanges that were needed in telecom-
munication systems designing process) [1] but its importance
was also noticed by scientists from technical computer science
area because it introduced some models that could be used
(sometimes, after some modifications) in the process of real-
life computer systems analyzing or designing (e.g. computer
networks). The number of published papers investigating such
models has been still increasing since the moment of big head-
way and popularization of computer systems in the 1990s. As
an example, we can mention some chosen publications from last
years [2–5]. In these works authors analyze systems with random
volume customers (customers coming to the queueing systems
transport information that is written down in memory buffer
of the system until customer ends his service, so it is assumed
that customers are additionally characterized by some random
volume – see also monograph [6]). A very interesting, novel
approach appears also in papers [7, 8] that investigate models
in which the above-mentioned customer volume is multidimen-
sional. The main problems analyzed for queueing models are
connected with calculating characteristics of the number of cus-
tomers present in the system (especially in the steady state),
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characteristics of the total volume of customers and loss proba-
bility (if the memory buffer is limited, we have additional losses
of customers that cannot be accepted for servicing due to their
excessive volume). In addition, the need of constructing such
models is confirmed in projects of some technical devices [9,10].

In the process of mathematical analysis of both classical mod-
els and, especially, their generalizations, we face the problem of
complicated symbolic computations. The general results often
contain functions that are very complex and inconvenient from
the numerical point of view as they contain such mathematical
concepts like: generating functions, integral transforms or con-
volutions. Moreover, in obtained formulae we usually find very
complicated rational functions of one or many variables that
does not let us calculate needed numerical characteristics in easy
way. For example, we need to calculate derivatives of these func-
tions, often using L’Hospital’s rule many times, which makes
computations hardly possible without computer algebra systems
help. The next computational problem, appearing even in simple
classical models described by Markov chains, is solving systems
of linear equations in which we have a huge number of variables.

In fact, computer algebra systems give fantastic tools to lead
complicated symbolic computations successfully, e.g. Mathe-
matica environment delivers many implemented useful func-
tions letting calculate integral transforms and their inversions or
derivatives of complicated rational functions as well as solving
systems of linear equations with huge number of variables [11].
The big advantage of computer algebra systems is also stor-
ing previous results in memory and the possibility to use them
again in the next steps of computations despite their complexity.
These facts confirm that computer algebra systems are effective
tools that may be helpful in the process of complicated queueing
models analysis.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150199, 2024 1

https://orcid.org/0000-0001-8907-8813
mailto:marcin_ziolkowski@sggw.edu.pl


M. Ziółkowski

The main purpose of the presented paper is to discuss some
smart computational techniques using computer algebra sys-
tems that can help researchers, whose scope of scientific ac-
tivities is related to the study of queuing systems, in obtaining
of significant results connected with performance characteris-
tics of investigated models of such systems. We want to show
proven methods that make complicated calculations become eas-
ier compared to manual ones and let us shorten time intended
for such complex computations. These techniques were devel-
oped and used by author during his many years of practice in
analyzing the above-mentioned models and can certainly help
to facilitate analogous analyses of queuing systems conducted
by other scientists.

This paper presents main computational problems appear-
ing during mathematical analysis of queueing systems models
and their possible solutions with the help of Mathematica en-
vironment. The rest of the paper is organized as follows. In the
next Section 2, we present short description of most important
classical queueing models and their modifications, and possible
applications of these models in the area of telecommunication
or computer systems analyzing and designing process. In Sec-
tion 3, we discuss main mathematical concepts used in classical
queueing theory that can make large computational problems.
Section 4 presents these problems and their possible solutions
together with some numerical examples done with the help of
computer algebra systems. In Section 5, we focus on problems
of calculating performance characteristics for the queueing sys-
tems with random volume customers (and also with sectorized
memory buffer) connected with much more complicated com-
putations containing functions of many variables as well as pos-
sible solutions of these problems. The last Section 6 contains
conclusions and final remarks.

2. CLASSICAL QUEUEING MODELS, THEIR
MODIFICATIONS AND POSSIBLE APPLICATIONS

First mathematical models of real-life queueing systems were
constructed by Danish mathematician and engineer A.K. Er-
lang. In his works (especially [12]) he offered a model describ-
ing telephone exchange working process based on assumptions
that arriving customers form Poisson entrance flow (this as-
sumption was checked in experiments), customer service time
is exponentially distributed and system contains 𝑛 devices that
work independently and there is no queue, i.e. all customers
(telephone calls) arriving at the the system in moments when
all devices are busy, are lost (blocked). The main obtained prac-
tical result was probability that a coming call will be blocked.
Methods used by Erlang allowed to obtain number of customers
distribution for simple models for which we can use Markov
chains or their small modifications. Results were used in the
process of analyzing or designing of some simple telecommu-
nication systems, e.g. helped to choose the proper number of
needed devices in such a way as to make sure that probabil-
ity of block will be small enough. These models, denoted as
𝑀/𝑀/𝑛/𝑚 in Kendall’s modified notation, were first ones de-
scribing real telecommunication systems.

Later on, more complicated and more practical models were
analyzed. The most important results were those connected
with 𝑀/𝐺/1/∞ queueing model (single-server queueing system
with infinite queue) obtained independently by F. Pollaczek and
A. Khintchine [13,14]. The analysis of this model demanded in-
troducing some modifications and new mathematical approach
because theory of Markov chains was not sufficient in this case
and it was necessary to introduce more general semimarko-
vian stochastic processes. During the entire period of the 20th
century there appeared many new papers analyzing more and
more complicated but realistic models describing telecommu-
nication or (later) computer systems. In such a way results for
the queueing models of the 𝑀/𝐺/1/𝑛, 𝑀/𝐺/𝑛/0, 𝑀/𝐺/∞ or
𝐺𝐼/𝑀/𝑛/∞-types were obtained [1, 6], as well as those for
single-server queueing system with egalitarian processor shar-
ing investigated by S. Yashkov – see [15] (in this system all
customers are served at the same time) or systems with vaca-
tions (assuming random rests is servers’ working) investigated,
e.g. by T. Lee and B. Doshi – see [16,17]. Obtained results had
practical meaning because, based on calculated characteristics,
engineers could, e.g. (on the level of system designing) shorten
mean queue length in the case of systems with finite number of
waiting positions in the queue or decrease mean waiting time
for systems with infinite queue.

Together with the headway in computer science, some scien-
tists started using queueing models also in this area, adapting
classical results onto computer systems. In the 1970s, first pa-
pers appeared that introduced a new concept – customer volume
(assuming that customers transport some information) and ex-
tended classical research. The main purpose in this case was
to calculate characteristics of customers’ total volume (sum of
the volumes of all customers present in the system) but investi-
gations initially assumed that character of dependency between
customer volume (size) and his service time does not have in-
fluence on total customers volume characteristics, and, what is
interesting, considered them as independent (what was not true
in most of real-life computer systems) – see, e.g. books writ-
ten by M. Schwarz [18, 19]. First works that introduced new
mathematical approach and finally took into consideration the
above-mentioned dependence between customer volume and his
service time were those by A. Alexandrov and B. Kaz and by
B. Sengupta [20, 21]. Obtained results let us calculate number
of customers distribution, values of loss probability or approx-
imate needed size of memory buffers (in practical cases when
they are limited, assuming some admissible degree of loss prob-
ability) or (in the case when we assume that customers total
volume is unlimited) characteristics of total volume. The compu-
tations became more complicated because results were obtained
mainly in the terms of Laplace and Laplace–Stieltjes transforms.
Very important results were presented by O. Tikhonenko – see,
e.g. monograph [6]. Recent investigations have considered sys-
tems with non-identical servers and sectorized memory – see
again [5, 7, 8] and also [22] in which very complicated mathe-
matical approach is used (multidimensional generalizations of
concepts such as integral transforms or Stieltjes convolutions).

Nowadays computer or telecommunication systems have be-
come more and more complex and their analysis is often very
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complicated and exhaustive because we have to take into account
many technical aspects of their working process. On the other
hand, obtained performance characteristics of such systems let
us understand their working process better or even design them
in more effective way. Models describing real-life systems are
also very complicated from the mathematical point of view and
some parts of their analysis would not be possible without help
of automatic tools offered by computer algebra systems. It is
worth highlighting that Mathematica environment has seemed
to be the best tool in such computations in recent years. The au-
thor of this paper has been using some interesting computational
techniques with the help of Mathematica environment in his re-
search for many years and would like to present them to other
scientists whose area of research is connected with queueing
systems analysis, which can be very useful.

