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Regression analysis of experimental data in a study 
of the performance of a flat flame burner

Abstract: The complex nature of the combustion process, which simultaneously obeys the laws of 
thermodynamics, heat transfer, aerodynamics and the chemical kinetics of oxidation reactions, 
makes numerical modelling very difficult and the experimental approach is currently playing 
a crucial role in their investigation. The modern highly developed theory of experimental design 
combines various analytical procedures that allow, with a minimum number of experiments, the 
obtaining of maximum information about the physical or technological processes under investi-
gation, the properties of materials and phenomena. The ability to determine the influence of the 
main mode and design parameters on the geometrical characteristics of the flare is a prerequisite 
for effectively influencing the combustion process in order to intensify it. The present work is an 
introduction to the methods of planning and knowledge of multifactorial experiments, including: 
the preparation, conduct and processing of experimental results; mastering the methodology of 
experimental research; using the methods of mathematical statistics and regression analysis to 
plan experiments; developing the ability to analyze the object of study; correctly selecting the 
optimization parameter and the essential factors of the object of study; building an experiment 
planning matrix to obtain an adequate mathematical model of the object. The objective of this 
work is to propose an approach to study the effect of mode and design parameters, on the basic 
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dimensions and shape of the gas flare, based on regression analysis of experimental data in the 
study of the performance of a flat flame burner.

Keywords: factorial experiment, regression analysis, combustion, flat flame burner

Introduction

Gas fuel has widely been used as an energy carrier in industry in recent decades. There has 
been a continuous upward trend in its relative share. This is due to the requirements imposed by 
both energy efficiency and environmental protection legislation. A primary concern is the ability 
to actively influence the combustion process in order to manage it optimally. The optimization 
of combustion devices actually means the appropriate selection of the relevant mode and design 
parameters, on which both the efficiency of the use of the gaseous fuel and the amount of harmful 
emissions released into the environment depend. Structural, aerodynamic and physical factors 
have a determining influence on the combustion completeness and ignition conditions (Kostov 
et al. 2022; Makzumova et al. 2023).

Flat flame burners are widely used in industry due to their high uniformity of heating and 
complete combustion with low excess air coefficient. A characteristic feature (Fig. 1) is the pos-
sibility of creating a flat torch spreading radially on a refractory plate.

The geometry of the flare is determined by a number of factors, the degree of influence of 
each of which is difficult to assess by a single-factor experiment. Estimation is further compli-

  
 Fig. 1. Schematic of a flat flame burner

Rys. 1. Schemat palnika z płaskim płomieniem
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cated by the fact that most of these factors influence each other. From previous experiments and 
data from the literature (Krystev 2021; Zlateva et al. 2020; Dostiyarov et al. 2022), it boils down 
to the determination of four main independent parameters that have a significant influence on the 
formation of a flat flame. These are:
)) Angle of inclination of the gas nozzles – β. This characterizes the degree of rotation of the air 
flow and defines the conditions of heat and mass exchange in the flame.

)) The diameter of the nozzle holes through which the gas fuel flows – d. This determines the 
fuel distribution in the air flow and thus the heat exchange characteristics of the flame.

)) Heat load – Q. This determines the temperature regime.
)) Length of the mixing chamber – l. This determines the residence time of the reacting compo-

nents in the mixing section and the ignition intensity of the fuel-air mixture.
The method of the full factorial experiment allows obtaining a mathematical description of 

the studied process in a certain local region of the factor space. A full factorial experiment is an 
experiment in which all possible non-repeating combinations of the levels of the independent 
factors are realized. A  full factorial experiment is applied 2κ, at two levels with four factors 
(k = 4). Sixteen trials were conducted, each of which was equally duplicated three times. This 
number of trials allows the assessment of the set of main effects together with their interaction 
effect (Madani et al. 2015).

The purpose of choosing this plan is to obtain as complete information as possible about 
the influence of the adopted factors on the diameter of the formed flat flame by minimizing the 
number of trials and respecting the requirements of rotatability and orthogonality of the corre-
sponding matrix,.

In order to eliminate the influence of external factors, the experiments were conducted rando-
mly over time. The use of this approach allows filtering out the influence of irrelevant factors and 
avoiding the accumulation of systematic error. The local area for the determination of the factors 
is established by a priori considerations. Each of the factors is varied at two levels.

