ARCHIVES OF METALLURGY

Volume 47 2002 Issue 4

ZOFIA KALICKA*

EVOLUTION OF THE COMPOSITION OF CaO-Al₂O₃-SiO₂ INCLUSIONS DURING ADDITION OF CALCIUM OR CALCIUM-SILICON INTO LIQUID STEEL

EWOLUCJA SKŁADU WTRĄCEŃ CaO-Al₂O₃-SiO₂ PODCZAS DODAWANIA WAPNIA LUB WAPNIOKRZEMU DO CIEKŁEJ STALI

Basing on the data of Al_2O_3 and SiO_2 thermodynamic activities in SiO_2 -containing calcium aluminates of three formulae, $CaO \cdot Al_2O_3$, $12CaO \cdot 7Al_2O_3$ and $3CaO \cdot Al_2O_3$ (shortly denoted as C_1A_1 , $C_{12}A_7$ and C_3A_1), at 1873K for the wide range of SiO_2 mole fractions [1], we propose their activities expressed as functions of CaO contents provided there is no change in SiO_2 mole fraction. The proposed relations allow to follow the change of the inclusions and steel composition during calcium treatment when calcium or calcium-silicon are added. An evolution of inclusion and steel compositions during calcium treatment was investigated starting from the partly modified inclusions C_1A_1 –SiO₂ with $x'_{SiO_2} = 0.10$ and 0.03. It was shown that the change of calcium aluminosilicates composition is slightly different for the pure calcium and calcium-silicon additions. With the calcium treatment the mole fraction of SiO₂ in inclusions is decreasing less significant.

Na podstawie danych literaturowych aktywności Al_2O_3 i SiO_2 w glinianach wapnia $CaO \cdot Al_2O_3$, $12CaO \cdot 7Al_2O_3$ oraz $3CaO \cdot Al_2O_3$ (oznaczanych krótko jako C_1A_1 , $C_{12}A_7$, C_3A_1) zawierających dodatek SiO_2 w 1873K [1] zaproponowano wyrażenie tych aktywności w funkcji % mas. CaO dla wybranych wartości ułamka molowego SiO_2 . Umożliwiło to zbadanie zmiany składu wtrąceń glinokrzemianów wapnia oraz równowagowych stężeń pierwiastków w stali przy dodawaniu wapnia lub wapniokrzemu w procesie modyfikacji wtrąceń. Ewolucję składu wtrąceń rozważono zakładając wtrącenia już częściowo zmodyfikowane C_1A_1 z dodatkiem SiO_2 w ilości $x'_{SiO_2} = 0.1$ i 0.03 (w przeliczeniu na skład CaO–AlO_{1.5}–SiO₂). Wykazano, że skład wtrąceń zmienia się nieco inaczej w przypadku dodawania samego wapnia w porównaniu z dodawaniem wapniokrzemu (przy tej samej ilości wprowadzonego wapnia). Spadek zawartości ułamka molowego SiO₂ jęst mniejszy w przypadku wapniokrzemu.

^{*} WYDZIAŁ METALURGII I INŻYNIERII MATERIAŁOWEJ, AKADEMIA GÓRNICZO-HUTNICZA, 30-059 KRAKÓW, AL. MICKIEWI-CZA 30

1. Introduction

Transformation of alumina inclusions – which are causing nozzle clogging during continuous casting – into liquid inclusions by calcium is called the calcium modification. Calcium treatment is performed by calcium or calcium-silicon addition into a deep aluminium-deoxidized steel. Calcium aluminates inclusions are very differentiated in their composition. The double oxide of $12CaO \cdot 7Al_2O_3$ formula with 48.5 mass % of CaO, has the lowest melting temperature of 1688K. The other liquid calcium aluminates in steel at 1873 K are: CaO · Al_2O_3 (35,4% CaO) and $3CaO \cdot Al_2O_3$ (62.2% CaO). The above aluminates are shortly called $C_{12}A_7$, C_1A and C_3A_1 . In a steel deoxidised first by silicon, then by aluminium, there are likely to exist mixed inclusions Al_2O_3 –SiO₂. Then, calcium aluminosilicates CaO–Al₂O₃–SiO₂ inclusions may be formed as a result of calcium treatment.

Any theoretical analysis of the existence of such inclusions in steel needs the information about the chemical activities of CaO, AI_2O_3 and SiO_2 in CaO– AI_2O_3 – SiO_2 system. In paper [1] there are presented the plots of CaO, AI_2O_3 and SiO_2 activities in molten calcium aluminates C_1A_1 , $C_{12}A_7$ and C_3A_1 with SiO_2 additions at 1873 K and in aper [2] the equilibrium relations between concentrations of O, Al and Si in steel for such inclusions were studied. For C_1A_1 , $C_{12}A_7$ and C_3A_1 calcium aluminates with some amounts of SiO_2 dissolved, the abbreviated notation of type: C_1A_1 – SiO_2 , $C_{12}A_7$ – SiO_2 and C_3A_1 –SiO₂ will be used. Calcium aluminosilicates of any oxide composition will be denoted as CaO– AI_2O_3 –SiO₂.