3. MATHEMATICAL CONCEPTS USED IN CLASSICAL
QUEUEING THEORY

3.1. Main assumptions and purposes of analysis

In classical queueing theory, we usually analyze systems for
which we assume that:
• we know the distribution function of time intervals be-

tween neighboring moments of customers’ arrival (denoted
as 𝐴(𝑡));

• we know the distribution function of the customer service
time (denoted as 𝐵(𝑡));

• system usually contains 𝑛 servers, where 𝑛 ≥ 1 (𝑛 can also
be infinite);

• system usually has waiting room (queue) with 𝑚 positions
in which customers are patiently waiting when all servers
are busy, 𝑚 ≥ 0 and the value of 𝑚 can also be infinite.

In this paper, simple queueing models are denoted with the use
of modified Kendall’s notation 𝐺/𝐺/𝑛/𝑚, where first two let-
ters are notations for the type of functions 𝐴(𝑡) and 𝐵(𝑡) (for
example, 𝑀 means that function is exponentially distributed),
whereas 𝑛 and 𝑚 are the numbers of servers and waiting posi-
tions (the length of a queue), respectively – in this article we
assume that, in the case of queue length, we do not take into
account these customers that are on service. For example, clas-
sical Erlang system (without a waiting room) is denoted here as
𝑀/𝐺/𝑛/0.

The main purposes of classical models analysis are:
1. Calculating characteristics of the number of customers

distribution, i.e. obtaining functions 𝑃𝑘 (𝑡) = P{𝜂(𝑡) = 𝑘},
𝑘 = 0, 𝑛+𝑚, where 𝜂(𝑡) is a random process describing
number of customers present in the system in time instant
𝑡. In many practical applications, we calculate only steady-
state characteristics of the system 𝑝𝑘 = P{𝜂 = 𝑘}, where
𝜂 is the steady-state number of customers present in the
system (𝜂(𝑡) ⇒ 𝜂 in the sense of a weak convergence).
It is obvious that (in the case when stationary mode ex-
ists) 𝑝𝑘 = lim𝑡→∞ 𝑃𝑘 (𝑡). In addition, we also calculate mo-
ments of random variable 𝜂 (e.g. mean number of customers
present in the system in the steady state);

2. Calculating characteristics of customer waiting time at least
in stationary mode, i.e. obtaining formula describing func-

tion 𝑊 (𝑡), that is waiting time distribution in the steady
state, and its moments (mean waiting time and variance) for
systems with infinite number of waiting positions;

3. Calculating other important characteristics, e.g. busy period
distribution function and its moments (important especially
for single-server systems).

Unfortunately, we rather seldom are able to obtain these results
in exact forms. Distributions of the number of customers are
sometimes presented in terms of generating functions and the
other characteristics often in terms of Laplace–Stieltjes trans-
forms. Moreover, even in cases when we only have to solve
some algebraic system of equations describing the behavior of
a simple Markovian system, i.e. obtain steady-state number of
customers distribution (using theory of Markov chains with con-
tinuous time) we often face the problem of enormous number
of states and manual way of getting results is hardly possible.
Now we introduce these concepts and discuss their basic proper-
ties that let us calculate some main performance characteristics
of the classical queueing systems and their more complicated
modifications.

3.2. Markov chains with continuous time

During simplest classical queueing models analysis (e.g. of the
𝑀/𝑀/𝑛/𝑚-type) we often use the concept of a Markov chain
with continuous time. Now we will remind this idea.

Definition 1. Assume that 𝑇 = [0,∞) and 𝑋 is a finite or
countable set. Stochastic process {𝜉 (𝑡), 𝑡 ∈ 𝑇} taking values
from the set 𝑋 is called Markov chain if, for every number
𝑛 = 1,2, . . ., all 𝑡1, 𝑡2, . . . , 𝑡𝑛 ∈ 𝑇 , where 𝑡1 < 𝑡2 < . . . < 𝑡𝑛, and all
𝑥0, 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 it satisfies the following condition:

P
{
𝜉 (𝑡𝑛) = 𝑥𝑛 |𝜉 (𝑡0) = 𝑥0, 𝜉 (𝑡1) = 𝑥1, . . . , 𝜉 (𝑡𝑛−1) = 𝑥𝑛−1

}
= P

{
𝜉 (𝑡𝑛) = 𝑥𝑛 |𝜉 (𝑡𝑛−1) = 𝑥𝑛−1

}
.

Elements of the set 𝑋 are usually called the states of the pro-
cess 𝜉 (𝑡).

Markov chains are very convenient tools used in analysis of
some chosen queueing models thanks mainly to their property
of “forgetting about the past” which lets us simply write out
differential equations describing the behavior of the system and
obtain even non-stationary number of customers distribution
(obtained equations are linear so we can e.g. use Laplace trans-
forms apparatus in this case). Finding of steady-state number of
customers distribution is also very simple because then (based
on the previously obtained differential equations) we only have
to solve some linear system of algebraic equations that are ob-
tained in the process of calculating the limits of proper functions
(if 𝑡 →∞). In most cases we can use some non-complicated re-
cursive methods (even in the case of infinite number of states,
then we usually obtain birth-death processes, a good example
is the model of 𝑀/𝑀/𝑛/∞ queueing system) [1]. As a simple
example, consider system of the 𝑀/𝑀/𝑛/𝑚-type, where 𝑛 and
𝑚 are finite and assume that 𝑎 is a parameter of an entrance
flow and 𝜇 is a parameter of exponentially distributed customer
service time (in all systems of this type process 𝜂(𝑡) denoting
number of customers present in system in time instant 𝑡 is a
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Markov chain with continuous time). In this case the only pos-
sible transitions are those from state n to n+1 (𝑛 = 0, 𝑛+𝑚−1)
(describing an arrival of a new customer) and from state n to
n-1 (𝑛 = 1, 𝑛+𝑚) (customer service termination). The stochas-
tic graph describing working process of this system is presented
in Fig. 1.

Fig. 1. Stochastic graph for 𝑀/𝑀/𝑛/𝑚 queueing system

System of steady-state equations describing its behavior is
presented below:{

𝑎𝑝𝑘−1 = 𝑘𝜇𝑝𝑘 , 1 ≤ 𝑘 ≤ 𝑛;

𝑎𝑝𝑘−1 = 𝑛𝜇𝑝𝑘 , 𝑛 < 𝑘 ≤ 𝑛+𝑚.

The solution has the form [1]:

𝑝𝑘 =


(𝑛𝜌)𝑘 𝑝0

𝑘!
, 1 ≤ 𝑘 ≤ 𝑛;

𝑛𝑛𝜌𝑘 𝑝0
𝑛!

, 𝑛 < 𝑘 ≤ 𝑛+𝑚,

where 𝜌 =
𝑎

𝑛𝜇
. The value of 𝑝0 we get from the normalization

condition
𝑛+𝑚∑︁
𝑖=0

𝑝𝑖 = 1 and it e.g. for 𝜌 ≠ 1 has a form:

𝑝0 =

[
𝑛∑︁

𝑘=0

(𝑛𝜌)𝑘
𝑘!

+ 𝑛𝑛𝜌𝑛+1 (1− 𝜌𝑚)
𝑛!(1− 𝜌)

]−1

.

Unfortunately, there is some class of more interesting queue-
ing models, e.g. queueing models with non-identical servers
for which the above-mentioned systems of linear equations are
much more complicated and we cannot use simple techniques in
their solving but have to use some more advanced matrix meth-
ods and the help of computer algebra systems. This conception
will be investigated in detail in the next section.

3.3. Generating function

Definition 2. Assume that we consider discrete random vari-
able 𝜂 taking countable number of values 𝑘 (𝑘 = 0,1, . . .) with

probabilities 𝑝𝑘 = P{𝜂 = 𝑘} (of course,
∞∑︁
𝑘=0

𝑝𝑘 = 1 and 𝑝𝑘 > 0).