Two-stage factorial experiments are excellent tools, providing a means by which the factors 
included in an experiment can be both assessed and tested for significance (González 1998).

Factorial experiments helps to develop a statistical response model by performing the mi-
nimum number of well-chosen experiments and determining the optimal values of the process 
parameters. Factorial experiments are an empirical modelling technique used to evaluate the 
relationship between experimental variables and corresponding responses (Krishna Prasad and 
Srivastava 2009).

Data generated in this way is used to calibrate an empirical model, typically including first- or 
second-order terms, which is eventually refined to exclude unaffected factors and/or add higher
-order terms (Montgomery 2013; Cenci et al. 2023).

Normalized first-order sensitivity coefficients are typically applied to combustion to provide 
a kinetic view of the model and its strengths and weaknesses relative to experimental data. If 
little is known about the uncertainty distribution of the input parameters then such first-order 
methods can provide a useful starting point for key parameter identification and model analysis. 
Input-output dependencies arising from the application of such sampling approaches are typi-
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cally estimated using statistical methods. This may include calculating the expected value and 
variance of selected target outputs (Saltelli et al. 2000; Tomlin 2013).

Regression analysis is a statistical method for analyzing and modelling relationships be-
tween mass phenomena. It is a  statistical method for investigating cause-effect and pheno-
menon-response relationships in processes and phenomena (Jamshidnezhad 2015). The main 
purpose of regression analysis is to represent in analytical form, in the form of a mathematical 
model, the studied correlation relationship. Therefore, this analysis is also called an analytical 
method for studying correlation dependencies (Ivanov et al. 2022; Denev et al. 2021; Kostov 
et al. 2021).

1. Materials and methods

Experimental design methodology refers to the use of practical and powerful statistical tools 
and techniques to develop efficient, balanced, and economical experimental designs that allow 
the experimenter to determine how controlled and uncontrolled factors relate to the outcome of 
the process (Antony 2023).

Developing predictive models to be used in model-based activities requires the identification 
of the model structure, specifically a set of model equations and model calibration, i.e., the pre-
cise estimation of model parameters from experimental data (Mihaluta et al. 2008; de Prada et 
al. 2019; Cenci et al. 2023).

However, it is imperative to develop a model whose factor interactions can be uniformly 
distributed over any number of desired levels to ensure the unbiased estimation of main effects. 
Analysis of variance, a diagnostic tool for regression analysis, is used in some cases to analyze 
the significance of factor interactions (Sathish Kumar et al. 2022; Hatami et al. 2015).

Direct measurements have played an invaluable role in the development and improvement 
of kinetic mechanisms over many years with the available techniques discussed in the litera-
ture (Pilling 2009; Tomlin 2013). In order to validate the optimized experiments, a desirability 
check is performed for all studies (Sathish Kumar et al. 2022; Antony 2014; Ansari et al. 
2019).

Running a full factorial experiment involves determining the effects of variable controllable 
input factors (X1, X2, ..., Xn) on the corresponding varied output responses (Y1, Y2, ..., Yn) of 
a process/system. These experimental design approaches are typically implemented by assigning 
all factors “k” to two levels, usually denoted by a high (+1 or simply +) and a low (–1 or sim-
ply –) level for each factor (Antony 2003; Montgomery 2013; Eriksson et al. 2008).

The experimental design chosen for this study is a 24 factorial experiment for four indepen-
dent variables of gas nozzle inclination angle (X1), gas nozzle diameter (X2), burner heat load 
(X3) and combustor length (X4). Table 1 gives the ranges of variation of the factors (independent 
variables) and their values in a natural scale at the basic, upper and lower levels.
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Table 1. Intervals for variation of factors

Tabela 1. Zakresy zmian wskaźników

Factors X1 β [°] X2 d [mm] X3 Q [kW] X4 l [mm]

Basic level (Xi0) 45 0.8 70 230

Variation interval (ΔXi) 15 0.1 20 80

Upper level (xi = +1) 60 0.9 90 310

Lower level (xi = –1) 30 0.7 50 150

The coded values of the factors (xi) are associated with the naturel (Xi) by the dependence:
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After applying this dependency, we obtain:
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Table 2 shows the expanded matrix of the full factorial experiment 24 in a coded and natural 
scale after applying the dependence between the factors, and the experimental results, with the 
dependent variable uy , represents the gas flare diameter D. Here, a column of dummy variable 
is added x0, taking in all experiments a positive value necessary to estimate the free term b0 of 
the regression equation.

