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Abstract.. Odor source location technology has important application value in environmental monitoring, safety emergency and 
search and rescue operations. For example, it can be used in post-disaster search and rescue, detection of hazardous gas leakage, 
and fire source detection. Existing odor source location methods have problems such as low search efficiency, inability to adapt 
to complex environments, and inaccurate odor source location. In this study, based on unmanned aerial vehicle technology and 
using swarm intelligence optimization algorithm, an improved artificial fish swarm algorithm (IAFSA) is proposed by combining 
curiosity in psychology on the basis of retaining the good optimization performance of the artificial fish swarm algorithm. The 
algorithm quantifies the curiosity of artificial fish searching high-concentration areas through a model, dynamically adjusts the 
artificial fish's field of vision and step length with the calculated curiosity factor, and avoids the oscillation phenomenon in the 
later stage of the algorithm. Simulation results show that the IAFSA has a higher success rate and smaller location error. Finally, 
odor source location experiments were carried out in an indoor physical environment, the feasibility of the odor source location 
method proposed in this study is verified in actual scenarios. 
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1. INTRODUCTION 
Odor source location technology is a technique used to 
determine the location of a gas leak or odor source. With this 
technology, it is possible to track and locate odor sources within 
a spatial range, enabling rapid response and management of 
issues such as hazardous gas leaks, air quality problems, and 
environmental monitoring. Traditionally, odor source location 
mainly relies on biological olfaction, which has significant 
limitations and instability. To address this issue, scientists have 
begun researching and developing odor source location 
methods based on sensor and data processing technologies to 
accurately detect and locate odor sources. With the continuous 
advancement of sensor technology and data processing 
algorithms, odor source location technology has made 
significant improvements. Modern odor source location 
technology uses various gas sensors to perceive the 
concentration of the target gas, and collects relevant 
environmental parameters such as wind direction and speed. 
These data are input into algorithms to infer the location of the 
odor source through model calculation. 
In odor source location technology, common methods include 
biological detection [1], fixed monitoring network [2, 3] and 
active location [4-7]. Biological detection method means that 
full-time personnel bring professional equipment to the scene 