Generating function of the random variable 𝜂 is an analytic
function 𝑃(𝑧) defined as follows:

𝑃(𝑧) = 𝑝0 +
∞∑︁
𝑘=1

𝑝𝑘𝑧
𝑘 , (1)

where 𝑧 is a complex variable that satisfies condition
|𝑧 | ≤ 1. Notice that in the case when 𝜂 takes only finite number
of values, the above definition is also correct as we have then
only some non-zero values of 𝑝𝑘 and the others are zeros.

It is obvious that 𝑃(1) =∑∞
𝑘=0 𝑝𝑘 = 1. In addition, function 𝑃

has the following important practical properties:
1. Mean value E𝜂 of the random variable 𝜂 can be calculated

as follows:
E𝜂 = 𝑃′ (1). (2)

Indeed, we have obviously 𝑃′ (𝑧) =
∞∑︁
𝑘=1

𝑘 𝑝𝑘𝑧
𝑘−1, so

𝑃′ (1) =
∞∑︁
𝑘=1

𝑘 𝑝𝑘 =

∞∑︁
𝑘=0

𝑘 𝑝𝑘 = E𝜂.

Analogously, we can calculate higher moments (using
derivatives of function 𝑃), e.g.

E𝜂2 = 𝑃′′ (1) +𝑃′ (1).

2. We can calculate 𝑝𝑖 probabilities using formula

𝑝𝑖 =
𝑃 (𝑖) (0)

𝑖!
. (3)

In fact, 𝑃 (𝑖) (𝑧) =
∞∑︁

𝑘=1,𝑘≠𝑖
𝑘 (𝑘 −1) . . . (𝑘 − 𝑖 +1)𝑝𝑘𝑧𝑘−𝑖 + 𝑖!𝑝𝑖 ,

whence 𝑃 (𝑖) (0) = 𝑖!𝑝𝑖 .

3.4. Laplace–Stieltjes transform

Definition 3. Assume that we consider random variable 𝜉 tak-
ing non-negative values described by distribution function 𝐴(𝑡).
Laplace–Stieltjes transform of the random variable 𝜉 (or distri-
bution function 𝐴(𝑡)) is an analytic function 𝛼(𝑞) defined as
follows:

𝛼(𝑞) =
∞∫

0

𝑒−𝑞𝑡 d𝐴(𝑡), (4)

where 𝑞 is a complex variable and Re𝑞 ≥ 0.

Note that Laplace–Stieltjes transform exists for different types
of non-negative random variables: discrete, absolute continuous
and others. In the case of absolute continuous random variables
(if we assume existence of density function 𝑎(𝑡)) formula (4)
takes the following form (here we have simply Riemann’s inte-
gral instead of Stieltjes’ one):

𝛼(𝑞) =
∞∫

0

𝑒−𝑞𝑡𝑎(𝑡) d𝑡. (4a)

In the case of discrete random variables taking values 𝑥𝑘 with
probabilities 𝑝𝑘 = P{𝜉 = 𝑥𝑘} we have

𝛼(𝑞) =
∑︁
𝑘

𝑝𝑘𝑒
−𝑞𝑥𝑘 . (4b)

It is clear that 𝛼(0) =
∞∫

0

d𝐴(𝑡) = 1. Moreover, function 𝛼 has

the following properties:
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1. Moments of random variable 𝜉 can be calculated using the
following formula:

𝛽𝑖 = E𝜉𝑖 = (−1)𝑖𝛼 (𝑖) (0). (5)

It means that, especially, E𝜉 = −𝛼′ (0) and E𝜉2 = 𝛼′′ (0).

Indeed, 𝛼 (𝑖) (𝑞) = (−1)𝑖
∞∫

0

𝑡𝑖𝑒−𝑞𝑡 d𝐴(𝑡), whence

𝛼 (𝑖) (0) = (−1)𝑖
∞∫

0

𝑡𝑖 d𝐴(𝑡) = (−1)𝑖E𝜉𝑖 .

2. If 𝜉1, . . . , 𝜉𝑛 are independent non-negative random variables
and 𝛼1 (𝑞), . . . , 𝛼𝑛 (𝑞) are their Laplace–Stieltjes transforms
then transform 𝛼(𝑞) of their sum 𝜉 = 𝜉1 + . . . + 𝜉𝑛 has the
form of product:

𝛼(𝑞) =
𝑛∏
𝑖=1

𝛼𝑖 (𝑞). (6)

To prove this property, notice that

𝛼(𝑞) = E𝑒−𝑞𝜉 = E𝑒−𝑞 ( 𝜉1+...+𝜉𝑛 ) = E
(

𝑛∏
𝑖=1

𝑒−𝑞𝜉𝑖

)
.

Because random variables 𝜉1, . . . , 𝜉𝑛 are independent, we

have obviously that E
(

𝑛∏
𝑖=1

𝑒−𝑞𝜉𝑖

)
=

𝑛∏
𝑖=1

E𝑒−𝑞𝜉𝑖 which ends

the proof.
3. We have the following well-known relation between Lap-

lace–Stieltjes transform 𝛼(𝑞) and Laplace transform L (𝑞)
(we ommit simple proof of this relation):

𝛼(𝑞) =
∞∫

0

𝑒−𝑞𝑡 d𝐴(𝑡) = 𝑞

∞∫
0

𝑒−𝑞𝑡 𝐴(𝑡) d𝑡 = 𝑞L (𝑞). (7)

In queueing theory investigations we additionally use next two
practical concepts. First of them is connected with the need
of analyzing the sums of independent random variables distri-
ibutions, and the second one with an idea of density function
generalization.

3.5. Stieltjes convolution

In analytic investigations of queueing theory models, we of-
ten use distribution functions of the sums of independent non-
negative random variables or vectors. It is clear (see, e.g. [23])
that in the case when 𝜉1 and 𝜉2 are two independent non–negative
random variables having distribution functions 𝐹1 (𝑥) and 𝐹2 (𝑥),
respectively, then their sum (𝜉 = 𝜉1+𝜉2) distribution function has
the convolution form:

𝐹 (𝑥) = P{𝜉 < 𝑥} =
𝑥∫

0

𝐹1 (𝑥−𝑢) d𝐹2 (𝑢). (8)

If we consider the sum of 𝑛 independent non-negative random
variables having the same distribution function 𝐹 (𝑥) then its
distribution function 𝐹𝑛 (𝑥) can be defined by the following
recursive definition:

𝐹0 (𝑥) ≡ 1, 𝐹𝑛 (𝑥) =
𝑥∫

0

𝐹𝑛−1 (𝑥−𝑢) d𝐹 (𝑢), 𝑛 ≥ 1. (9)

The relation from the right side of the above formula is called
𝑛-fold Stiletjes convolution of distribution function 𝐹 (𝑥). If
analyzed random variable is absolute continuous (we assume
existence of its density function 𝑓 (𝑥)) then we simply obtain:

𝐹𝑛 (𝑥) =
𝑥∫

0

𝐹𝑛−1 (𝑥−𝑢) 𝑓 (𝑢) d𝑢. (9𝑎).

3.6. Generalized density of random variable – the use
of Dirac-delta distribution

As we could see in previous subsections, the existence of den-
sity function (see formulae (4a) and (9a)) lets us calculate some
integral transforms and convolutions using Riemann’s integral
instead of more difficult Stieltjes’ one. So if we investigate ab-
solute continuous random variables (which sometimes happens
in practice) calculations are usually less complicated. It can be
proved (see, e.g. [24]) that the concept of density function can
be generalized onto random variables of other types if we use
Dirac-delta distribution.

Indeed, let us consider, e.g. discrete random variable 𝜉 taking
finite number of values 𝑥1, . . . , 𝑥𝑘 with probabilities 𝑝1, . . . , 𝑝𝑘 ,

respectively (of course,
𝑘∑︁
𝑖=1

𝑝𝑖 = 1). Then its distribution function

can be defined as follows:

𝐹 (𝑥) =
𝑘∑︁
𝑖=1

𝑝𝑖 𝐻 (𝑥− 𝑥𝑖), (10)

where 𝐻 (𝑥) is left–side continuous Heaviside’s unitstep func-
tion. Considering the generalized definition of derivative (in the
sense of distributions), where Dirac-delta distribution 𝛿(𝑥) is a

derivative of Heaviside’s unitstep function: 𝛿(𝑥) = 𝜕𝐻 (𝑥)
𝜕𝑥

, we
can introduce generalized density function of random variable
𝜉 as follows:

𝑓 (𝑥) =
𝑘∑︁
𝑖=1

𝑝𝑖 𝛿(𝑥− 𝑥𝑖). (11)

Such an approach does not change the ways of basic character-
istics of random variables calculations (their moments, integral
transforms and so on because we treat here integrals also in
generalized sense) and helps to lead calculations in queueing
theory more effectively.

