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APPLICATION OF GENETIC ALGORITHMS FOR IDENTIFICATION OF RHEOLOGICAL 
AND FRICTION PARAMETERS IN COPPER DEFORMATION PROCESSES 

ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH DO IDENTYFIKACJI PARAMETRÓW 
REOLOGICZNYCH I TARCIA DLA MIEDZI 

The objective of the paper is an evaluation of optimization technique based on genetic
algorithm, concerning an applicability of the method to the inverse analysis. The general principles
of the inverse analysis are discussed in the paper and short description of the direct model based on
the finite element solution is given. Genetic algorithm is presented next and an implementation of
the method into the inverse analysis is shown. Practical application of the algorithm is investigated
for copper rings compressed on the Gleeble 3800 simulator. Load-displacement data and shape of
the ring after compression were used as input to the inverse analysis. Three optimization methods
are compared in this analysis: genetic algorithm, Hooke-Jeeves and simplex. The parameters of the
analysis were selected taking into account a similar number of callings of the finite element solver
for all methods. Comparison of the results has shown that genetic algorithm is an efficient
optimization technique for the inverse method applications. It confirmed good accuracy and
convergence as well as avoiding of local minima during the optimization process.

Celem pracy jest ocena przydatności metody optymalizacji opartej o algorytmy genetyczne,
do analizy odwrotnej procesów plastycznej przeróbki metali. W pracy przedstawiono ogólne
zasady analizy odwrotnej i opisano model zadania bezpośredniego wykorzystujący sztywno
plastyczne rozwiązanie metodą elementów skończonych. Zaprezentowano algorytmy genetyczne
w aspekcie ich implementacji do rozwiązania problemu odwrotnego oraz zbadano skuteczność
metody dla pierścieni spęczanych w symulatorze Gleeble 3800. Wyniki pomiarów siły w funkcji
przemieszczenia stempla oraz kształt pierścienia po odkształceniu stanowiły dane wejściowe do
analizy odwrotnej. Ponadto algorytmy genetyczne zostały porównane z klasycznymi metodami
optymalizacji: algorytmem Hooke'a-Jeevesa i metodą sympleksów, przy czym kryterium porów
nawczym była liczba wywołań programu metody elementów skończonych niezbędna do osiąg
nięcia minimum. Wyniki analizy odwrotnej dla różnych metod optymalizacji pokazały, że
algorytmy genetyczne są przydatne w zastosowaniach do analizy odwrotnej. Procedura wykazuje
zarówno dobrą dokładność i zbieżność jak też skuteczność w omijaniu minimów lokalnych.
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1. Introduction 

The accuracy of simulation of metal forming processes depends on correctness of the 
description of the boundary conditions and the properties of the deformed material. The 
parameters in models describing friction, heat exchange with a surrounding and flow 
stress are determined from the results of various tests, among others the plane strain 
compression, the axisymmetrical compression and the ring compression are the most 
popular. All the tests involve large inhomogeneities of deformation, therefore, an 
interpretation of the results of these tests presents difficulties. An inverse analysis, 
combined with the finite element solution of the direct problem, has been commonly 
used to account for the inhomogeneities and to obtain the values of the coefficients in 
the models independently of the test conditions. Numerous successful applications of 
this method are described in the scientific literature, see for example [1-4). Analysis of 
some results has shown that, usually, the phenomena investigated in the inverse analysis 
are mutually dependent. For example, friction coefficient has to be known for evaluation 
of rheological parameters while, vice versa, constitutive model has to be known for 
evaluation of friction parameters. This inspired a search for the techniques, which allow 
for evaluation of coefficients in various types of models from one type of tests. In 
consequence, the propositions of evaluation of both rheological and friction parameters 
from one set of ring compression tests have been suggested in [5- 7). 

Long computing time is the main obstacle preventing common applications of the 
inverse technique. In situations, when the cost function is built on the basis of the results 
of several experiments, the gradient optimization techniques cannot be applied directly. 
Non-gradient methods require a large number of finite element simulations to be 
performed what leads to very long computing times. Improvement of this situation can 
be obtained by selection of the starting point as close as possible to the global minimum 
and by an application of more efficient optimization methods. The former problem is 
discussed in publication [8]. The general objective of this work is looking for the 
optimization technique, which allows for fast and efficient searching for the minimum in 
the inverse analysis. The particular emphasis is put on an investigation of the capabilities 
of the genetic algorithms. 