First-order plans are most often used in designing the experiment. These are those plans that 
allow an experiment to be conducted to determine the regression equation, which is a first-order 
polynomial. The minimum number of factor levels required is one greater than the order of the 
regression equation, for example, for a first-degree polynomial, the minimum number of factor 
levels is two.

The regression analysis was performed using the methodologies described by (Novik and 
Arsov, 1981; Degtyarev; Lyubimova and Sisykov 2017) and the sequence of experimental treat-
ments in the particular case of equal duplicated trials is as follows:
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)) To determine the regression coefficients in this case, a model of the type:

	 0
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)) After implementing the plan, sixteen equations with sixteen unknowns are obtained and from 
solving these equations, all sixteen coefficients are found of the regression equation. The 
coefficients are computed using the formulas:
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)) The experimental variance is calculated and the uniformity of the variance series is checked 
by calculating the value of the Cochrane criterion or G-criterion:
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where:
2
yS 			  –	 dispersion of experience, 
2
uyS 		  –	 dispersion for each trial in turn,

2
umaxyS 		  –	 largest dispersion in the series,

yug			  –	 result of the g-th iteration of the u-th trial,
uy 			   –	 average of all nu repetitions of the u-th trial,
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N				    –	 number of trials,
fu				    –	 the number of degrees of freedom in determining the u-th order variance 2

uyS ,
G*				   –	 calculated value of the Cochrane criterion,
G* < Gtable	 –	 homogeneity of the dispersion series.

)) The statistical significance of the coefficients of the regression equation was checked using 
the Steudent’s criterion.
The dispersion of the coefficient estimates is calculated using the formula:
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where:

ibS 		 –	 mean squared error,

1; ftα 	 –	 t-criterion value,
f1		  –	 the number of degrees of freedom,
α	 	 –	 level of significance,
Δbi		 –	 confidence interval. Coefficients whose absolute value is equal to or greater than  

			   the confidence interval are statistically significant.

)) The next stage of processing the experimental data is to test the hypothesis of the model 
adequacy using the Fisher’s criterion or F-criterion:
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where:
2
inS 	–	 dispersion of inadequacy,

F*	–	 calculated value of Fisher’s criterion. The hypothesis of adequacy is accepted when  
		  the calculated value of the F-criterion is F* ≤ Ftable.
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2. Discussion

The numerical results shown in the summary in Table 2 after implementation of the full fac-
torial experiment  and considering the condition of statistical significance of the coefficients, the 
following regression equation is obtained:

	 1 2 3 4 1 2 1 3

1 4 3 4 1 2 3 1 2 4 2 3 4

367.63 41.75 36.63 11.25 11.38 12 8.13
7.75 16.75 5.38 4.5 5.25

y x x x x x x x x
x x x x x x x x x x x x x

= − + + − − −
− − − − +

� (19)

After going from the coded to the natural scale, the equation takes the form:

 
						       
� (20)

After conversion, the following is obtained:

	 182.86 16.46 301.8 54.32 1.16 14.49  0.122
 

0.025 0.51 0.66 0.041 0.19 0.04 0.037
D d Q l d Q
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Figure 2 gives a plot of the relative magnitude of the influence of the factors and their 
interactions, in which the value of each coefficient is denoted by the corresponding height of 
the bar.

Figures 3, 4, 5 and 6 show the variation of the flare diameter with the change of each of the 
selected independent factors. Figures 7, 8, 9 and 10 show the response surfaces and their plots 
obtained from the regression equation due to the influential interaction between the selected in-
dependent factors, fixing each of the factors at zero level: d = 0.8; Q = 70; l = 230.
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Fig. 2. The relative magnitude of the influence of factors and their interactions (red bars for negative coefficients and 
blue bars for positive coefficients)

Rys. 2. Względna wielkość wpływu czynników i ich interakcji (czerwone słupki dla współczynników ujemnych 
i niebieskie słupki dla współczynników dodatnich)

 
 Fig. 3. Variation of the flare diameter D depending on the change of the gas nozzles inclination angle β