All the above-mentioned mathematical concepts generate
some computational problems. In the next section, we discuss
them and show some ways of their solving with the use of com-
puter algebra systems.
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4. EXAMPLES OF COMPUTATIONAL PROBLEMS AND
THEIR SOLUTIONS WITH THE HELP OF COMPUTER
ALGEBRA SYSTEMS

4.1. Techniques of finding steady-state final probabilities
of Markov chains with continuous time and enormous
number of states

Sometimes we face the problem of analyzing queueing systems
in which we have a huge number of possible states. Even if
investigated models can be described by Markov chains it is
sometimes very difficult to find steady-state final probabilities
due to very many equations appearing. In analogous situations
manual way of finding a solution to the linear system of equa-
tions that describes behavior of analyzed queueing system seems
to be rather impossible. Then we have to use some more compli-
cated matrix methods and the help of computer algebra systems,
e.g Mathematica environment.

A very good example of such a situation are systems with
non-identical servers. These systems are modeled with the
use of Markov chains whose states are sequences of busy
servers (𝑖1, . . . , 𝑖𝑘), 𝑘 = 1, 𝑛 (numbers of busy servers are
ordered increasingly) with additional state 0 (empty system).
In this case number of customers in the steady state cannot
be understood as the state of Markov chain so the number of
states is huge. For example, consider queueing system of the
𝑀/𝑀/𝑛/0-type (𝑛 is finite) in which all servers have different
parameters of exponentially distributed customer service time
𝜇𝑖 , 𝑖 = 1, 𝑛. It can be easily shown that number of states increases
exponentially with the number of servers 𝑛 (for 𝑛 servers we
have 2𝑛 states). A very interesting fact about this model is
that although it is very complicated, its solution (steady-state
number of customers distribution) is relatively simple in the
case when customers choose free server randomly – see,
e.g. [25]. The explanation is very simple: in this model, all
transitions between states that differ in number of busy servers
(and that difference equals 1) are possible, e.g. for system
𝑀/𝑀/3/0 we have the following transitions: 0 → (1), 0 → (2),
0 → (3), (1) → (1,2), (1) → (1,3), (2) → (1,2), (2) → (2,3),
(3) → (1,3), (3) → (2,3), (1,2) → (1,2,3), (1,3) → (1,2,3),
(2,3) → (1,2,3), (1,2,3) → (2,3), (1,2,3) → (1,3),
(1,2,3) → (1,2), (1,2) → (1), (1,2) → (2), (1,3) → (1),
(1,3) → (3), (2,3) → (2), (2,3) → (3), (1) → 0, (2) → 0 and
(3) → 0. The intensities of proper transitions equal 𝑎,

𝑎

2
,
𝑎

3
, 𝜇1,

𝜇2, 𝜇3, 𝜇1 + 𝜇2, 𝜇1 + 𝜇3, 𝜇2 + 𝜇3 and 𝜇1 + 𝜇2 + 𝜇3. The stochastic
graph is complicated in this case and we will not present it.

The much more interesting and complicated systems are
those with non-identical servers in which customers choose
the fastest free server. In such models we do not have all
above-mentioned transitions because customers never come to
the slower server, e.g. if we assume that 𝜇1 > 𝜇2 > 𝜇3, transitions
0 → (2), 0 → (3), 1 → (1,3), 2 → (2,3), 3 → (2,3) are impos-
sible. The system of steady-state balance equations describing
the system behavior is much more complicated although many
coefficients are zeros. Then we can use some matrix methods
and command LinearSolve from Mathematica environment es-
pecially that matrix appearing in this equation is sparse and
Mathematica uses smart techniques of evaluating such matri-

ces. Let us return to our example of queueing model of the
𝑀/𝑀/3/0-type with non-identical servers and fastest server
choice. In the steady state we can write out the following system
of equations describing the behavior of the system:

𝑎𝑝0 = 𝜇!1𝑝1 + 𝜇2𝑝2 + 𝜇3𝑝3 ,

(𝑎 + 𝜇1)𝑝1 = 𝑎𝑝0 + 𝜇2𝑝12 + 𝜇3𝑝13 ,

(𝑎 + 𝜇2)𝑝2 = 𝜇1𝑝12 + 𝜇3𝑝23 ,

(𝑎 + 𝜇3)𝑝3 = 𝜇1𝑝13 + 𝜇2𝑝23 ,

(𝑎 + 𝜇1 + 𝜇2)𝑝12 = 𝑎𝑝1 + 𝑎𝑝2 + 𝜇3𝑝123 ,

(𝑎 + 𝜇1 + 𝜇3)𝑝13 = 𝑎𝑝3 + 𝜇2𝑝123 ,

(𝑎 + 𝜇2 + 𝜇3)𝑝23 = 𝜇1𝑝123 .

with normalization condition:

𝑝0 + 𝑝1 + 𝑝2 + 𝑝3 + 𝑝12 + 𝑝13 + 𝑝23 + 𝑝123 = 1.

This system can be rewritten in a more convenient matrix form:

𝜇1 𝜇2 𝜇3 0 0 0 0
𝑎+𝜇1 0 0 −𝜇2 −𝜇3 0 0

0 𝑎+𝜇2 0 −𝜇1 0 −𝜇3 0
0 0 𝑎+𝜇3 0 −𝜇1 −𝜇2 0
𝑎 𝑎 0 −(𝑎+𝜇1+𝜇2) 0 0 𝜇3

0 0 𝑎 0 −(𝑎+𝜇1+𝜇3) 0 𝜇2

0 0 0 0 0 −(𝑎+𝜇2+𝜇3) 𝜇1



·



𝑝1

𝑝2

𝑝3

𝑝12

𝑝13

𝑝23

𝑝123


=



𝑎𝑝0

𝑎𝑝0

0
0
0
0
0


From the practical point of view this form of equation 𝐴𝑋 = 𝐵

has in this case only one solution 𝑋 = 𝐴−1𝐵 (satisfied condi-
tions for existence of the steady-state numbers of customers
distribution) and we can solve it with the use of Mathemat-
ica environment (LinearSolve command) what is illustrated
in Fig. 2. Notice that the exact form of general solutions is
rather complicated but we can obtain values for fixed parame-
ters 𝑎, 𝜇1, 𝜇2, 𝜇3 e.g. if 𝑎 = 1, 𝜇1 = 3, 𝜇2 = 2, 𝜇3 = 1 we have

𝑝0 =
58
85

, 𝑝1 =
59
306

, 𝑝2 =
11
255

, 𝑝3 =
3

170
, 𝑝12 =

25
612

, 𝑝13 =
11

1530
,

𝑝23 =
7

1020
, 𝑝123 =

7
685

. It can be easily investigated that com-
plexity of general solutions increases with the number of servers.
For 𝑛 = 2 the solution is much less complicated, namely:

𝑝0 =
𝜇1𝜇2 (2𝑎 + 𝜇1 + 𝜇2)

(𝑎 + 𝜇1) (𝑎2 +2𝑎𝜇2 + 𝜇2 (𝜇1 + 𝜇2))
;

𝑝1 =
𝑎𝜇2 (𝑎 + 𝜇1 + 𝜇2)

(𝑎 + 𝜇1) (𝑎2 +2𝑎𝜇2 + 𝜇2 (𝜇1 + 𝜇2))
;
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Fig. 2. Calculating number of customers distribution in 𝑀/𝑀/3/0
queueing system with non-identical servers and fastest server choice in

Mathematica

𝑝2 =
𝑎2𝜇1

(𝑎 + 𝜇1) (𝑎2 +2𝑎𝜇2 + 𝜇2 (𝜇1 + 𝜇2))
;

𝑝12 =
𝑎2 (𝑎 + 𝜇2)

(𝑎 + 𝜇1) (𝑎2 +2𝑎𝜇2 + 𝜇2 (𝜇1 + 𝜇2))
.