2. Inverse analysis 

The aim of the inverse analysis is an estimation of coefficients in the models 
describing boundary conditions and materials properties in various processes. The 
subject of the present work is an application of this analysis to the evaluation of both 
friction and rheological parameters in metal forming on the basis of results of 
compression tests. The idea of the inverse approach is presented in Fig. I. The analysis 
is composed of three parts: 
• experiment, which supplies results of measurements in the form of load-displacement 

data and shapes of samples after compression, 
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Fig. I. The flow-chart showing the inverse method 

• solution of direct problem, which uses the finite element model of the considered test, 
• optimization procedure, which determines unknown parameters from the condition of 
minimum of the cost function. 
Direct model calculates process output parameters (d) as a function of process 

conditions ( p) and coefficients in the rheological and friction models (x):

d = F(p, x). (I) 

In the inverse analysis the vector of coefficients x is not known but two vectors d are 
available. One is obtained from measurements during the tests and one from the 
predictions using the direct model. Thus, the coefficients x are determined using 
optimization techniques with the cost function defined as a difference between measured 
and predicted vectors d.

Various approaches to the solution of the inverse problem are presented in the 
literature. The inverse algorithm developed in [5] is considered in the present work. In 
this algorithm the rheological and friction parameters are evaluated simultaneously on 
the basis of results of ring compression tests. The ring compression is simulated using 
the finite element code. The goal function of the form: 

( l.{ l Nr .Npl(F -F .. ··)2 l Nr N.pr[(R;"-_Rin)2 (Rour __ R_out)2])l (J) = _ __ ~ " . Cl) 1/łfj +-- "' "' Cl) . 1111) + Cl) 1111) 2 
Nt N l ./...; ./...; F N ./...; ./...; R'/1. R0'" ' P 1 = 1; = 1 1111; pr i= 11 = i m,1 m,1

(2) 
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where: F - compression load, R - inner or outer diameter, Nt - number of tests, Npl 
- number of measured loads during one test, Npr - number of the co-ordinates of the ring 
surface (outer or inner) used in an analysis, is minimized with respect to rheological and 
friction parameters, index c refers to computed values, index m - to measured values. 

The optimization usually requires long computing time and problem of avoiding local 
minima remains open. Therefore, the objective of the current work is testing of various 
optimization methods and evaluation of their applicability to the inverse analysis. The 
genetic algorithm (GA) was selected as a new possibility and its efficiency was tested 
and compared to other methods. 

3. Direct model 

The finite element simulation of the investigated tests was applied in the direct 
model. The finite element code used in the calculations is based on the rigid-plastic 
approach coupled with the solution of the heat transport equation. Detailed description 
of the model is given in [9]. Briefly, the mechanical part of the approach is based on an 
the extremum principle, which states that for a plastically deforming body of volume V, 
under the tractions ~ prescribed on the part of the surface S1 and the velocity !'._ prescribed 
on the remainder of the surface Sv, under the constraint t, v = O, the actual solution 
minimizes the functional: 

(3) 

where: A - Lagrange multiplier, a; - effective stress which, according to the 
Hu be r - M i se s yield criterion is equal to the flow stress al', t,; - effective strain rate, 
Ev - volumetric strain rate, ~ = {r_,, r>V - vector of boundary traction, ~ = {v,, v,}T 
- vector of velocities, v,, v" - components of the velocity vector, r,, r, - components of 
the external stress, which in metal forming processes is a friction stress or stress caused 
by external tension (for example back and front tension in rolling). 

In the flow theory of plasticity, strain rates t are related to stresses a by the 
Le v y - M i se s flow rule: 

o 
2 

o 
(4) 

The flow stress al' in equation (4) was introduced as a function of strain rate, strain 
and temperature. The evaluation of coefficients in this function is an objective of the 
inverse analysis. 

The friction model proposed by Che n and Kob a ya sh i and described in [5,9] is 
used in this approach. Discretization of equation (3) and differentiation with respect to 
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the nodal velocities and to the Lagrange multiplier yields a set of non-linear equations 
usually solved by the Ne wt o n - Rap h so n linearization method. The mechanical 
part of the model is coupled with the finite element solution of the heat transport 
equation: 

aT 
Vk(T/vT + Q(T) = c (T)Q(T)-, " ar (5) 

where: k(T) - conductivity, Q(T) - heat generation rate due to deformation work during 
compression, c/T) - specific heat, Q(T) - density, T - temperature, t - time. 