The calcium added into steel reacts with oxygen (the soluble and the bonded one, as well) and CaO formed is being incorporated into alumina or alumina-silica inclusions. Solubility of calcium in steel is extremely low. The whole amount of the added calcium produces an increase, step by step, CaO contents in inclusions. The change of inclusions composition causes the change of oxide activities in inclusions so some new equilibrium concentrations of the elements dissolved in steel are to occur. The knowledge of change of the oxide activities with the growth of CaO contents facilitates studying the evolution of inclusion composition during the calcium treatment.

2. Activities of Al₂O₃ and SiO₂ in CaO-Al₂O₃-SiO₂ systems

Basing on the data of Al_2O_3 and SiO_2 thermodynamic activities in the SiO_2 containing calcium aluminates of three formulas, $CaO \cdot Al_2O_3$, $12CaO \cdot 7Al_2O_3$ and $3CaO \cdot Al_2O_3$ (shortly denoted as C_1A_1 , $C_{12}A_7$ and C_3A_1), at 1873 K for the wide range of SiO_2 mole fraction [1], we propose their activities be expressed as functions of CaO contents, provided there is no change in SiO₂ mole fraction.

In Figures 1 and 2, there are presented the approximated functions of Al_2O_3 and SiO_2 activities in CaO-Al_2O_3-SiO_2 system related to the mass % of CaO in CaO-Al_2O_3 "subsystem", in the range from C₁A₁ (35.4% CaO) to C₃A₁ (62.2% CaO), fitted for the

Fig. 1. The chemical activities of Al₂O₃ in CaO-Al₂O₃-SiO₂ system as the functions of % CaO in CaO-Al₂O₃ subsystem at 1873 K for different values of SiO₂ mole fraction based on the activities of Al₂O₃ in C₁A₁, C₁₂A₇, C₃A₁ with SiO₂ addition [1]. The curve A is for CaO-Al₂O₃ without SiO₂ [3]

Fig. 2. The chemical activities of SiO₂ in CaO-Al₂O₃-SiO₂ system as the functions of % CaO in CaO-Al₂O₃ subsystem at 1873 K for different values of SiO₂ mole fraction based on the activities of Al₂O₃ in C₁A₁, $C_{12}A_7$, C_3A_1 with SiO₂ addition [1]

selected values of SiO₂ mole fraction, $x'_{SiO_2} = 0.05$, 0.10 and 0.15. The mole fraction of SiO₂, denoted by x'_{SiO_2} , is calculated by converting CaO-Al₂O₃-SiO₂ oxide composition to CaO-AlO_{1.5}-SiO₂ one. The circles on the curves 1, 2, 3 denote the activities in C₁A₁-SiO₂, C₁₂A₇-SiO₂ and C₃A₁-SiO₂ systems [1]. In Fig.1 the circles on the curve A apply to pure calcium aluminates and are based on the Al₂O₃ activity data in pure C₁A₁, C₁₂A₇ and C₃A₁ [3].

The suggested relations are necessary to follow the change of both the inclusions and steel composition during calcium treatment. For the values of x'_{SiO_2} different from the ones presented in Fig. 1 and 2, but not higher then 0.15, the SiO₂ and Al₂O₃ activities will be calculated by the interpolation procedure using the data for the two nearest x_{SiO_2} values.

3. Equilibrium between liquid steel and calcium aluminates inclusions containing silicon dioxide dissolved

The calculations of the chemical activities of aluminium, silicon and oxygen dissolved in steel, $a_{[AI]}$, $a_{[Si]}$, $a_{[O]}$, which are in equilibrium with CaO-Al₂O₃-SiO₂ inclusions, are based on the knowledge of the equilibrium constants K for the formation of Al₂O₃ and SiO₂ in liquid steel

$$2[AI] + 3[O] = (AI_2O_3), \quad \log K = \log \frac{a_{AI_2O_3}}{a_{[AI]}^2 \cdot a_{[O]}^3} = 64004/T - 20.5705$$
(1)

$$[Si] + 2[O] = (SiO_2), \quad \log K = \log \frac{a_{SiO_2}}{a_{[Si]} \cdot a_{[O]}^2} = 30080/T - 11.449$$
(2)

and the chemical activities of Al_2O_3 and SiO_2 , $a_{Al_2O_3}$, a_{SiO_2} in inclusions. The change of the calcium activity in steel with the variation in CaO-Al_2O_3-SiO_2 composition will not be taken into considerations because the calcium solubility in steel is extremely low.

As an example of the calculations, the inclusions containing SiO_2 of three values of mole fraction ($x'_{\text{SiO}_2} = 0.03$, 0.07, and 0.13) and the activity of oxygen in steel equal to 0.0005 (5 ppm) at 1873 K are chosen. The results are illustrated by the plots in Fig. 3 and 4. They show that the aluminium activity in steel is slightly increased by the increase in SiO_2 contents, and, what is more important, decreases strongly with the CaOenrichment of inclusions (i.e. when transforming from C_1A_1 to C_3A_1) by constant oxygen activity. The silicon activity is going down with the increase of CaO content, but the higher is the CaO content, the lower is the difference between the silicon activities for two different amounts of SiO₂ in inclusions (see C_3A_1 with 62.2% CaO).

