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THE RELATIONSHIPS BETWEEN DETERMINISTIC AND STOCHASTIC MODELS
OF FLOTATION

ZWIAZKI POMIEDZY DETERMINISTYCZNYMI I STOCHASTYCZNYMI MODELAMI FLOTACJI

The paper presents a short review of selected models of flotation kinctics the aim of which was
a synthesis of the results obtained in different types of models. The authors compared the stochastic and
determinist models of both the cyclic and continuous flotation in the multi-chamber machine. The
determinist modecl of cyclic and continuous flotation and the stochastic model of cyclic flotation, based
on the birth and death process were discussed very thoroughly.

The synthesis of thesc models generates expressions by means of which, after removing the
flotation kinctics curve, it is possible to investigate quantitatively the process of adhesion of mincral
particles to air bubbles as well as detachment of particles from bubbles, and the value of equilibrium
recovery.

Key words: flotation kinctics, flotation rate constant, adhcsion, stochastic model, birth and death
model, probability

Flotacja — jak kazdy proces technologiczny, w ktérym o wynikach decyduje wicle czynnikow
o charakterze losowym — jest procesem zachodzacym w czasie. Matematycznic przebieg procesu
flotacji w czasic ujmujg rownania kinctyki tlotacji. Wystgpujaca w tych rownaniach stata predkosci
flotacji jest wiclkoscia makroskopowa, ktéra powinna zawiera¢ informacje o czynnikach wptywaja-
cych na proces. Na przestrzeni ostatnich kilkudziesigeiu lat powstato wicle modeli kinetyki flotacji,
poczawszy od modecli deterministycznych po modele stochastyczne odnoszace si¢ zarowno do flotacji
cyklicznej, jak i ciagtej w maszynic wiclokomorowej. Kazdy z tych modeli wnosi pewne informacje
o procesie, przy czym cfckty koncowe uzyskiwane z réznych typéw modeli powinny by¢ zbiezne,
a informacjc powinny si¢ uzupciniac.

W artykulc przedstawiono analiz¢ deterministycznych oraz stochastycznych modeli kinetyki
flotacji cyklicznej I rzgdu, a takze flotacji ciaglej w maszynic wiclokomorowej. Analiza i poréwnanic
tych modeli pozwolity na uzyskanic wyrazen na state predkoscei adhezji, predkosci odrywania, pred-
kosci flotacji oraz wartosci rownowagowej uzysku flotowanego mineratu w produkcie pianowym.
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30-059 KRAKOW, AL. MICKIEWICZA 30, POLAND
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W modelach deterministycznych (Schuhmanna, Beloglazova, Melkicha, Yoona, Mao i Luttrella)
uzyskuje si¢ wyrazenia na zalezno$¢ uzysku flotowancgo mineratu od czasu flotacji (wzory 1, 51 6),
a stata predkosci flotacji powiazana jest z prawdopodobicnstwem zderzenia ziarna z pecherzykiem P,
adhezji ziarna do pgcherzyka P, oraz trwatoScia piany F (wzor 2) lub iloscia pecherzykow gazu N
przechodzacych przez zawicsing w jednostee czasu (wzor 7) badz catkowita powierzchnia peche-
rzykéw gazu przeptywajacego przez jednostkg powicrzchni przekroju poprzecznego komory flota-
cyjncj w jednostce czasu (wzor 8). Na trwalos¢ polaczenia ziama z pecherzykiem zwrécit uwagg
Sutherland uwzgledniajac w wyrazeniu na prawdopodobienstwo mincralizacji pgcherzyka, prawdopo-
dobicfistwo oderwania ziarna od pgcherzyka Py (wzoér 38). Yoon, Mao i Luttrell wychodzac z zasad
picrwszych wyprowadzili wzory na prawdopodobicnstwa zderzenia, adhezji i oderwania ziarna od
pecherzyka (wzory 40, 41, 46, 47 1 48).