The following boundary conditions were used in the solution: 

er 
k(T)J;; = q+a.(T)(T0-T), (6) 

where: a - heat transfer coefficient, T0 - surrounding temperature or tool temperature, 
q - heat flux due to friction, n -unit vector normal to the surface. 

The finite element model described by equations (3) - (6) was used as the direct 
model in the present work. 

4. Optimization 

As mentioned earlier, testing of various optimization methods regarding their ap 
plicability to the inverse analysis was an objective of the work. Three optimization 
methods were investigated. The genetic algorithm, a method newly implemented into the 
inverse algorithm, was tested and compared to the two classical methods: Ho ok e - 
- Jeeves and simplex. Detailed description of the genetic algorithm and an application 
to the inverse analysis is given below. 

4.1. Ge n et i c a I go r i t h m s 

Evolutionary Algorithms (EA) belong to the methods of Artificial Intelligence (Al) 
and are used to solve optimization problems. Al methods include several separate 
approaches, such as Genetic Algorithms (GA), Evolution Strategies (ES), Genetic 
Programming (GP) and Evolutionary Programming (EP) [IO]. 

Genetic algorithm is a search technique based on ideas from the science of genetics 
and the process of natural selection. GAs have proved to be useful in difficult 
optimization problems [ 11, 12, 13] and their advantages comparing to classical op 
timization methods are due to the following features: 
• genetic algorithms do not search from one single point, but from a population of 

points, 
• use only goal function instead of derivatives or other auxiliary knowledge, 
• use stochastic reproduction instead of deterministic rules. 
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A schematic illustration of a simple genetic algorithm is presented in Fig. 2. 
Genetic algorithm uses vocabulary borrowed from natural genetics [ 14]. GA 
starts searching from the initial population of chromosomes usually genera 
ted randomly from the population of feasible solutions. GA is based on the 
population: 

P(n) = {x';, x2, ... , x~}, 
where: n - generation number, L - size of population, x7 - chromosome. 

(7) 

START 

INITIAL POPULATION OF 
CHROMOSOMES 

ESTIMATION OF CHROMOSOMES 
USING FITNESS FUNCTION 

No Yes 

SELECTION OF 
CHROMOSOMES 

GENETIC OPERATORS 
(MUTATION, CROSSOVER) 

NEW POPULATION 

OPTIMAL SOLUTION 

Fig. 2. The flow chart of the genetic algorithm 

Each chromosome x;', i = I, 2, ... , L, represents one potential solution. Usually a chro 
mosome is a string of bits representing optimizing parameters. The number of bits used 
to encode each parameter will depend on the required precision. 

Chromosomes are estimated using the fitness function F(x7) corresponding to the goal 
function in the optimization problem (see equation (8)). The fitness function describes 
the 'quality' of the solution (individual of population). At the stage of selection the part 
of chromosomes is taken into the next population. Then genetic operators, mutation and 
crossover, are applied at the selection stage. The procedure is repeated until the optimal 
solution is reached. 

There are many modifications of the classical genetic algorithm because of several 
variations of: 
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• encoding parameters (in binary format or in floating-point format), 
• selection (selection by stochastic universal sampling, roulette wheel selection, trun 

cation selection, tournament selection, local selection), 
• crossover (single point crossover, double point crossover, shuffle point crossover, 

single point crossover with reduced surrogate, double point crossover with reduced 
surrogate) and mutation [10,14]. 

4.2. App I i cat i o n of gen et i c a 1 go r i th m for i de n ti fi cat i o n 
of rheological and friction parameters 

Genetic representation of potential solutions. Each chromosome m population 
(feasible solution) is represented as a vector of rheological and friction parameters 
encoded in a binary format. The initial population is created randomly. 

Fitness function. Evaluation of chromosomes in population is done using fitness 
function. In the conventional optimization method the mean square error function (2) is 
chosen as the goal function <t> for identification problem of stress-strain curves 
parameters. Search for a minimum of this function yields the solution. In the genetic 
algorithm the goal function is transformed into the fitness function F, because the 
genetic methods search for maximum. Thus: 

l 
F = --. (8) 

<t>+x· 

where X is a very small number. 
Genetic operators. Three genetic operators are applied to chromosomes: selection, 

crossover and mutation. 
A roulette wheel selection is used as follows: 

• calculate the fitness value F(x;') for each chromosome x;', i = 1, 2, ... , L, where Lis the 
size of population, 

L

• find the total fitness of the population TF = I F(x;'), 
i= 1 

• calculate the probability of the selection pi for each chromosome x;', i = 1, 2, ... , L,
Pi = F(x;')/TF, 