Rys. 3. Zmiana średnicy kielicha płomienia D w zależności od zmiany kąta nachylenia dysz gazowych β
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Fig. 4. Variation of the flare diameter D with the change of the mixing chamber length l

Rys. 4. Zmiana średnicy kielicha płomienia D wraz ze zmianą długości komory mieszania l

 
 Fig. 5. Variation of the flare diameter D depending on the variation of the gas nozzle orifice diameter d

Rys. 5. Zmiana średnicy kielicha płomienia D w zależności od zmiany średnicy otworu dyszy gazowej d
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Fig. 6. Variation of the flare diameter D with the change of the heat load Q

Rys. 6. Zmiana średnicy kielicha płomienia D wraz ze zmianą obciążenia cieplnego Q

 
 Fig. 7. Fixed factors: Q = 70; l = 230

Rys. 7. Stałe współczynniki: Q = 70; l = 230



100

 
 Fig. 8. Fixed factors: d = 0.8; l = 230

Rys. 8. Stałe współczynniki: d = 0,8; l = 230

 
 Fig. 9. Fixed factors: d = 0.8; Q = 70

Rys. 9. Stałe współczynniki: d = 0,8; Q = 70
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Conclusion

Based on the results of the regression analysis, the values of the regression coefficients and 
their confidence intervals, an adequate mathematical model of the studied process was obtained. 
The adequacy of the mathematical model was confirmed as a result of statistical hypothesis te-
sting using Fisher’s criterion with a significance level of 0.05. From the analysis, it can be seen 
that of the independent variables selected as factors, the gas flare geometry is strongly influenced 
by the inclination angle of the gas nozzles, to a lesser extent by the diameter of the gas nozzles 
and the interaction between them as well as the interaction between the heat load and the length 
of the mixing chamber. The influence of the heat load, the mixing chamber length and the inte-
raction between the different factors is only weak. Any considerations about the direction and 
magnitude of the influence of the studied factors on the gas flare diameter can only be expressed 
for their intervals of variation chosen in the work. In accordance with the planning matrix and the 
resulting regression equation, appropriate levels of the factors can be selected at which to obtain 
the desired gas flare geometry.
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Ivan Antonov Petrov

Analiza regresji danych eksperymentalnych w badaniu 
wydajności palnika z płaskim płomieniem

Streszczenie

Złożony charakter procesu spalania, który jednocześnie podlega prawom termodynamiki, wymiany 
ciepła, aerodynamiki i kinetyce chemicznej reakcji utleniania, sprawia, że modelowanie numeryczne jest 
bardzo trudne, a podejście eksperymentalne odgrywa obecnie kluczową rolę w ich badaniach. Nowocze-
sna, wysoko rozwinięta teoria projektowania eksperymentów łączy w sobie różne procedury analityczne, 
które pozwalają przy minimalnej liczbie eksperymentów uzyskać maksimum informacji o badanych pro-
cesach fizycznych lub technologicznych, właściwościach materiałów i zjawiskach. Umiejętność określenia 
wpływu trybu głównego i parametrów konstrukcyjnych na charakterystykę geometryczną płomienia jest 
warunkiem skutecznego oddziaływania na proces spalania w celu jego intensyfikacji. Niniejszy artykuł 
stanowi wprowadzenie do metod planowania i wiedzy o eksperymentach wieloczynnikowych, obejmu-
jące: przygotowanie, prowadzenie i przetwarzanie wyników eksperymentów; opanowanie metodyki ba-
dań eksperymentalnych; wykorzystanie metod statystyki matematycznej i analizy regresji do planowania 
eksperymentów; rozwijanie umiejętności analizy przedmiotu studiów; prawidłowy dobór parametru opty-
malizacyjnego i istotnych czynników przedmiotu badań; zbudowanie macierzy planowania eksperymentu 
w celu uzyskania odpowiedniego modelu matematycznego obiektu. Celem artykułu jest zaproponowanie 
podejścia do badania wpływu trybu i parametrów projektowych na podstawowe wymiary i kształt pochodni 
gazowej, w oparciu o analizę regresji danych eksperymentalnych w badaniu wydajności palnika z płaskim 
płomieniem.

Słowa kluczowe: eksperyment czynnikowy, analiza regresji, spalanie, palnik o płaskim płomieniu
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