Ze wzoru (48) wynika, Zc istnicjc okrc§lone prawdopodobicnstwo oderwania ziarna od pgche-
rzyka. Uwzgledniajac ten fakt Stachurski przedstawit model kinctyki flotacji oparty na stochastycz-
nym procesic narodzin i ginigcia, w ktérym ilo$¢ ziaren wynoszonych przez pecherzyki do warstwy
piany N(1) jest zmicnna losowa. Rozwiazujac uktad rownan Kotmogorowa-Fellera (wzory 16 1 18)
otrzymat wyrazcenic na uzysk ziaren wynicsionych do warstwy piany (wzor 22). Ze wzoru (22) oraz
poréwnania tego modelu z modelem deterministycznym mozna wyznaczy¢ stata predkosci flotacji &
(wzor 54), predkos$ci adhezji A, (wzor 24), predkosci odrywania i, (wzor 23), uzysk ronowagowy ¢,
(wzoér 23) oraz powiaza¢ tc wiclkosci z prawdopodobienstwami zderzenia, adhezji i oderwania
(wzory 551 56).

Analogiczne skojarzenic deterministycznego modelu flotacji ciagtej w maszynic wiclokomorowe;j
z modelem stochastycznym umozliwia powiazanic wspotczynnika intensywnosci wyflotowania ziaren
) oraz wspotczynnika intensywnosci przejscia z komory do komory p ze stata predkosci flotacji & oraz
$rednim czascm przebywania zawicsiny w komorze flotacyjnej t (wzory 351 37).

Wyprowadzenic réwnan kinctyki tlotacji na podstawic zasad pierwszych umozliwia powiazanic
flotacji cyklicznej z flotacja ciagla w maszynic wiclokomorowej poprzez staly predkosci flotacji &
(wzory 5135).

Powigzanic modcli deterministycznych z modclami stochastycznymi flotacji stanowi istotne do-
petnienic informacji dotyczacych wiclko$ci charakteryzujacych ten proces.

Stowa kluczowe: kinctyka flotacji, stata predkosci flotacji, adhczja, prawdopodobicnistwo, model
stochastyczny, proces narodzin i ginigcia

1. Introduction

Flotation, as every technological process in which the results are determined by
numerous random factors, is the process occuring in time. One of this factors is
constituted by the quantity of potential interactions of a electromagnetic type between
a mineral particle and an air bubble, determining, among others, a stable connection of
the particle with the bubble. The random character of interactions results from the fact
that their quantities are determined by the particle surface properties which change not
only from one particle to another but can also be changed within the confines of the
surface of the same particle.

In order to obtain a stable connection between the particle and the air bubble, first of
all a collision between them must occur and the kinetic energy of the particle must be
included in a certain range of values, on one hand large enough to overcome the barrier
of the potential of interaction between the particle and the bubble and, on the other hand,
little enough to prevent the particle to break from the bubble. Both the collision between
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the particle and the bubble as well as the value of kinetic energy of the particle are of
random character.

As it can be observed, a set of random events, whose probabilities influence the
velocity of the process course, determine the stable connection between the particle and
the bubble. The higher the probability, the faster flotation process.

Therefore there is an analogy between the mechanism of the origin of the chemical
reaction and the mineralization of the air bubble in the flotation process. Consequently,
the flotation kinetics is described by equations which are analogical to the equations
of kinetics of the chemical reaction. The flotation rate constant, occuring in these
equations, is a macroscope value which should contain the information about the factors
affecting the process. This information is recorded by means of the models of the
flotation rate constant which determines the process kinetics.

In the last decades many models of flotation kinetics appeared, starting from deter-
ministic ones to stochastic, concerning both the cyclic flotation and the continuous one
in the multi — chamber machine. Each model delivers certain information about the
process but the final effects obtained from respective models should be convergent. On
the other hand, however, the models, which are most correct metodologically and which
bring the largest amount of information, are those which are derived from the first
principles, i.e. the basic laws of physics according to which the process between
particle — bubble occurs. These laws are the same, both in the multi — chamber
machine and the cyclic — operation machine of the same type. Therefore the relations
obtained for cyclic flotation, after some modifications connected with different con-
ditions of the process course, can be transferred to the continuous process.

The next chapters will present deterministic and stochastic models of kinetics of
cyclic flotation as well as deterministic and stochastic models of continuous flotation
in the multi — chamber machine. The analysis of these models contributes to presenting
the expressions for rate constants of adhesion, detachment and flotation, as well as
equilibrium recovery of mineral under flotation in the foam product. |

2. Deterministic models of kinetics of cyclic flotation

Zuniga assumed a model analogical to the equation of kinetics of the first order
chemical reactions for the description of the process of flotation kinetics (Zuniga 1935):

g=1—e™ (1

where:
€ — recovery of the given mineral in the foam product after the flotation time,
t, k — flotation rate constant.