of the accident to search, or use professionally trained creatures 
to locate the source of the scene, this method has a long training 
period, low efficiency, and high risk. The fixed monitoring 
network method refers to the use of a large number of sensors 
to form a fixed monitoring network, and the odor source is 
located by monitoring the changes in the gas concentration 
value of each sensor node in the network. This method needs to 
deploy a monitoring network in the fixed area in advance when 
locating the odor source, and the monitoring range is limited by 
the cost. The active location method is an approach to detect, 
track, and locate odor sources by employing mobile robots 
equipped with sensor devices. This method simulates the 
olfactory location ability of certain animals, such as mosquitoes 
[8] and male moths [9], which can perform behaviors such as 
foraging, mating, and repelling predators by tracking the 
direction and location of odor sources. Compared with the 
biological detection method and the fixed monitoring network 
method, the active location method has great advantages in 
location accuracy, real-time capability, computational 
efficiency, adaptability and scalability. 
Classified according to the number of robots, the current active 
odor source location methods include single-robot odor source 
location method and multi-robot odor source location method. 
Single-robot odor source location methods mainly include 
chemical tropism, wind tropism, information tropism, visual 
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assistance, model and estimation based methods, et al. The 
existing achievements include E.coli algorithm [10], Zigzag 
algorithm [11], plume center upwind algorithm [12], 
information trend algorithm [13], Adaptive Mission Planner 
(AMP) algorithm [14], Bi-modal search algorithm, Kernel 
DM+V algorithm [15], et al. The advantages of the single-robot 
odor source location method are low cost and easy 
implementation, but its small search range and weak robustness 
make it difficult to apply to practical problems. Compared with 
the single-robot odor source location method, the multi-robot 
odor source location method needs to rely on the cooperation 
and information sharing between multiple robots, and related 
methods include swarm intelligence based method, formation 
based method, evolution based method and so on. Existing 
achievements include Pollution-driven UAV Control (PdUC) 
algorithm [16], Explorative Particle Swarm Optimization 
(EPSO) algorithm [17], Improved Ant Colony Optimization 
(IACO) algorithm [18], flux trend algorithm [19, 20], 
evolutionary gradient search algorithm [21], et al. The multi-
robot odor source location method has the characteristics of 
large search range and strong robustness. The search ability, 
perception ability and anti-interference ability of multi-robot 
are much higher than that of single-robot. 
In the existing achievements, most of the research is to use 
ground mobile robots to find the odor source, but they are easily 
limited by complex terrain environments, including obstacles, 
slopes, stairs, et al. The more complex the terrain environment 
is, the more factors the robot considers when moving, the more 
difficult the path planning is, and the efficiency of odor source 
location will also be reduced. Unmanned aerial vehicle (UAV) 
has the ability to move in the vertical direction, and flying in the 
air can avoid the influence of most terrain environments. 
Compared with ground mobile robots, UAV is more competent 
to locate odor source in complex terrain environment. 
Artificial fish swarm algorithm (AFSA) [22] is mainly inspired 
by the predatory prey behavior of fish in nature. In nature, the 
location with the largest number of fish in a certain water 
environment is often the place with the most food in the water. 
The fish will spontaneously gather towards the food-rich 
location. At the same time, the larger the swarm, the more 
companions will be attracted. The algorithm imitates the 
biological characteristics of fish when searching for food, 
including foraging behavior, random behavior, flocking 
behavior and tail chasing behavior. Through the imitation of 
these behaviors, it can perceive the information in the area to be 
searched, so as to realize optimization. 
The odor source location problem of harmful gases is closely 
related to human life and property safety. As a swarm 
intelligence algorithm with high search efficiency and strong 
global search capability, AFSA can significantly reduce the 
computational cost of odor source location if applied in this 
field. However, the AFSA itself is susceptible to parameter 
influence and prone to oscillation in the later stage of the 
algorithm. To address this issue, based on UAV technology and 
AFSA, this study introduces curiosity in psychology and 
proposes a multi-UAV odor source location method based on 
improved artificial fish swarm algorithm (IAFSA). This method 

quantifies the curiosity of artificial fish in searching high-
concentration areas through a model. By dynamically adjusting 
the field of vision and step length of the artificial fish based on 
the calculated curiosity factor, it effectively avoids the 
oscillation phenomenon in the later stage of the algorithm. 
Moreover, this approach can maintain a high success rate and a 
small location error in the odor source location task. 

2. IMPROVED ARTIFICIAL FISH SWARM ALGORITHM 
BASED ON CURIOSITY 

2.1. Traditional artificial fish swarm algorithm 
2.1.1. Structure model of artificial fish 
The optimization idea of the AFSA is bottom-up. First, the 
individual in the fish swarm is abstracted to construct a structure 
model of the artificial fish, and then the individual is expanded 
to the group, and obtained global optimal result from the free 
interaction between the groups. The structure model of the 
artificial fish is shown in Fig. 1. 

 
Fig.1. Artificial fish structure model 

 
The visual field of the artificial fish is visual, representing the 
maximum perception distance of the artificial fish in the search 
area; step is the step length of the artificial fish, representing the 
maximum distance the artificial fish moves each time; X1 

represents the current position of an artificial fish, X2, X3 and X4 

represent the positions of the artificial fish partners; Xv 

represents the position selected by the artificial fish in the visual 
field. When the food concentration at the position of Xv is 
greater than the food concentration at the position of X1, the 
artificial fish swims in the direction of Xv and reaches the 
position of Xnext, otherwise, the artificial fish will continue to 
perceive the food concentration information of other positions 
in the field of vision. With the increase of perception times, the 
artificial fish will have a more comprehensive cognition of the 
information in the field of vision. 
2.1.2. Basic behaviors of artificial fish 
Artificial fish has four basic behaviors, random behavior, 
foraging behavior, clustering behavior and tail-chasing 
behavior. The artificial fish will evaluate according to its own 
environment and choose the best behavior for its next state. The 
specific behaviors are described as follows: 
Random behavior is a supplementary behavior of foraging 
behavior. The implementation is relatively simple, that is, 
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randomly select a direction to move in the field of vision. The 
expression is as follows: 