• calculate the cumulative probability qi for each chromosome x;', i= l, 2, ... , L.

qi= LP;,
i= I 

• generate a random number r from the range [O, 1 ], 
• if r=«. then select the first chromosome x'i', otherwise select the i'h chromosome x';,

2'5.i-5.L, such that ą;_1 '5.r'5.ą;.
Selection represents a very important aspect of the genetic algorithm. Chromosomes 

with the highest values of the fitness function have more chance to get into the new 
population. 
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The single point crossover is applied. Mixing features of two chromosomes of 
previous generation creates new chromosomes. The probability of crossover pc deter 
mines the expected number of chromosomes, which undergo the crossover operation. 
The following steps are performed for each chromosome in population: 
• generate a random number r from the range [O, I], 
• if r < pc chromosome is destined for crossover. 
For each pair of individuals a random integer number pos (crossing point) from the 
range [l ... m- l] is generated, where mis the total length of chromosome (number of 
bits). Two chromosomes: (b1b7 •.• b O

b + 1 ... b ) and (c1c7 ... c O 
c + 1 ... c ) are re- - p s p os m _ p s pos 111 

placed by a pair of their offspring: (b ,b2 ... b po,cpos+ 1 ... c,J and (c IC 2 ... cpo,bpos + 1 ... b,,,). 
Mutation operation introduces random changes to chromosomes. Probability of 

mutation pm gives the expected number of mutated bits. The following steps are 
performed for each chromosome in population and for each bit within the chro 
mosome: 
• generate a random number r from the range [O, 1 ], 
• if r<pm bit is mutated (change from O to 1 or vice versa). 
The simple genetic algorithm is stopped after an assumed number of iterations. 

5. Experiment 

Ring compression test was selected for supplying the data for the inverse analysis. 
Schematic illustration of the test is shown in Fig. 3. The tested material was technically 
pure copper. Initial dimensions of the ring were: outer diameter 14 mm, inner diameter 
7 mm, height 4.69 mm, what gives the standard ratio for this test 6: 3: 2. The tests were 
performed in the room temperature. Strain rate of 1.0 s~1 and homogeneous logarithmic 
strain of 0.361 were the remaining process parameters. Experiment was performed on 
the Gleeble thermomechanical simulator at the Institute for Ferrous Metallurgy in 
Gliwice. 

Fig. 3. Schematic illustration of the ring compression test 
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6. Results 

Evaluation of various optimization methods with respect to their applicability to the 
inverse analysis was the main objective of the work. The maximum number of FEM 
solver callings for n optimized parameters in one step of the optimization was evaluated 
for each investigated method: 
• Ho ok e - Jeeves: I+ 2*n 
• Simplex: n+ 5 
• AG: L - size of population. 

These data are for the analysis based on one compression process only. They should 
be multiplied by a number of tests used in the analysis. 

Selection of the starting point is the main difference between the genetic algorithm 
and the conventional methods. The starting values of components of x vector in the 
Ho o k e - Jeeves and simplex methods are chosen by the user, therefore, endeavors 
are made to select the starting point as close to the final minimum as possible [8]. This 
point is selected randomly in the genetic algorithm method. In order to make the 
comparison more convincing, the starting point for the conventional methods in this 
work was chosen reasonably far from the expected minimum. 

Since the tests were performed in the room temperature, the strain rate sensitivity of 
copper was negligible and the following flow stress function was defined: 

(I 3) 

The constant friction factor m was assumed and, m consequence, the optimized 
vector x contained four components: x = {ap a2, a3, m}. 

In this work the optimization procedures, which include 50 iterations using Ho - 
ok e - Jeeves or 60 iterations using simplex methods or 20 iterations using GA are 
considered. The number of runs of the FEM solver is similar for these three cases, 
namely 371 for Ho ok e - Jeeves, 416 for simplex and 400 for GA. The results, which 
were obtained after these optimization schedules, are presented below. The following 
constraints were imposed on the variables for the genetic algorithm: a IE {I, I 00}, 
a2E {100,900}, a3E {0.1,0.9}, mE {0.01,0.4}, and the parameters of the method were: 
size of population L = 20, probability of crossover pc = 0.9 and probability of mutation 
pm = 0.09. These parameters are established in testing processes. Each of four coef 
ficients was coded on 5 bits, thus the total length of the chromosome was equal 
n = 5*4 = 20, and the calculation accuracies were: a1 ± 3.1, a2 ± 25, a3 ± 0.025 and 
m±0.012. 