Schuhmann observed that from the mathematical point of view the flotation process
is similar to the kinetics of the first order chemical reaction and the kinetics of
coagulation. He connected the flotation rate constant with the probability of collision



302

between the particle and air bubble P, the probability of adhesion of the particle to
bubble P, and foam stability F (Schuhmann 1942):

k=P.P,F )

Beloglazov assumed that in the process of mineralization of air bubbles the mass
of particles dm attached to the bubbles in the time df is proportional to the concentration
of particles m(f) in the flotation chamber in the moment ¢, the number of air bub-
bles N passing through the suspension in the unit time and the coefficient P, determi-
ning the probability of collision and permanent connection of the particle and bubble
(Beloglazov 1947). Consequently, the mass of particles which left the flotation chamber
in the time dt is equal:

dm=—c,mNPdt (3)
where:
¢y — coefficient of proportionality.
After intergrating equation (3), assuming that m(0) = m,, we obtain:
m(t) =m,e™" - “)
where:

k= c|NP.

The recovery of particles under flotation in the foam product after the time ¢,
according to equation (4) will be equal:

L P )

m,

Thus the expression analogical to equation (1) is obtained.
The more general form above model can be written as follows:

g()=c,(1—e™ ") (6)

where g, 1s an equilibrium value of recovery depending, among others, on surface
properties of the particles under flotation and on hydrodynamic conditions in the
flotation chamber.

Melkich obtained the analogical result as Beloglazov, treating the process of bubble
mineralization as a convolution of two events occuring with a certain probability,
namely the collision between the particle and bubble and the permanent connection
(adhesion) of the particle and bubble (Melkich 1963). He obtained a formula for
flotating probability of particle (recovery) after the time ¢ which is identical to formula
(5) while the flotation rate constant is equal to:

k=NP.P @)

c a
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where:

P, :5, v — bubble volume,
14

— volume of flotation chamber.

Yoon and Mao considered the movement of air bubbles in the column machine on
the path of which the process of collisions with mineral particles took place and
the permanent coagulation of particles with bubbles occurred with the determined
probability P (Yoon and Mao 1996). They obtained the expression, analogical as the
one above, describing the kinetics of flotation in which the flotation rate constant is
expressed by the formula:

37,
k=—2p-lg p ®)
g A

where:
R;, — air bubble radius,
V, — volume intensity of gas flow divided by the cross-section area of the flotation
chamber,
S, — total area of bubbles flowing through the area unit of the cross-section of the
flotation machine in the time unit.

Expressing in formula (7) the number of bubbles N by the area S, as in formula (8),
the following expression for the flotation rate constant is obtained:
i Sef 9)
4R}

It results from formulas (8) and (9) that the larger the rate of dispergation of air
bubbles, the higher the value of flotation rate constant.

3. Stochastic model of cyclic flotation

Due to the fact that both the collisions between the particle and air bubble as well as
adhesion of the particle to air bubble are of a random character, the process of flotation
can be considered as the stochastic process. Such a model was presented by Bodziony in
1965 (Bodziony 1965).

The number of particles under flotation which remain free in the chamber (not
coagulated with air bubbles) to the time ¢ is a random variable. Let N(¢) represent
a random variable denoting the number of particles which were not subjected to
adhesion to the time ¢. The following value:

P, (1)=P[N(t)=n+]] (10)
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is the probability of the fact that the random variable in the time moment ¢ assumes
the value n+1. Such a state of the process is marked as E,+(¢). From the physical point
of view this is equivalent to the situation that till the time ¢, n+/ free particles remained
in the flotation chamber. After the time ¢ + Af the random variable assumes the value ».
This state of the process is marked as E,(¢ + Af). One particle was subject to adhesion to
the air bubble after a moment of time A¢. Therefore it-can be said that free particles
disappear from the flotation chamber and such a stochastic process is called as the death
process.
The probability of transfering from the state £,,, 1 (¢) to the state £,,(f + A¢) is equal to:

P[E,. ()= E, (¢t +A0)]=\(n +1)Af +0o(Al) (11)

where A(n) is the function of intensity of transfer from one state to another, or the
function adhesion intensity. Expression (11) means that the probability of decreasing by
one the number of free particles in the time At is proportional to this time with the
accuracy to the infinitely small value of the higher order than o(Af). In other words, the
probability of an event consisting in the fact that in the time A¢ more than one particle is
subject to adhesion to the air bubble decreases faster to zero than the time At.