 next iX X step Rand    

In equation (1), Xi represents the current position of artificial 
fish i; Xnext represents the moved position of artificial fish i; step 
represents the maximum moving step length of artificial fish; 
Rand represents a random number in the interval [0,1]. 
The foraging behavior simulates the behavior of fish shoals to 
obtain the food they need for survival in the natural 
environment. The artificial fish selects the moving direction by 
sensing the food concentration information in the field of vision, 
and gradually approaches the food source. The expression is as 
follows: 

 j iX X visual Rand    




   


j i
next i

j i

X X
X X step Rand

X X  

 next iX X step Rand    

In the equations, Xj represents the randomly selected position of 
the artificial fish i in the field of vision; visual represents the 
field of vision of the artificial fish. 
In the foraging behavior, the artificial fish i randomly selects a 
position Xj within the visual field, obtains the food 
concentration Yj at the position Xj, and compares it with the food 
concentration Yi at the position Xi, when Yj is greater than Yi, the 
artificial fish will move in the direction of the position Xj, and 
the position information of the artificial fish is updated 
according to equation (3). Otherwise, the artificial fish 
continues to search within the field of vision. When the search 
reaches try_number times, the position with higher food 
concentration is still not found. The artificial fish will perform 
random behavior, and the position information of the artificial 
fish is updated according to equation (4). 
In nature, clustering is a common behavior of fish. Due to the 
needs of hunting food and defending against natural enemies, 
fish tend to spontaneously form clusters. The clustering 
behavior in the AFSA imitates this habit of fish. The expression 
of clustering behavior is as follows: 


c i

next i
c i

X XX X step Rand
X X


   

  

In equation (5), Xc represents the center position of the fish 
swarm within the field of vision of the artificial fish i. 
When the artificial fish performs clustering behavior, it will first 
determine the number of partners N in the field of vision and 
the center position Xc of the fish swarm, and then judge whether 
the center of the fish swarm meets the two conditions of high 
food concentration and not overcrowded. When the value of 

Yc/N is greater than δ∙Yi (δ is the crowding factor), it means that 
the condition is satisfied, the artificial fish moves towards the 
center position Xc of the fish swarm, and the position 
information of the artificial fish is updated according to 
equation (5), otherwise the artificial fish executes foraging 
behavior. 
The tail-chasing behavior is the behavior that the fish learns 
from the optimal individual in the population, which means that 
the artificial fish moves towards the position where the food 
concentration is the highest among the partners. The expression 
of the tail-chasing behavior is as follows: 


b i

next i
b i

X XX X step Rand
X X


   

  