4.2. Applications of derivatives and L’Hospital’s rule
for one-variable function. Exemplary results
for 𝑀/𝐺/1/∞ queueing system

In many situations number of customers distribution (even in
steady-state) cannot be presented in exact form. We often ob-
tain it in terms of generating functions. But, based on proper-
ties of generating functions (see, e.g. formula (2)), we could
obtain some important characteristics of the steady-state num-
ber of customers distribution but we face some computational
problems. For example, if we want to calculate mean value of
the number of customers present in the system (in the steady
state), we should calculate derivative 𝑃′ (1) = lim

𝑧→1
𝑃′ (𝑧) (func-

tion 𝑃(𝑧) is analytic if |𝑧 | ≤ 1) but note that usually in this

case 𝑃′ (𝑧) = 𝑁 (𝑧)
𝐷 (𝑧) , where both numerator and denominator of

𝑃′ (𝑧) are zeros if 𝑧 = 1. So we have to use L’Hospital’s rule (we
have here undefined symbol 0

0 ) until denominator is nonzero.
Sometimes calculations become complicated (multiple use of
l’Hospital’s rule) and we can use Mathematica environment
and the following algorithm:
1. Define function 𝑃(𝑧).
2. Calculate its derivative 𝑃′ (𝑧).
3. Define separately numerator 𝑁 (𝑧) and denominator 𝐷 (𝑧) of

𝑃′ (𝑧).
4. Calculate derivatives of𝑁 (𝑧) and𝐷 (𝑧) until𝐷 (𝑧) is nonzero

at the point 𝑧 = 1 (because 𝑃(𝑧) is analytic then 𝑁 (𝑧) will
be then also nonzero at 𝑧 = 1).

5. Present final result making proper substitutions and simplify
calculations.

Example 1. Consider 𝑀/𝐺/1/∞ queueing system. The main
result for this one is the well-known Pollaczek–Khinchine for-
mula that defines generating function 𝑃(𝑧) of the steady-state
number of customers present in the system [13,14]:

𝑃(𝑧) = 𝑝0 +
∞∑︁
𝑘=1

𝑝𝑘𝑧
𝑘 =

(1− 𝜌) (1− 𝑧)𝛽(𝑎− 𝑎𝑧)
𝛽(𝑎− 𝑎𝑧) − 𝑧

, (12)

where 𝛽(𝑞) is Laplace–Stieltjes transform of the customer ser-
vice time (its distribution function is 𝐵(𝑡)), 𝑎 is an arrival rate
(parameter of exponentially distributed function 𝐴(𝑡) defining
time intervals between consecutive moments of customers’ ar-
rival to the system), 𝛽1 is the mean value of the customer service

time and 𝜌 = 𝑎𝛽1 < 1. In this case 𝑃′ (𝑧) = 𝑁 (𝑧)
𝐷 (𝑧) , where

𝑁 (𝑧) = (1− 𝜌) [(1− 𝛽(𝑎− 𝑎𝑧))𝛽(𝑎− 𝑎𝑧)
− (𝑎− 𝑎𝑧) (𝛽(𝑎− 𝑎𝑧) − 𝑧)𝛽′ (𝑎− 𝑎𝑧)]

and
𝐷 (𝑧) = [𝛽(𝑎− 𝑎𝑧) − 𝑧]2 .

Both 𝑁 (𝑧) and 𝐷 (𝑧) are zeros at the point 𝑧 = 1 because
𝛽(0) = 1. So we have to use l’ Hospital’ s rule (twice) and
above-mentioned computational technique.
In Fig. 3 we present the realization of this method (we hide here
partial results of calculations, presenting only final one).

Fig. 3. Mean value of the number of customers in 𝑀/𝐺/1/∞ queueing
system calculations in Mathematica

Obtained result

E𝜂 = 𝑃′ (1) = 𝜌 + 𝑎2𝛽2
2(1− 𝜌) ,

where 𝛽2 is the second moment of the customer service time is
the same as in classical queueing theory books – see, e.g. [6]. The
introduced method can be used for more complicated models
in which formula for generating function is more complex (e.g.
priority queues, queues with vacations). Moreover, the same
technique can be applied in the case when we calculate the other
queueing systems characteristics presented in terms of Laplace–
Stieltjes transforms. We will show that fact in next example.
Example 2. It is rather known (see [1]) that Laplace–Stieltjes
transform 𝑤(𝑞) of the steady-state waiting time of a customer
(in the case of FIFO discipline) for 𝑀/𝐺/1/∞ queueing system
equals

𝑤(𝑞) = (1− 𝜌)𝑞
𝑞− 𝑎 + 𝑎𝛽(𝑞) . (13)
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To calculate first moments of analyzed steady-state customer
waiting time, we have to calculate derivatives of the function
𝑤(𝑞) but this time at the point 𝑞 = 0 (formula (5)), namely
𝑤1 = −𝑤′ (0), 𝑤2 = 𝑤′′ (0), facing analogous difficulties caused
by undefined symbols (as 𝛽(0) = 1). Here we present (in
Fig. 4) the solution in Mathematica environment (notice that
in the case of 𝑤2 calculations, we have to use l’Hospital’s
rule three times). Obtained results after small modifications:

𝑤1 =
𝑎𝛽2

2(1− 𝜌) , 𝑤2 =
(𝑎𝛽2)2

2(1− 𝜌)2 +
𝑎𝛽3

3(1− 𝜌) , where 𝛽3 is the third

moment of the customer service time, are the same as in [1].

Fig. 4. First two moments of the customer waiting time in 𝑀/𝐺/1/∞
queueing system calculations in Mathematica

Example 3. Now we will present one more interesting example
connected with calculating first two moments of the steady-
state busy period for the same system. As it was proved, e.g.
in [6], Laplace–Stieltjes transform 𝜋(𝑞) of this random variable
satisfies the following functional equation:

𝜋(𝑞) = 𝛽(𝑞 + 𝑎− 𝑎𝜋(𝑞)). (14)

It is impossible to obtain formula for 𝜋(𝑞) in exact form,
but we can calculate the moments of analyzed busy period:

𝜋1 = −𝜋′ (0), 𝜋2 = 𝜋′′ (0) computing derivatives of the left and
the right side of this equation. See the next Mathematica note-
book (Fig. 5). Here we obtain 𝜋1 =

𝛽1
1− 𝜌

, 𝜋2 =
𝛽2

(1− 𝜌)3 i.e. the

same result as in [6].

Fig. 5. First two moments of the busy period in 𝑀/𝐺/1/∞ queueing
system calculations in Mathematica

4.3. Calculating convolutions

Computation of convolutions based on their definition (see for-
mulae (8)–(9a)) is a very complicated and inconvenient process.
It is often impossible to obtain the exact form of convolution
for any 𝑛, for many types of distribution functions 𝐹 (𝑥) (even if
𝐹 (𝑥) defines absolute continuous random variable). In queue-
ing theory, especially when we consider models with random
volume customers, we often need to obtain the general formula
for distribution function of the sum of 𝑛 independent random
variables having the same distribution function, which unfor-
tunately demands calculating very complicated 𝑛-fold Stieltjes
convolutions (they are often present in basic formulae for per-
formance characteristics of above-mentioned queueing systems)
based on recursive integral calculations.

In analogous cases Mathematica environment is also a won-
derful tool that can help to calculate convolutions. On the base
of mentioned in Section 3 properties of Laplace and Laplace–
Stieltjes transforms (see formulae (6)–(7)), we may use the fol-
lowing method:
1. Calculate Laplace–Stieltjes transform (LST) of a single

function 𝐹 (𝑥):

𝛼(𝑞) =
∞∫

0

𝑒−𝑞𝑥 d𝐹 (𝑥) =
∞∫

0

𝑒−𝑞𝑥 𝑓 (𝑥) d𝑥,
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where 𝑓 (𝑥) is a density function of the random variable
defined by distribution function 𝐹 (𝑥) (in the case of random
variables that are not absolute continuous, we consider the
generalized density function discussed in Section 3).

2. Calculate LST of a convolution 𝐹𝑛 (𝑥) using formula (6):

𝛼𝑛 (𝑞) = [𝛼(𝑞)]𝑛 .

3. Obtain formula for Laplace transform of analyzed convolu-
tion using (7):

L (𝑞) = [𝛼(𝑞)]𝑛

𝑞
.