It is assumed for the adhesion function that:

A(n)=nh, (12)

where A, is the constant characterizing the process. In other words, the intensity of the
adhesion process is proportional to the number of free particles.

Solving the appropriate system of Kolmogorov — Feller’s differential equations for
this process we obtain an expression for the recovery of particles which underwent
adhesion, identical to expression (1) while the A, is the flotation rate constant.

In the above model the particles which underwent adhesion to air bubbles cannot
return to the free state. This so-called pure death process. Yet it is known from the
previous experiments that as a result of turbulence of the medium in the flotation
chamber a process opposite to the adhesion occurs, namely the detachment of particles
from air bubbles. Therefore the description of the flotation process by a pure death
process is not sufficient. The model based on the birth and death process (Bailey 1964) is
a more complete and depicts the character of phenomena occuring in the flotation
chamber. Such a model was presented by Stachurski for the process of foamless ionic
flotation where the mechanism of detachment is slightly different than in case of
flotation of minerals (Stachurski 1970).

Two mechanisms occur in the volume of the flotation chamber: adhesion and
detachment of the already attached particles from the air bubbles as a result of turbulence
of the medium in the flotation chamber.

The random variable N(¢) is constituted by the amount of particles lifted by the air
bubbles up to the foam layer till the time ¢. The function of transfer probability is defined
as follows:

P_/,(t,t+At):P[N(t+At):llN(t)=j] 0<e<t+At (13)
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This is a conditional probability of the fact that in the moment (¢ + Af) there are k
particles attached to the air bubbles if in the moment ¢ their number was ;. Assuming
that the process is time-homogeneous, i.¢.:

P (t+At)=P;(Ar) (14)
the following postulates are formulated for the transfer probability:
A(J)AL +o(AL) for/=j+1 (15a)
w(j)At +o(At) forl=j-1 (15b)
Py (At)=
1-=[A()) +u()]At +o(At)  forl=j (15¢)
o(At) forl#j—1,j,j+1 (15d)

where A(j) denotes the intensity function of adhesion process while () the intensity
function of detachment process of the particles from the air bubbles.

Equation (15a) means that the probability of increasing by one the number of
attached particles is proportional to the time Af with accuracy to an infinitesimal value
of the higher order. Analogically, (15b) means that increasing by one the number
of detached particles is proportional to the time Az. In the state of equilibrium the process
1s characterized by the sum of effects of adhesion and detachment. Respectively,
expression (15¢) means that during the time Af no change of the amount of particles in
the chamber occurred. Expression (15d), on the other hand, means that the probability
that in the time A¢ more than one particle was subject to adhesion or detachment from the
bubble is an infinitesimal value.

It is obvious that N(0) = 0. The probability of transfer P,;(f) = P,(¢) is fulfilled by
Kolmogorov-Feller’s system of differential equations:

an) =—[A(D) +1(D]P(6) +A({ =1)P,_; (1) + p({ + )P, (1) e

The above system of equations expresses the principle of probability conservation.
The intensity functions of adhesion and detachment processes, by analogy with
equation (12) are expressed by the following formulas:

7\'(1):%'()(”0 _—l) (173)

n(h)=p,! (17b)

Therefore the intensity of adhession process is proportional to the number of free
particles (n, — [) whereas the intensity of detachment process is proportional to the
number of particles attached to bubbles (/). After taking into consideration formulas
(17), equations (16) assume the form:
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dpP (1) _

dt [7‘0(”() —1)+}J.0[]P/(1)+7\0(120 _[+1)Pl—l([)+“0(1+1)P[+I(t) (18)

Considering the initial conditions:
Pi0)=1 for/=0 (19a)
P(0)=0 for/=1,2,..,n, (19b)

system (18) results in the following solution:

P/(t):[”o] [ [(Mo +}\‘0)e—(ku-ﬂ,l“)[]nu—[[l_e—(l“—#},l“)l]/ (20)
L), +p,)"

The average value of random variable N(¢) is:

n _ 21
E[N(z)]:Z/P,(z):&[l_e O] (21)