Starting coefficients x for the Ho ok e - Jeeves and simplex methods and the cost 
function <I> calculated for these coefficients were: 

x = {90.0, 11 O.O, 0.21, 0.19} <I> = 1.003. 

Comparison of measured and calculated loads and shape of ring predicted for starting 
coefficients x is shown in Fig. 4. Results of the optimizations are presented below in the 
Table. 
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Fig. 4. Comparison of loads (a) and ring shapes (b) obtained from measurements and from finite element 
calculations using staring values of coefficients x. Measured ring shape is represented by the gray area (thick 

line) and predicted by the mesh (thin line). 

Fig. 5 shows compression loads as a function of die displacements calculated for 
coefficients x obtained from the optimization schedule. These loads are compared with 
the experimental data. It is seen in Fig. 5 that, in the considered case, the genetic 
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algorithm appeared to be more efficient and accurate than the simplex methods and 
comparable with the Ho ok e - Jeeves method. The coefficients x and the values of 
the goal function obtained for various methods are given in Table. 
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- experiment 
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I 

0.8 
I 

1.2 1.6 
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Fig. 5. Comparison between loads measured in the test and predicted by various optimization methods 

TABLE 
Results of optimization 

Optimization method Goal function 
a, a, a, m ¢i 

Genetic Algorithm (20 iter.) 16.47 525.0 0.7 0.095 0.109 

Hooke - Jeeves (50 iter.) 16.3 472.5 0.643 0.107 O.I 

Simplex (60 iter.) 18.99 162.1 0.298 0.213 0.367 

Comparison between the shape of the ring measured in the experiment (gray area) 
and predicted by the direct model with coefficients x determined by the AG method 
(mesh) is shown in Fig. 6. Due to two axes of symmetry a quarter of the ring cross 
section is presented. Very good agreement between measurements and predictions 
confirms good optimization capabilities of the genetic algorithm. 

Fig. 7 shows comparison between the shape of the ring measured in the experiment 
(gray area) and predicted by the direct model with coefficients x determined by the 
Hooke-Jeeves and simplex methods (mesh). It is seen in this figure that the former 
method performed very well and good agreement between measured and predicted 
shapes of the ring was obtained after 50 iterations. 60 iterations of simplex method were 
not satisfactory. 
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Fig. 6. Comparison between shapes of the ring predicted by the FEM simulation with coefficients x determined 
by the AG method (mesh) and measured in the test (gray area) 
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Fig. 7. Comparison between shapes of the ring predicted by the FEM simulation with coefficients x determined 
by the Ho ok e - Jeeves method (a) and simplex method (b) (mesh) and measured in the test (gray area) 
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Further assessment and comparison of the optimization methods were performed by 
analysis of changes of the goal function in subsequent iterations. It is seen in Fig. 8 that 
the goal function drops rapidly at the beginning of the procedure and, after several 
iterations, the decrease becomes much slower. The H o ok e - Jeeves method and the 
GA converge well to a reasonably low value of the goal function. The simplex method 
stacked at an unacceptable level. 
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Fig. 8. Changes of the goal function in subsequent iterations (a) and with number of runs of the FEM code 
(b) for various optimization methods 

7. Discussion 

An analysis was performed on the basis of one experiment and reasonably low 
number of optimization variables. In general, all previous observations concerning 
performance of the Ho ok e - Jeeves and the simplex methods have been confirmed. 
These methods have a tendency to stack in the local minima and selection of the starting 
point is of major importance. Evaluation of the genetic algorithm method comparing to 
the conventional ones allowed the following conclusions: 
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• Conventional genetic algorithm shows good applicability to solving optimization
problems in the inverse analysis of rheological and friction parameters.

• GA method shows similar or better convergence than classical methods for an
approximately the same number of callings of the FEM solver.

• The computing time for the GA was decreased by proper selection of number of bites
in the chromosome (the length of the chromosome depends on the range of the search
and on the required accuracy).

• Simplicity of implementation and lack of sensitivity of the algorithm's complexity on
the goal function are the main advantages of this method. The GA transforms the
population of solutions instead of a single solution.

• GA is efficient in avoiding local minima of the goal function, what is due to the
mutation mechanism.
Further investigation concerning genetic algorithms should include more complex

problems, such as analysis of materials with strain rate and temperature sensitivity.
Beyond this, the research should focus on applications of other methods of encoding
parameters and genetic operators (selection, crossover, mutation) to improve the results
of genetic algorithms and to reduce the calculation time.
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