4. Finally, use InverseLaplaceTransform command from
Mathematica environment to obtain exact formula of 𝐹𝑛 (𝑥)
convolution [11]:

𝐹𝑛 (𝑥) = L −1 (𝑞).

It is clear that this way of calculating convolutions gives a chance
to obtain exact form of convolution only for fixed 𝑛 (not for any
𝑛) but obtained results can help to predict general formulae that
can be proved afterwards by induction method. Now we illustrate
discussed method in the next example.

Example 4. Consider random variable 𝜉 that is uniformly dis-
tributed on interval [𝑎, 𝑏], 𝑎 ≥ 0, 𝑏 > 𝑎. It is obvious that its
density function has the form 𝑓 (𝑥) = 1

𝑏− 𝑎
if 𝑥 ∈ [𝑎, 𝑏] and

𝑓 (𝑥) = 0, otherwise. In Fig. 6 we present the way of calculating
convolutions 𝐹2 (𝑥) and 𝐹3 (𝑥) of analyzed random variable with
the use of the above-mentioned computational algorithm. Ob-
tained results let us predict the general formula of convolution

Fig. 6. Convolution of uniform distributions calculations
in Mathematica

in the following form (which can be easily proved):

𝐹𝑛 (𝑥) =
(
−1
𝑏− 𝑎

)𝑛
𝑛∑︁
𝑙=0

(−1)𝑙 [(𝑏− 𝑎)𝑙 − 𝑏𝑛+ 𝑥]𝑛𝐻 [(𝑏− 𝑎)𝑙 − 𝑏𝑛+ 𝑥]
𝑙!(𝑛− 𝑙)! , (15)

where 𝐻 (𝑥) is the left-side continuous Heaviside’s unistep func-
tion.

We can easily find the model of a queueing system for which
we have to calculate convolutions to obtain his main perfor-
mance characteristics. As an example, we can mention general
results for the 𝑀/𝑀/𝑛/(𝑚,𝑉) queueing system [6] which is
the generalization of the classical 𝑀/𝑀/𝑛/𝑚 queue in which
arriving customers are additionally characterized by some non-
negative random volume 𝜁 having distribution function 𝐿 (𝑥),
customer service time is independent of his volume and ex-
ponentially distributed with parameter 𝜇 and customers total
volume is limited by value 𝑉 . For such a system, two main
characteristics are those connected with steady-state number of
customers and loss probability. We present them below.

𝑝𝑘 =


(𝑛𝜌)𝑘 𝑝0

𝑘!
𝐿𝑘 (𝑉), 𝑘 = 1, 𝑛;

𝑛𝑛𝜌𝑘 𝑝0
𝑛!

𝐿𝑘 (𝑉), 𝑘 = 𝑛+1, 𝑛+𝑚.

(16a)

𝑝LOSS = 1− (𝑛𝜌)−1
𝑛−1∑︁
𝑘=1

𝑘 𝑝𝑘 − 𝜌−1

(
1−

𝑛−1∑︁
𝑘=0

𝑝𝑘

)
, (16b)

where 𝑝0 can be obtained from normalization condition
𝑛+𝑚∑︁
𝑖=0

𝑝𝑖 = 1. Formulae (16a) and (16b) seem to be very simple

but notice that they contain Stieltjes convolutions 𝐿𝑘 (𝑉).

5. THE OTHER PERFORMANCE CHARACTERISTICS
OF THE QUEUEING SYSTEMS WITH RANDOM VOLUME
CUSTOMERS AND NEXT COMPUTATIONAL PROBLEMS

As was mentioned in Section 2, very interesting results in queue-
ing theory were obtained during the analysis of models of queue-
ing systems with random volume customers. For such models,
we often deal with calculating customers total volume charac-
teristics.

5.1. Calculating characteristics of total volume
in 𝑀/𝐺/1/∞ queueing system

One of the most known results is the generalization of Pollaczek–
Khinchine formula defining LST 𝛿(𝑠) of steady-state total vol-
ume of customers present in the system 𝑀/𝐺/1/∞:

𝛿(𝑠) = (1− 𝜌)
[
1+ 𝜑(𝑠) −𝛼(𝑠, 𝑎− 𝑎𝜑(𝑠))

𝛽(𝑎− 𝑎𝜑(𝑠)) −𝜑(𝑠)

]
. (17)

From the practical point of view it is very important to calcu-
late at least first two moments of the total volume 𝛿1 = −𝛿′ (0)
and 𝛿2 = 𝛿′′ (0) (these values can be used to approximate loss
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characteristics in analogous systems but with limited customers
total volume – see [6]) but as you can see, formula (17) is very
complicated because it contains complex rational functions of
two variables as in analyzed models we assume existence of
joint distribution function 𝐹 (𝑥, 𝑡) of random vector contain-
ing two dependent components – the customer volume 𝜁 and
his service time 𝜉 together with double LST of this function:

𝛼(𝑠, 𝑞) =
∞∫

0

∞∫
0

𝑒−𝑠𝑥−𝑞𝑡 d𝐹 (𝑥, 𝑡) (whereas 𝜑(𝑠) and 𝛽(𝑞) are

single LSTs of the customer volume and his service time, re-
spectively). Moreover, we also have here undefined symbols so
we have to use L’Hospital’s rule again, analogously as it was
done in the previous section, but this time calculations are a
bit difficult. During the calculations we also have to do much
more substitutions because in this case (apart from moments 𝜑𝑖

and 𝛽𝑖 of customer volume and his service time) we addition-
ally obtain mixed moments 𝛼𝑖 𝑗 of the analyzed vector (𝜁, 𝜉) as
𝜕𝑖+ 𝑗𝛼(𝑠, 𝑞)
𝜕𝑠𝑖𝜕𝑞 𝑗

��
𝑠=0,𝑞=0 = (−1)𝑖+ 𝑗𝛼𝑖 𝑗 . In Fig. 7 we present the use of

Fig. 7. Calculations of 𝛿1 and 𝛿2 for 𝑀/𝐺/1/∞ queueing system with
random volume customers in Mathematica

Mathematica environment in obtaining results connected with
computations of characteristics 𝛿1 and 𝛿2 (hiding long partial
results). Obtained results are identical as those presented in [6].

5.2. Generalized L’Hospital’s rule and its application
in calculations for systems with sectorized memory

One of the newest approach in queueing systems analysis is con-
cerned on those models that have sectorized memory. It means
that we assume that arriving customers are characterized by
some random volume vectors whose indications store data of dif-
ferent types. After customer is accepted on service (if all sectors
of memory buffer have enough free memory to write new data to
them) then multidimensional total customers’ volume increases
e.g. if at time moment 𝑡 of new customer’s arrival total volume
contains two sectors and it equals 𝝈(𝑡) = (𝜎1 (𝑡),𝜎2 (𝑡)) and cus-
tomer is characterized by random volume vector (𝑥, 𝑦) then we
obviously have 𝝈(𝑡+) = (𝜎1 (𝑡) + 𝑥,𝜎2 (𝑡) + 𝑦). Of course, after
service termination (say, at time 𝜏) total volume is released in
the same way which means that 𝝈(𝜏+) = (𝜎1 (𝜏) − 𝑥,𝜎2 (𝜏) − 𝑦)
if served customer was characterized by random volume vector
(𝑥, 𝑦). As examples of recently published articles investigating
such models we can mention again [7, 8, 22]. The most impor-
tant performance characteristics of these systems are again those
connected with total volume (usually we calculate mixed mo-
ments of multidimensional total volume) and loss probability
(in the case when sectors of total volume are limited). Unfor-
tunately, characteristics become multidimensional and from the
computational point of view we face new problems. For exam-
ple, Laplace–Stieltjes transform 𝛿(𝑠1, . . . , 𝑠𝑛) of total volume
is at least two-dimensional and cancelling undefined symbols
during total volume mixed moments calculations demands us-
ing of generalized L’Hospital’s rule for functions containing
many variables. The mathematical concept of such general-
ization is presented, e.g. in [26, 27] but in our case situation
is not so complex as it seems because LST of total volume
𝛿(𝑠1, . . . , 𝑠𝑛) is an analytic function if Re 𝑠1 ≥ 0, . . ., Re 𝑠𝑛 ≥ 0

so lim
𝑠1→0,...,𝑠𝑛→0

𝜕𝑖1+...+𝑖𝑛𝛿(𝑠1, . . . , 𝑠𝑛)
𝜕𝑠

𝑖1
1 . . . 𝜕𝑠

𝑖𝑛
𝑛

exists for all 𝑖1, . . . , 𝑖𝑛 and

we can use this generalization in only one following way (with
the help of Mathematica environment):

1. Define function 𝛿(𝑠1, . . . , 𝑠𝑛).
2. Calculate the following relation (containing partial deriva-

tives) (−1)𝑖1+...+𝑖𝑛 𝜕
𝑖1+...+𝑖𝑛𝛿(𝑠1, . . . , 𝑠𝑛)

𝜕𝑠
𝑖1
1 . . . 𝜕𝑠

𝑖𝑛
𝑛

.