=0 0 0
Thus, the recovery of particles lifted up to the foam layer is expressed by the formula:
E(I)ZE[N(I)]: Ay [l_e—-(ku+p“)t] (22)

,7() X(} + “[)
The form of this formula is analogical to formula (6) whereas ¢ , = : “o  and
Lo TH,

k =Xk, +n,.Itcan be said that constants A, and p,, are the rate constants of adhesion and

detachment processes respectively. These constants can be calculated from formula (22)
because:

lime(f) = Mo (23
i }‘o +H()
Oe(t) Y (24)
ot =0 ‘

Fitting the empirical dependence to the model one it is possible to evaluate the
largeness of the process of adhesion and detachment in given physicochemical and
hydrodynamic conditions in the flotation chamber.

4. Model of kinetics of the continuous process of flotation in the multi-chamber
machine

In the continuous process, as opposed to the cyclic flotation, the feed is continuously
delivered into the flotation machine as well as the products of flotation are continuously
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taken away. In general, the volume of tailings is much larger than the volume of
concentrate leaving the machine in a unit of time. Without a larger mistake the flo-
tation productivity can be determined by the volume of tailings leaving the flotation
machine. Let O denotes the volume productivity of the machine, measured by the
volume of suspension included in tailings whereas let a be a fraction of the volume
of the flotation chamber occupied by air. Then the product (1 — @)V will denote
the volume of suspension in the chamber of the flotation machine which volume is
equal V.

The probability of the fact that a particle in the time interval Az will find its way to
tailings will be expressed by the following formula (Metkich 1963):

__ oA (25)
(1-a)V

w

Since the possibility of the particle to be in the concentrate in the interval Az is
equal to:

AP, =kt (26)

hence the probability that the particle will remain in the flotation chamber in the time
At 1s as follows:

AP{;:I_APk—M“,Zl—Atr/c+ 0 | (27)
L (l—a)VJ

Let the flotation time be ¢ = mAf where m 1s the number of intervals A¢ into which
the flotation time was divided. The probability of remaining of the particle in the
chamber after the time ¢, i.e. after all m time intervals At wil be:

70 T Tyl ORI T
RW_+_NU+U_@VE _+_;“+U*@V&

The above function sequence has a limit:

29
lim P, =P, =exps— k + 0 t 29)
m-—ron (1 —a)V

Therefore the probability of leaving the flotation chamber by the particle is expressed

by the formula:
30
P, +P,=1-exps— k+ 0 t il
(I-a)V

The probabilities P,, and Py of particle’s finding its way to tailings and concentrate
can be calculated from formulas (25), (26) and (30):
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Pw=4—~Q {1—exp {k+ 9 ]z } S
O+k(1-a) i (I1-ay ) |
Pk:M{l—exp {k+ 0 ]t } G2)
O+k(l1—aV | (I-a)y ]
For the one-chamber machine
fi e B (33)

w

>0 ¥ Q+k(l—al

This formula expresses the probability of particle’s finding its way to the tailings for
the established process of the continuous flotation. The probability of particle’s finding
its way to the tailings in the n-th chamber multi-chamber machine is:

P, :[__Q_]" G4
O+k(l1-a)V

In relation with this, the probability of particle’s finding its way to the concentrate of
the n-th chamber machine and simultaneously the recovery of the mineral of the useful
component will be expressed by the formula:

: 35
g(n):l_(__g__j I 5
O +k(1-a)lV (1+kt)"

while T =

—ay : . N
a Qa) presents the average time of remaining of the suspension in the
flotation chamber.

Applying formula (35) it is possible to calculate the recovery of the useful mineral in
the i-th chamber of the flotation machine:

e, =e(i)—g(i-1)= L (36)
(1+kt)'

The analogical expression for the recovery of the useful mineral in the multi-chamber
flotation machine was obtained by Siwiec when treating flotation as Markov’s process
of the finite number of states (Siwiec 1981):

8(71)21——1— (37)
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where A presents the intensity of particles flotating while p the intensity of transfer
0
(I-a)y

from one chamber to another. Substituting &£ = A and =p in equation (35),
formula (37) will be obtained.

Formulae (35) and (36) enable to transfer from the model of cyclic flotation cha-
racterized by the flotation rate constant to the model of continuous flotation in the
multi-chamber machine, additionally characterized by the average time of remaining in
the flotation chamber.