In equation (6), Xb represents the position with the largest food 
concentration in the positions of the partners within the visual 
field of artificial fish i. 
When the artificial fish performs tail-chasing behavior, it first 
determines the position Xb of the optimal partner in the field of 
vision and the food concentration Yb. When the value of Yb/N is 
greater than δ∙Yi, it means that the food concentration at Xb is 
high and not overcrowded, the artificial fish moves towards the 
Xb direction, the position information of the artificial fish is 
updated according to equation (6), otherwise the artificial fish 
performs foraging behavior. 
2.1.3. Existing problems 
AFSA is an algorithm with high optimization efficiency and 
strong global search ability, which is usually used to deal with 
complex function optimization problems. In this study, the 
AFSA is introduced into the odor source location problem, and 
still retains many advantages in numerical solutions. When 
using the AFSA to locate the odor source, multiple artificial fish 
can be used to search in parallel, which improves the search 
efficiency. In addition, the odor source location result is not 
affected by the initial position of the artificial fish, so the initial 
position of the artificial fish can be set randomly. However, the 
AFSA still has its shortcomings. Although the AFSA adopts 
random field of vision and step length, the value ranges of them 
are fixed, and the maximum field of vision and step length are 
fixed values. This has an impact on the locating effect of odor 
source. 
Figure 2 (a) is the traceability route map when setting large field 
of vision and step length. It can be seen from the figure that in 
the later stage of the odor source location task, the artificial fish 
are close to the odor source, but the field of vision and step 
length of the artificial fish are still random in a large range. 
Therefore, the phenomenon of oscillation occurs. The artificial 
fish moves back and forth in the area close to the odor source, 
and it is difficult to accurately locate the odor source. Figure 2 
(b) is the change curve of the maximum concentration 
monitored during the odor source location process. The figure 
shows the change of the maximum concentration value 
searched by the artificial fish after each iteration. The wide field 
of vision and step length are conducive to improving the 
efficiency of the traceability task in the early stage, and can 
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approach the high-concentration area in a short period of time, 
but the odor source cannot be accurately located in the later 
stage. 

 
(a) Traceability route map 

 
(b) Gas concentration change curve 

Fig.2. Oscillation phenomenon 
 

When setting small field of vision and step length, the artificial 
fish can search for the odor source meticulously and accurately, 
but to a certain extent, it increases the time of the odor source 
location task and reduces the efficiency. In addition, it is also 
easy to cause the artificial fish to fall into a local peak area with 
a large range. Figure 3 shows the moving routes of the artificial 
fish when searching for the odor source with small field of 
vision and step length, the five artificial fish all fall into the local 
peak areas and can not jump out of the areas after many attempts. 

 
Fig.3. Artificial fish fall into local peak areas 

2.2. Improved artificial fish swarm algorithm based on 
curiosity 

Aiming at the problems existing in the application of AFSA to 
odor source location, this study proposes an AFSA 
incorporating curiosity. Curiosity is a psychological concept 
that expresses the psychological tendency of humans or other 
creatures to encounter novel things or enter a new environment. 
Curiosity is also the key motivation for individuals to conduct 
exploratory behaviors such as searching, investigating and 
learning. Inspired by this, this study based on the AFSA to 
construct the artificial fish with curiosity. The artificial fish's 
search time, the number of partners in the field of vision and the 
food concentration value are used as indicators to measure the 
artificial fish's curiosity, and dynamically adjusts the field of 
vision and step length of the artificial fish with the calculated 
curiosity factor to avoid the algorithm defects caused by the 
fixed value of the maximum field of vision and step length. 
Artificial fish with strong curiosity have a stronger desire to 
search for areas with higher food concentration, and the larger 
their search ranges are. On the other hand, artificial fish with 
weak curiosity have a lower desire to search for areas with 
higher food concentration, prefer to stay in familiar areas, so 
their search ranges are smaller. 
The artificial fish's search time, the number of partners in the 
field of vision, and the food concentration are the indicators that 
affect the artificial fish's curiosity. The curiosity factor of the 
artificial fish can be calculated from these three parameters. The 
value range of the curiosity factor is the interval [0, 1], and its 
value represents the curiosity of the artificial fish. The larger the 
value, the stronger the curiosity. Finally, the visual field and 
step length of the artificial fish are dynamically adjusted by the 
curiosity factor. 
Equations for updating the visual field and step length of 
artificial fish: 

 step step    

 visual visual    

In the equations, step is the step length; visual is the field of 
vision; α is the curiosity factor of artificial fish. 
Equations for calculating the curiosity factor of artificial fish: 


1

24=0.5 (1 ) 0.25 0.25 ( )
_ 1

max i

max max min

iter N Y Y
max iter N Y Y


     

 
  