3. Define separately numerator 𝑁 (𝑠1, . . . , 𝑠𝑛) and denominator
𝐷 (𝑠1, . . . , 𝑠𝑛) of the previous result.

4. Calculate partial derivatives of 𝑁 (𝑠1, . . . , 𝑠𝑛) and
𝐷 (𝑠1, . . . , 𝑠𝑛) until 𝐷 (𝑠1, . . . , 𝑠𝑛) is nonzero at the point
(𝑠1, . . . , 𝑠𝑛) = (0, . . . ,0). As it was proved in [26, 27], we
should calculate derivatives in some ordered cycle e.g. by
variables 𝑠1, 𝑠2, . . . , 𝑠𝑛, 𝑠1, 𝑠2, . . .. It means that calculating
partial derivatives using the same variable e.g. by 𝑠1, 𝑠1, . . .
is not effective.

5. Present final result making needed substitutions and simplify
calculations.
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We will present this technique analyzing system 𝑀/𝐺/1/∞
with sectorized memory containing two sectors. It is rather clear
that formula defining two-dimensional LST of steady-state total
customers volume is the generalization of formula (17) (taking
into consideration that arriving customers are characterized by
two-dimensional random volume vectors) and has the form

𝛿(𝑠1, 𝑠2) = (1− 𝜌)[
1+ 𝜑(𝑠1, 𝑠2) −𝛼(𝑠1, 𝑠2, 𝑎− 𝑎𝜑(𝑠1, 𝑠2))

𝛽(𝑎− 𝑎𝜑(𝑠1, 𝑠2)) −𝜑(𝑠1, 𝑠2)

]
. (17a)

Now we will calculate mixed (1+ 1)-th moment of the steady-
state two-dimensional total volume
𝛿11 = (−1)1+1 𝜕

2𝛿(𝑠1, 𝑠2)
𝜕𝑠1𝜕𝑠2

���
𝑠1=0,𝑠2=0

. The computations in Math-
ematica environment are presented in the next Fig. 8. Ob-
tained result (after some small simplifications) was presented
in [7]. Note that calculations in this case are very long, com-
plex and exhausted (we do not show here partial results of
our computations, believe that they are extremely long, obtain-
ing the final result demands making of many substitutions as
in the formula we have mixed moments 𝛼𝑖 𝑗𝑘 of (𝑖 + 𝑗 + 𝑘)-
th order of the joint distribution function of two-dimensional
customer volume vector and his service time 𝐹 (𝑥1, 𝑥2, 𝑡). In

this case 𝛼𝑖 𝑗𝑘 = (−1)𝑖+ 𝑗+𝑘 𝜕
𝑖+ 𝑗+𝑘𝛼(𝑠1, 𝑠2, 𝑞)
𝜕𝑠𝑖1𝜕𝑠

𝑗

2𝜕𝑞
𝑘

��
𝑠1=0,𝑠2=0,𝑞=0, where

𝛼(𝑠1, 𝑠2, 𝑞) is three-dimensional LST of a vector (𝜁1, 𝜁2, 𝜉)

Fig. 8. Calculations of 𝛿11 for 𝑀/𝐺/1/∞ queueing system with random
volume customers and sectorized memory containing two sectors in

Mathematica

whose indications are two indications of customer volume vec-
tor and his service time) but Mathematica environment helps
to obtain results effectively in about five minutes while making
computations without computer algebra systems is almost im-
possible or takes a long time and needs many pages of difficult
calculations in which it is easy to make mistakes, simply lose or
give up. So previously planned computations can give a chance
to obtain new interesting scientific results that would not be ob-
tained without the help of computer algebra systems or simply
would take much more time. Thus, presented technique seems
to be unique and very practical.

5.3. Calculating multidimensional convolutions.
The use of generalized density function

Consider again the most novel models of queueing systems with
random volume customers and sectorized memory buffer. But
this time indications of total volume are limited (the sectors of
memory buffer let us store information of size 𝑉1, . . . ,𝑉𝑛, re-
spectively, where 𝑛 is memory buffer dimension – see Fig. 9).
For such defined models, we usually want to obtain steady-
state characteristics of the number of customers present in the
system and formula defining loss probability (in investigated
model customer is lost if at least one of his volume vector indi-
cation is too big to be accepted on servicing so the mechanism
of rejection of arriving customers is not the same as in clas-
sical queueing models where we only take into consideration
the number of busy servers and waiting positions). Calculated
characteristics contain inconvenient multidimensional Stieltjes
convolutions 𝐹𝑘 (𝑥1, . . . , 𝑥𝑛) that can be defined analogously to
(9) but their multidimensional character makes computations
more difficult and obtaining results needs the use of computer
algebra systems.

Fig. 9. Scheme of queueing system with random volume customers and
limited sectorized memory buffer

On the other hand, during calculating convolutions we meet
two most practical cases: 1) indications of customer random vol-
ume vector are independent (this situation is easy because then
multidimensional Stieltjes convolution can be presented as a
product of Stieltjes convolutions of its indications); 2) first 𝑛−1
indications of customer random volume vector are independent
and the last one is proportional to their sum. The second situation
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(which is often observed in real-life systems) leads to interest-
ing computations in which we additionally may use generalized
density function. As an example, we will investigate an interest-
ing model of queueing system of the 𝑀/𝑀/𝑛/(𝑚,𝑉1,𝑉2,𝑉3)-
type. In this model (having 𝑛 servers and 𝑚 waiting positions)
customers arrive to the system with rate 𝑎 (time intervals be-
tween neighboring moments of customers’ arrival are expo-
nentially distributed with parameter 𝑎), customer service time
is exponentially distributed with parameter 𝜇 and independent
of customer volume vector that is characterized by distribution
function 𝐿 (𝑥1, 𝑥2, 𝑥3). In addition, memory buffer contains three
sectors limited by values 𝑉1,𝑉2,𝑉3, respectively. It can be easily
proved that formulae defining steady-state number of customers
distribution and loss probability have the same form as in (16a)–
(16b) if we substitute instead of one-dimensional convolution
𝐿𝑘 (𝑉) its three-dimensional version 𝐿𝑘 (𝑉1,𝑉2,𝑉3). Assume
now that first two indications 𝜁1, 𝜁2 (whose distribution func-
tions are 𝐿1 (𝑥) and 𝐿2 (𝑥), respectively) of three-dimensional
non-negative random volume vector (𝜁1, 𝜁2, 𝜁3) are independent
and the last one is proportional to their sum: 𝜁3 = 𝑐(𝜁1 + 𝜁2),
𝑐 > 0. Let us try to obtain the general formula for multidi-
mensional Stieltjes convolution 𝐿𝑘 (𝑥1, 𝑥2, 𝑥3) that defines dis-
tribution function of the sum of 𝑘 independent random vectors
whose distribution function is 𝐿 (𝑥1, 𝑥2, 𝑥3). Note that even for-
mula defining 𝐿 (𝑥1, 𝑥2, 𝑥3) is complicated. Indeed, after some
computations, we obtain:

𝐿 (𝑥1, 𝑥2, 𝑥3)
= P{𝜁1 < 𝑥1, 𝜁2 < 𝑥2, 𝜁3 < 𝑥3}
= P {𝑐(𝜁1 + 𝜁2) < 𝑥3, 𝜁1 < 𝑥1, 𝜁2 < 𝑥2}

=

𝑥1∫
0

𝑥2∫
0

P{𝑐(𝜁1 + 𝜁2) < 𝑥3, 𝜁1 = 𝑢1, 𝜁2 = 𝑢2}d𝐿1 (𝑢1)d𝐿2 (𝑢2)