5. The flotation rate constant

In the above approaches to the kinetics of flotation the probability of permanent coagula-
tion of the particle with the bubble occurs in the expressions for the flotation rate constant.
The specification of this value by various authors leads to a wide range of models of flota-
tion kinetics. Many models were proposed which connect the flotation rate constant with
the phenomena occuring in the flotation chamber (King 1982; Geidel 1985; Jiang 1991).

Yoon and Mao proposed recently a more transparent (from the methodological point
of view) model of the flotation rate constant, derived from the first principles, taking into
consideration both the hydrodynamic and surface interactions (Yoon and Mao 1996).
The flotation rate constant in this model is expressed by formula (8).

Taking after Sutherland the expression for probability P (Sutherland 1948):

P=PP,(1-P;) (38)
the flotation rate constant is expressed by the following formula:
v, 1 39
k:4 = PCPa(l—Pd):ZS,,PCP“(I—P(,) (39)
b

Considering the motion of the particle in relation to the air bubble in the flotation
chamber along the line of the liquid current which surrounds the air bubble, Yoon and
Luttrell derived the formula for the probability of collision and adhesion (Yoon and

Luttrell 1989):
012\ R\ (40)
p (2, 4RTY R,
27 15 R,

(41)
45+ 8Re"7?

—— 5 Ui }
K,

15R,| —2 +1
R,

P, =sin?| 2arc tgexp| —
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where:

Re — Reynolds number for the bubble,

u, — velocity of ascending motion of the bubble,
t; — induction time,
R, — particle diameter.

When deriving formula (41) the following criterion was assumed: in order to achieve
a breaking of a thin film between the particle and the bubble (necessary for adhesion of the
particle and the bubble), the time of slip (contact) must be larger than the induction time
which can be controlled by the appropriate procedure of reagents in the flotation proces.

The problem of adhesion of particles on air bubbles can be also studied by means of
considering the energy relations in the particle — bubble interactions.

According to the broadened DLVO theory, the energy of particle — bubble inte-
raction is the sum of three components:

V=V,+V,+V, (42)

where:
V. V, V), denote, respectively, the potential of dispersive interaction (Van der Waals),
the electric double layers and the potential of hydrophobic interaction and are expressed
by the following formulae (Hogg et al. 1966):

(43)
_ AD,D, | L+20l
d — -
12H(D, +Dy)| ,0b¢
H
:8Dpr(\V12 +y3)| 9y, [ tIn(l = o 2 )—‘ (44
‘ 8D, +Dy) LWIZ e | I J

D,D, K3 (45)

Vi ="Tab <D H
4 b
where:
€ — dielectric constant of the medium,
A3 — Hamaker’s constant in particle interaction (1) and bubble interaction (2)
in the liquid (3),
H — distance between the surfaces of the bubble and particle,
b — parameter characterizing material (b is of the order 3x 107" s for most

materials),
1=33x10Ps — parameter characterizing the medium (water),
c — light velocity in the vacuum,
Vi,W) — surface potentials of the particle and bubble,
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K — Debye-Huckel’s parameter,
K3, — constant of hydrophobic interaction.

Figure 1 presents the dependence V(H). The particle kinetic energy must fulfill the
condition E, > E; (E; is the height of the energy barrier of the particle — bubble
interaction) in order to achieve adhesion of the particle and bubble. In such a situation
the probability of adhesion will be expressed by the formula:

P, = exp[—ﬂ] (46)

Ey

The probability of detachment is expressed by the formula analogical to the
equation for P, since the detachment of particle from air bubble occurs when the
particle kinetic energy is larger than the sum of adhesion energy W, and E; (Laskowski
etal. 1991):

[ w, +E1} (47)
P, =exp e
E k

where E', is the kinetic energy necessary to detachment the particle from bubble.
Expressing the adhesion energy by the angle of wetting 0 and the surface tension on the
liquid-air boundary v;,, we obtain the expression for detachment probability:

[ y,VTcR}Z,(l—cose)z +E1] (48)
P, =exp| —

¢ E,k

v,

Fig. 1. A potential energy vs. distance diagram for bubble—particle interaction

Rys. 1. Zaleznoé¢ energii potencjalnej oddziatywania pecherzyk—ziarno od odlegto$ci migdzy nimi
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Taking into consideration expressions (39), (40), (46) and (48) the flotation rate
constant is expressed by the formula:

2 2 2
o [§+4Re°-72 ](R,]] ex;{—ﬂj l_exJ_ylvnRP(l—cose) +E1H (49)

T4R,\ 2 15 |\ R, E, | E,

Therefore the flotation rate constant is the function of factors characterizing the
material under to be enriched (R)), hydrodynamic conditions in the flotation chamber
(Rp, Re, Ej, E'y, V,) and natural or modified (with appropriate reagents) surface
properties of particle and bubble (£, 6, v;,).