In equation (9), iter is the number of operation iterations; 
max_iter is the maximum number of iterations; N is the number 
of partners in the field of vision; Nmax is the total number of 
artificial fish; Ymax is the maximum concentration value found 
in the fish swarm; Ymin is the minimum concentration value 
found in the fish swarm; Yi is the concentration value at the 
current position of artificial fish i. 
The iteration times iter can represent the search time of the 
artificial fish. The larger the iter, the longer the artificial fish 
will search for food. A long search time will cause the artificial 
fish to be tired. The more tired the artificial fish are, the more 
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they want to stay where they are, and the curiosity to search for 
areas with higher food concentration will be reduced; when the 
number N of artificial fish in the field of vision is larger, it 
means that the current area is being searched by multiple 
artificial fish, so the unknown information in the current area is 
gradually decreasing, and it is an important factor affecting 
curiosity. In nature, people and other animals usually have great 
curiosity about unknown and novel things. Therefore, the larger 
the number N of artificial fish in the field of vision, the stronger 
the curiosity of artificial fish to search the unknown area outside 
the current area; Ymax represents the food concentration 
information obtained by the optimal artificial fish in the 
population, and Yi is the food concentration at the current 
location of artificial fish i. When the difference between 
artificial fish i and the optimal artificial fish in the population is 
greater, the artificial fish i is more curious to search for areas 
with higher food concentration. 

 
Fig.4. Curiosity factor α numerical variation curve 

 
Figure 4 is the numerical change curve of the curiosity factor α 
under the control of a single parameter change. Where, the 
value of iteration number iter is an integer in the interval [0, 
max_iter], the value of the number N of partners in the field of 
vision is an integer in the interval [0, Nmax-1], the concentration 
value Yi of the current location point is in the interval [Ymin, Ymax]. 
When the value of parameter N is 0, the value of parameter Yi is 
Ymax, the value of parameter iter increases from 0 to max_iter, 
the value of iter/max_iter will increase from 0 to 1, and the 
value of curiosity factor α will decrease from 0.5 to 0, the 
curiosity factor α will decrease with the increase of iteration 
number iter, and the larger the iteration number iter, the faster 
the curiosity factor α decreases; when the value of parameter 
iter is 0, the value of parameter Yi is Ymax, and the value of 
parameter N increases from 0 to Nmax-1, the value of N/(Nmax-1) 
will increase from 0 to 1, and the value of the curiosity factor α 
will increase from 0 to 0.25, the curiosity factor α will increase 
with the increase of the number N of partners in the field of 
vision; when the value of parameter iter is 0, the value of 
parameter N is 0, and the value of parameter Yi increases from 
Ymin to Ymax, the value of (Ymax-Yi)/(Ymax-Ymin) will decrease from 
1 to 0, the value of curiosity factor α will decrease from 0.25 to 
0, and the value of curiosity factor α will decrease with the 
increase of the concentration value Yi of the current location 
point. 

In the IAFSA, larger field of vision and step length can be set 
at the beginning, so as to improve the efficiency of artificial fish 
to search for the odor source, and in the later stage of the odor 
source location task, the field of vision and step length of the 
artificial fish can be significantly reduced by the regulation of 
curiosity factor to avoid the occurrence of oscillation. When the 
artificial fish falls into the local optimal solution, the field of 
vision and step length can also be appropriately increased by 
the regulation of curiosity factor, so as to improve the 
probability of the artificial fish jumping out of the local high 
concentration area. 

2.3. The procedural steps of the algorithm 
The flow of AFSA incorporating curiosity is shown in Fig. 5. 

 
Fig.5. Flow chart of AFSA incorporating curiosity 

 
The main steps of the AFSA incorporating curiosity are as 
follows: 
Step 1: Initialize the UAV swarm, including setting parameters 
such as the initial position of the UAVs, the congestion degree 
δ and the maximum search times try_number; 
Step 2: Obtain the odor concentration at the location of each 
UAV, and record the optimal individual and the worst 
individual; 
Step 3: Calculate the curiosity factor of the UAV according to 
equation (9), and update the field of vision and step length of 
the UAV according to equation (7) and equation (8); 
Step 4: Evaluate the operation status of the UAV, and obtain 
the position information Xswarm, Xfollow and the odor 
concentration Yswarm, Yfollow after the UAV performs clustering 
behavior and tail-chasing behavior; 
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Step 5: Select the behavior to be performed by the artificial fish 
based on the odor concentration Yswarm and Yfollow, and update its 
position information; 
Step 6: Determine whether the number of iterations of the 
algorithm has reached the upper limit. If not, execute the step 2. 
If yes, output coordinates of the odor source. 