=

𝑥1∫
0

𝑥2∫
0

𝐻 (𝑥3 − 𝑐(𝑢1 +𝑢2)) d𝐿1 (𝑢1) d𝐿2 (𝑢2)

=

𝑥1∫
0

𝑥3
𝑐
−𝑢1∫

0

d𝐿1 (𝑢1) d𝐿2 (𝑢2)

=

𝑥1∫
0

𝐿2

( 𝑥3
𝑐
−𝑢1

)
d𝐿1 (𝑢1), (18)

where 𝐻 (𝑥) is left-side continuous version of Heaviside’s unit-
step function. Calculating convolutions of such defined distri-
bution function (based on its definition generalized on multidi-
mensional distribution functions – see again (9)) seems to be a
rather impossible exercise to do. But again, we may use very con-
venient Laplace–Stieltjes transform (its multidimensional ver-
sion) to obtain results, especially when we additionally consider
Dirac-delta distribution 𝛿(𝑥) as the derivative of Heaviside’s
function 𝐻 (𝑥) (in the sense of distribution). Note that from (18)
we may also easily obtain

𝑑𝐿 (𝑥1, 𝑥2, 𝑥3) = 𝑑𝐿1 (𝑥1) 𝑑𝐿2 (𝑥2)𝛿 (𝑥3 − 𝑐(𝑥1 + 𝑥2)) 𝑑𝑥3. (19)

If we use multidimensional Laplace–Stieltjes transform to both
sides of (19), we finally obtain

𝛼(𝑠1, 𝑠2, 𝑠3)

=

∞∫
0

∞∫
0

∞∫
0

𝑒−𝑠1𝑥1−𝑠2𝑥2−𝑠3𝑥3 d𝐿1 (𝑥1) d𝐿2 (𝑥2)

𝛿 (𝑥3 − 𝑐(𝑥1 + 𝑥2)) d𝑥3

=

∞∫
0

∞∫
0

𝑒−𝑠1𝑥1−𝑠2𝑥2−𝑐𝑠3 (𝑥1+𝑥2 ) d𝐿1 (𝑥1) d𝐿2 (𝑥2)

=

∞∫
0

𝑒−𝑥1 (𝑠1+𝑐𝑠3 ) d𝐿1 (𝑥1) ·
∞∫

0

𝑒−𝑥2 (𝑠2+𝑐𝑠3 ) d𝐿2 (𝑥2)

= 𝜑1 (𝑠1 + 𝑐𝑠3)𝜑2 (𝑠2 + 𝑐𝑠3), (20)

where 𝜑1 (𝑠) and 𝜑2 (𝑠) are one-dimensional Laplace–Stieltjes
transforms of functions 𝐿1 (𝑥) and 𝐿2 (𝑥), respectively. This re-
sult can be generalized and give a base to build computational
algorithm for calculating multidimensional convolutions of ran-
dom vectors (𝜉1, . . . , 𝜉𝑛) in which first 𝑛 − 1 indications are
independent (and we are able to obtain exact forms of their
Laplace–Stieltjes transforms) and the last one is proportional
to their sum. In this case multidimensional Laplace–Stieltjes
transform of this random vector has the form:

𝛼(𝑠1, . . . , 𝑠𝑛) =
𝑛−1∏
𝑖=1

𝜑𝑖 (𝑠𝑖 + 𝑐𝑠𝑛), (21)

where 𝜑𝑖 (𝑠) is Laplace–Stieltjes transform of 𝑖-th indication
of random vector (𝜉1, . . . , 𝜉𝑛). Now we can obtain the 𝑘-fold
multidimensional Stieltjes convolution of this vector using the
following way (the algorithm is similar to its one-dimensional
version presented in Section 4) with the help of Mathematica
environment:
1. Calculate multidimensional LST of a convolution

𝐹𝑘 (𝑥1, . . . , 𝑥𝑛) using formula:

𝛼𝑘 (𝑠1, . . . , 𝑠𝑛) = [𝛼(𝑠1, . . . , 𝑠𝑛)]𝑘 =
𝑛−1∏
𝑖=1

[𝜑𝑖 (𝑠𝑖 + 𝑐𝑠𝑛)]𝑘 ;

2. Obtain formula for Laplace transform of analyzed convolu-
tion:

L𝑘 (𝑠1, . . . , 𝑠𝑛) =
∏𝑛−1

𝑖=1 [𝜑𝑖 (𝑠𝑖 + 𝑐𝑠𝑛)]𝑘∏𝑛
𝑖=1 𝑠𝑖

;

3. Finally, use InverseLaplaceTransform command from
Mathematica environment to obtain exact formula of
𝐹𝑘 (𝑥1, . . . , 𝑥𝑛) convolution:

𝐹𝑘 (𝑥1, . . . , 𝑥𝑛) = L −1
𝑘 (𝑠1, . . . , 𝑠𝑛).

Now we will present application of this method.

Example 5. Consider random vector (𝜉1, 𝜉2, 𝜉3) whose first
two indications are independent and exponentially distributed

12 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150199, 2024



On applications of computer algebra systems in queueing theory calculations

with parameters 𝑓 , 𝑔, respectively and 𝜉3 = 𝑐(𝜉1 + 𝜉2). Then we

have: 𝜑1 (𝑠) =
𝑓

𝑓 + 𝑠 , 𝜑2 (𝑠) =
𝑔

𝑔 + 𝑠 . Thus, on the base of (21),

we obtain 𝛼(𝑠1, 𝑠2, 𝑠3) =
𝑓 𝑔

( 𝑓 + 𝑠1 + 𝑐𝑠3) (𝑔 + 𝑠2 + 𝑐𝑠3)
and finally

L𝑘 (𝑠1, 𝑠2, 𝑠3) =
( 𝑓 𝑔)𝑘

𝑠1𝑠2𝑠3 ( 𝑓 + 𝑠1 + 𝑐𝑠3)𝑘 (𝑔 + 𝑠2 + 𝑐𝑠3)𝑘
. Then we

may obtain formula for Stieltjes convolution 𝐹𝑘 (𝑥1, 𝑥2, 𝑥3) for
the arbitrary 𝑘 using InverseLaplaceTransform command
from Mathematica environment. The way of getting results for
𝑘 = 1 (distribution function𝐹 (𝑥1, 𝑥2, 𝑥3)) and 𝑘 = 2 (2-fold Stielt-
jes convolution) is presented in the next Fig. 10. In the same way
we may obtain convolutions of higher orders but results are very
long and complicated and we will not show them in this paper.
Moreover, it is clear that computations may take much more
time due to the use of residue method in the case when poles
of denominator are of higher orders. In addition, the values of
convolutions for some fixed 𝑉1,𝑉2 and 𝑉3 let us obtain number
of customers distribution and calculate loss probability values
for mentioned earlier queueing system with limited sectorized
memory buffer of the 𝑀/𝑀/𝑛/(𝑚,𝑉1,𝑉2,𝑉3)-type.

Fig. 10. An example of calculating convolutions of a random vector
in Mathematica

6. CONCLUSIONS AND FINAL REMARKS

In the present paper, we have confirmed the important role of
computer algebra systems in obtaining of main performance
characteristics of queueing systems both during analysis of clas-
sical queues and their generalizations assuming existence of
customers random volume (that can also be multidimensional).
We have shown many examples of effective computational al-
gorithms that, with the help of Mathematica environment, let us
calculate characteristics connected with steady-state number of
customers distribution, loss probability (in the case when mem-

ory buffer is limited) as well as characteristics of steady-state
total volume (in the case when it is one or multidimensional).
Moreover, we have investigated possibilities of applications of
computer computational systems for obtaining exact forms of
derivatives of complicated rational functions of one or many
variables containing undefined symbols for which we have to
use classical L’Hospital’s rule and its multivariate modification
and getting exact formulae of Stieltjes convolutions with an in-
teresting use of chosen integral transforms. In addition, we have
discussed the concept of generalized density function and its
possible applications in complex calculations from theory of
queueing systems area. In the text we have also presented some
fragments of Mathematica notebooks illustrating the ways of
getting the most important results with the help of computa-
tional algorithms offered by author. The methods mentioned in
the paper can be useful for scientists working with queueing
theory models for whom presented techniques give a chance to
avoid manual calculations almost impossible to do.
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