Thus, the calcium treatment makes it possible for silicon to form SiO_2 at the calcium aluminate inclusions. Pure SiO_2 inclusions cannot exist in equilibrium with very low activity of oxygen in steel because they would need very high activity of silicon dissolved in steel.

Fig. 3. The aluminium chemical activity in equilibrium with 5 ppm of oxygen dissolved in steel at 1873K and CaO-Al₂O₃-SiO₂ inclusions for selected values of SiO₂ mole fraction

Fig. 4. The silicon chemical activity in equilibrium with 5 ppm of oxygen dissolved in steel at 1873 K and $CaO-Al_2O_3-SiO_2$ inclusions for selected values of SiO_2 mole fraction

4. The inclusion composition and oxygen activity in steel during calcium addition with or without silicon

The calcium added into steel reacts with either the oxygen soluble in steel or the oxygen bonded in inclusions, in a ratio depending on the quantity and composition of inclusions and the activity of oxygen in steel. As a result, the concentration of oxygen in steel is decreasing and the composition of inclusions is changing, step by step, as the calcium is introduced into steel. The transformation of the inclusions and of the steel composition during calcium treatment can be estimated theoretically by finding a new equilibrium state – according to equations (1) and (2) – every time after an addition of a small dose of calcium.

The calculations were carried out for two cases of calcium treatment: adding pure calcium and calcium-silicon containing 30% Ca, 60% Si and 10% Fe. Evolution of the inclusions composition was investigated starting from the partly modified inclusions C_1A_1 -SiO₂ with $x'_{SiO_2} = 0.10$ and 0.03. The input data for the calculation example were as follows: steel mass – 10⁵ kg, concentration of oxygen dissolved – 5 ppm, mass of inclusions – 7 kg, mass of calcium addition – 2 kg. The concentrations of aluminium and silicon in steel were the equilibrium ones and resulted from the inclusion composition and oxygen concentration. Calcium was added in 0.1 kg portions. Silicon mass equal 0.2 kg was introduced into steel with every calcium portion when using calcium-silicon. The total calcium added was converted into CaO form. After each 0.1 kg Ca addition,

Fig. 5. Effect of calcium addition on the SiO₂ content in the calcium aluminosilicate inclusions and the concentration of oxygen in steel when the starting SiO₂ mole fraction was equal 0.1

Fig. 6. Effect of calcium addition on the SiO_2 and CaO contents in the calcium aluminosilicate inclusions when the starting SiO_2 mole fraction was equal 0.1

Fig. 7. Effect of calcium addition on the SiO_2 content in the calcium aluminosilicate inclusions and the concentration of oxygen in steel when the starting SiO_2 mole fraction was equal 0.03

Fig. 8. Effect of calcium-silicon addition on the SiO_2 content in the calcium aluminosilicate inclusions and the concentration of oxygen in steel when the starting SiO_2 mole fraction was equal 0.1

Fig. 9. Effect of calcium-silicon addition on the SiO_2 content in the calcium aluminosilicate inclusions and the concentration of oxygen in steel when the starting SiO_2 mole fraction was equal 0.03

new concentrations of oxygen, aluminium and silicon, and inclusions composition and mass were calculated. For simplicity, an identity of the mass percent of the elements dissolved in steel with their activities is assumed.

The changes of SiO₂ mole fraction in inclusions and the chemical activity (concentration) of oxygen in steel during calcium treatment are presented in Fig. 5 and 7 for the pure calcium addition, and in Fig. 8 and 9 for the calcium-silicon. Fig. 6 shows % SiO₂ and % CaO (recalculated for CaO-Al₂O₃ system) variations for the one calculation example.

As one can see the inclusions' compositions for pure calcium are slightly different from the ones for calcium-silicon addition but the levels of the oxygen concentration achieved are the same. Silicon dioxide mole fraction is decreasing more slowly when the calcium-silicon instead of the pure calcium is added and the less is x'_{sio_2} the more pronounced effect is noticed.

5. Final remarks

It is possible to follow the variation of inclusions' compositions during calcium modification when the relationships between the chemical activities of oxide components and the increase of CaO contents in inclusions are known.

The change of the composition of calcium aluminosilicates inclusions is a little different for the pure calcium and calcium-silicon additions.

When CaO content in inclusions is high, silicon dioxide SiO_2 is allowed to be present in the inclusions even for very low concentration of oxygen in steel.

The mole fraction of SiO_2 in inclusions is decreasing during calcium modification process being lower for calcium-silicon then for pure calcium addition.

The work was carried out within AGH grant No 11.11.110.324

REFERENCES

[1] B. Korousić, Steel Res. 62, 285-288 (1991).

[2] Z. Kalicka, Met. Foundry Eng. 27, 31-44 (2001).

[3] G.Ye, P. Jonsson, T. Lund, ISIJ Int., Suppl. 36, 105-108 (1996).

REVIEWED BY: JAN WYPARTOWICZ

Received: 7 September 2002.