3. SIMULATION EXPERIMENT 

3.1. Simulation experiment environment 
In this study, the ANSYS Workbench software and 
Computational Fluid Dynamics (CFD) model [23] were used to 
build the indoor diffusion simulation experiment environment 
of smoke plume, which is called CFD simulation concentration 
field for short. Figure 6 shows the gas concentration distribution 
on the Z=2.5 m plane in the simulation concentration field. The 
gas is distributed on a plane with a length of 20 m and a width 
of 12 m. The coordinates of the odor source are (2, 6.5), and the 
maximum gas concentration is 16.63 mg/m3. 

 
Fig.6. CFD simulation concentration field 

3.2. Performance evaluation index 
In this study, the success rate, location error and operation time 
are selected to evaluate the performance of the multi-UAV odor 
source location method based on the IAFSA. The success rate 
refers to the ratio of the number of times the UAV successfully 
locates the odor source to the total number of experiments in a 
group of experiments; the location error refers to the distance 
between the odor source position located by the UAV and the 
actual odor source position in the simulation experiment, which 
means the accuracy of locating the odor source; the operation 
time refers to the average operation time of the simulation 
experiment that successfully locates the odor source. 

3.3. Results and analysis 
3.3.1. Influence of the number of UAV on odor source location 
Setting up different numbers of UAVs for experiments in the 
CFD simulation concentration field and controlling the same 
initial positions of the same number of UAVs. Each group of 
simulation experiments was conducted 200 times, and the 
performance of the odor source location method proposed in 
this study was analyzed through the experimental results. The 
results of the simulation experiment are shown in Fig. 7. 

 
(a) Success rate 

 
(b) Location error 

 
(c) Operation time 

Fig.7. Comparison of experimental results of different numbers of 
UAVs 

 
Figure 7 (a) shows the change curve of the success rate of the 
simulation experiment results. It can be seen from the figure 
that when the number of UAV is 1, the success rate of locating 
the odor source using the three algorithms are similar, and the 
success rate of using a single UAV to search for the odor source 
is less than 30%. However, with the increase of the number of 
UAV, the success rate of locating the odor source also gradually 
increases, and the success rate of using the IAFSA to locate the 
odor source is significantly higher than the AFSA and particle 
swarm optimization (PSO). When the number of UAV is 4, the 
success rate of using the IAFSA to locate the odor source 
reaches 100%, when using the AFSA and PSO to locate the 
odor source, the success rate can reach 100% when the number 
of UAV reaches 7 and 8 respectively. This indicates that the 
IAFSA has a higher success rate in locating the odor source. 
The IAFSA not only improves the success rate, but also ensures 
the accuracy of locating the odor source. It can be seen from Fig. 
7 (b) that the location error of the IAFSA is smaller than that of 
the AFSA and PSO as a whole. When the number of UAV is 
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greater than 4, the location error is kept within 0.1 m. Figure 7 
(c) shows the change of the operation time required to locate 
the odor source with the increase of the number of UAV. The 
operation time required by the three algorithms to locate the 
odor source is on the rise as a whole. When the numbers of 
UAV are the same, the operation time required to locate the 
odor source by the IAFSA is lower than the AFSA and PSO, 
which proves that the IAFSA can locate the odor source faster. 
By analyzing the experimental results in the CFD simulation 
concentration field, it can be concluded that the improvement 
of the AFSA in this study is effective, and the IAFSA can 
achieve better results in locating the odor source. 
3.3.2. Influence of UAV's initial position on odor source location 
Five UAVs were set up for experiments with different initial 
positions. The initial coordinates of the UAVs are shown in 
Table 1. Each group of simulation experiments was conducted 
200 times, and the experimental results are shown in Fig. 8. 