6. Physical interpretation of the constants of birth and death model

It results from formula (1) for the recovery of the useful mineral in the foam product
that after an appropriately long time (theoretically infinitely long) the entire bulk
of the flotable mineral will transfer to the foam product. This is the result of the fact
that in this model and in any other determinist model of the flotation kinetics the
phenomenon of detachment of particles from the bubble — particle aggregates is not
taken into consideration. The value of the equilibrium recovery ¢ , =1. All particles
bound with air bubbles find their way to the foam product. It results from formula (1)
that:

8, = 1 (50)
——(t=0)=k
= (1=0)

The comparison of this result with formula (24) leads to the conclusion that in case of
the flotation without the phenomenon of detachment of particles the flotation rate
constant is equivalent to the constant of non-returnable adhesion. All particles attached
to air bubbles will transfer to the foam product. None of them will be detached from the
flotation aggregate. As it results from formula (1), the flotation rate constant and,
simultaneously, the non-returnable adhesion rate constant is equal to:

po Lode 1 Ac (51)
l—-g dt 1-g At
Since
€ :L oraz Ag :Al (52)
no nu
consequently
A Al _ 02515, Al —0255,P,P, (53)

T M(n, —1) Ai(ny —1)0255,1,



313

where:

(7 — initial number of flotable particles in the flotation chamber,

[ — number of particles attached to the bubbles till the time ¢,

Al — number of particles attached to the bubbles in the time Az,

L. — number of particles colliding with the bubble in the unit time,
P. and P, — probabilities of collision and adhesion, respectively, equal:

o Ly Al
© At(n, -1) ¢ 0258,1,

The condition for adhesion to occur is the previous particle — bubble collision.
Therefore the non-returnable adhesion rate constant is the product of collision pro-
bability and adhesion probability on the surface of air bubbles passing the area unit of the
cross-section of the flotation chamber in the time unit.

In case of the model flotation considering the process of particles detachment from
the bubbles surfaces the following scheme of the process of adhesion meant as a balance
of the number of particles:

non-returnable adhesion = adhesion with detachment + detachment

If we consider the fact that the flotation rate constant is equal to the non-returnable
adhesion rate constant, the above scheme results from formula (22) in which the
flotation rate constant is:

k=ho +1, (54)
Since the non-returnable rate constant is expressed by formula (53) while the
adhesion rate constant with detachment by formula (39), consequently the detachment
rate constant will be:
1 1
Ho =k —}\‘o :ZSh[PcPa —F P, (] -P(l )]:ZSIJPcPan (55)

c™ d

Applying formulae (55) and (39), the value of equilibrium recovery can be calculated:
A 0258 P P, (1-F;) (56)

o ca

€p =
R ey 0.25S,P.P,

c= \a

:1_P1/

Therefore P; , X jand pt,, can be determined from the empirical dependence &(7). This
fact creates an additional tool for investigating the basics of the process of mine-
ralization of air bubbles.

7. Final remarks

The presented review of selected models of flotation kinetics is a short synthesis
of determinist and stochastic models of both cyclic and continuous flotation in the
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multi-chamber machine. Such a synthesis enables the results obtained in the determinist
approach to be matched to the ones of the stochastic model which consequently, leads to
mutual supplementing of the information obtained from respective model types. The
obtained formulas will be applied to investigate the intensity of the course of flotation
microprocesses, 1.e. adhesion and detachment, and the value of equilibrium recovery,
connected with them, in the function of physical and physicochemical parameters
affecting flotation by means of the dependence of probabilities of collision, adhesion
and detachment from these parameters.

This work was done as part of University of Mining and Mctallurgy Rescarch Program No. 10.10.100.655
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