TABLE 1. Initial coordinates of UAVs 

Initial positions of UAVs Coordinates/m 

Position 1  (15, 8), (10, 8), (18, 5), (12, 2), (11, 11) 
Position 2 (16, 8), (11, 8), (19, 5), (13, 2), (12, 11) 
Position 3 (17, 8), (12, 8), (18, 5), (14, 2), (13, 11) 
Position 4 (14, 8), (9, 8), (17, 5), (11, 2), (10, 11) 
Position 5 (13, 8), (8, 8), (16, 5), (10, 2), (9, 11) 
Position 6 (15, 9), (10, 9), (18, 6), (12, 3), (11, 12) 
Position 7 (15, 7), (10, 7), (18, 4), (12, 1), (11, 10) 
Position 8 (15, 6), (10, 6), (18, 3), (12, 5), (11, 9) 
Position 9 (13, 6), (8, 6), (16, 3), (10, 2), (9, 9) 

 
(a) Success rate 

 
(b) Location error 

 
(c) Operation time 

Fig.8. Comparison of experimental results of different initial positions 
of UAVs 

 
As can be seen in Fig. 8 (a), in terms of success rate, the success 
rate of IAFSA is between 91.5% and 100%, the success rate of 
AFSA is between 89.5% and 96.5%, the success rate of PSO is 
between 86.5% and 93%, the success rate of IAFSA is always 
greater than AFSA and PSO. At the same time, it can be seen 
from Fig. 8 (a) that the success rate of the three algorithms on 
odor source location does not fluctuate significantly, and the 
different initial positions of UAVs have little impact on the 
success rate of odor source location; In terms of location error, 
the location error of IAFSA is between 0.25 m and 0.55 m, the 
location error of AFSA is between 0.36 m and 0.63 m, the 
location error of PSO is between 0.52 m and 0.67 m, the 
location error of IAFSA is always smaller than the other two 
algorithms. At the same time, it can be seen from Fig. 8 (b) that 
the location error of the three algorithms on odor source 
location does not fluctuate significantly, and the different initial 
positions of UAVs have little impact on the location error of 
odor source location; In terms of operation time, the operation 
time of IAFSA is between 6.6 ms and 9.5 ms, the operation time 
of AFSA is between 12 ms and 16.5 ms, the operation time of 
PSO is between 12.7 ms and 14.6 ms, the operation time of 
IAFSA is always less than the other two algorithms. At the 
same time, it can be seen from Fig. 8 (c) that the operation time 
of the three algorithms on odor source location does not 
fluctuate significantly, and the different initial positions of 
UAVs have little impact on the operation time of odor source 
location. 
From the experimental results, no matter the success rate, 
location error or operation time, the experimental results of the 
IAFSA are better than the AFSA and PSO. At the same time, 
different initial positions have little impact on the results of odor 
source location. 
3.3.3. Process of simulation experiments on odor source 

location 
Figure 9 shows the process of five UAVs searching for the odor 
source in the CFD simulation concentration field. The UAVs 
search for the odor source with a larger field of vision and step 
length first, and then after approaching the odor source, the step 
length is adaptively changed for searching under the regulation 
of the algorithm. And the field of vision and step length are also 
increased under the regulation of the algorithm for some UAVs 
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caught in the local peak area, so that they jump out of the local 
peak area and continue to join the odor source search task. 

 
(a) Iteration=5       (b) Iteration=10 

 
(c) Iteration=20       (d) Iteration=40 

Fig.9. Process of odor source location in CFD simulation 
concentration field 

4. EXPERIMENT ON ODOR SOURCE LOCATION IN 
SMALL INDOOR SPACES 

4.1. Indoor experimental environment construction 
Considering that dangerous gases such as methane and carbon 
monoxide can cause harm to the human body, this study did not 
choose to use these dangerous gases for experiment when 
constructing the indoor experimental environment, but chose to 
use non-toxic, harmless and volatile ethanol to construct an 
experimental environment. As shown in Fig. 10 (a), in order to 
facilitate the volatilization and diffusion of ethanol solution in 
the room, the ethanol solution with a volume concentration of 
75% was loaded into a humidifier in this experiment, so that the 
ethanol solution was sprayed in the form of a mist, and a small 
fan with low wind speed was used to assist the volatilization 
and diffusion of the ethanol solution. As shown in Fig. 10 (b), 
due to the limited range of ethanol gas diffusion, as well as other 
factors such as gas sensors and other restrictions, a small 
confined space with a length, width and height of 10m, 10m and 
3m was chosen as the experimental site for this study. 

  
(a) Odor source   (b) Experimental site 

Fig.10. Indoor experimental environment 

4.2. Indoor experiment 
The initial placement positions of the UAVs and the odor 
source in the indoor experiment are shown in Fig. 11 (a). The 
initial coordinates of the three UAVs are (1, 3.3, 0), (1, 4.4, 0) 

and (1, 5.2, 0), respectively, and the coordinates of the odor 
source are (9, 4.4, 0.4). The flight trajectories of the UAVs 
when searching for the odor source in the indoor experiment are 
shown in Fig. 11 (b), which represents the result of the indoor 
experiment. According to the search paths in Fig. 11 (b), each 
UAV autonomously searched for the odor source and 
cooperated with each other. When searching for the odor source, 
UAV 3 fell into the local peak area at a certain moment and 
hovered around the pseudo-odor source, and then the field of 
vision and step length of UAV 3 gradually increased through 
the information sharing among UAVs and the adjustment of the 
odor source location method, which improved the possibility of 
UAV 3 to jump out of the local peak area. In this experiment, 
UAV 3 finally jumped out of the local peak area and 
successfully located the odor source. It took a total of 26 
seconds for the three UAVs to successfully locate the odor 
source in this experiment, and the experimental results verified 
the effectiveness and feasibility of the odor source location 
method proposed in this study. 

 
(a) Initial positions of the UAVs 

 
(b) Traceability trajectories of the UAVs 

Fig.11. Indoor experiment 

5. CONCLUSIONS 
In this study, artificial fish swarm algorithm (AFSA) is applied 
to the odor source location problem, and the advantages and 
disadvantages of traditional AFSA in odor source location are 
analyzed. Combined with the curiosity factor, the field of vision 
and step length of artificial fish are dynamically adjusted 
through curiosity, and a multi unmanned aerial vehicle (UAV) 
odor source location method based on improved artificial fish 
swarm algorithm (IAFSA) is proposed. In the simulation 
experiment, the effect of the number of UAVs on odor source 
location is first analyzed, and it is proved that when the success 
rate of odor source location reaches 100%, the number of UAVs 
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required by the IAFSA is less than that required by the basic 
AFSA and particle swarm optimization (PSO), indicating that 
the success rate of odor source location by using the IAFSA is 
higher. And when the number of UAVs is greater than 4, the 
location error of the IAFSA can be kept within 0.1 m. Then, the 
effect of the initial positions of the UAVs on the odor source 
location is analyzed. According to the experimental results, 
under the conditions of nine different initial positions of the 
UAVs, the success rate of the IAFSA is maintained between 
91.5% and 100%, which is always higher than that of the AFSA 
and PSO, and the location error of the IAFSA is kept between 
0.25 m and 0.55 m. In the indoor traceability experiment, after 
the UAV fell into the local peak area, the field of vision and step 
length of the UAV were increased to a certain extent through 
the adjustment of the IAFSA, so that the UAV jumped out of 
the local peak area in a short time, which verifies the feasibility 
and high efficiency of the algorithm, and shows that the multi-
UAV odor source location method based on the IAFSA is able 
to accurately and efficiently complete the odor source location 
task. 
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