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Hot Rolling of HSLA Steels – a Review of Recent Studies

Although known for many years, HSLA steels are still of considerable interest to researchers. The unique properties offered 
by the presence of micro-additives Nb, V, Ti in these steels are widely used in a variety of constructions – from the automotive 
industry, through the transport of media such as oil or gas, to large structures. Unfortunately, much of the research only concerns 
the theoretical sphere or does not go beyond the area of semi-industrial research. Research on an industrial scale, supported by in-
dustrial trials, is relatively scarce. This is certainly due to the very high costs of such research, but also to the rather limited number 
of places where HSLA steels are mass produced. This paper presents and systematizes research from the last three years into the 
thermo-mechanical rolling of HSLA steels. The review is divided according to the successive stages of the production process. 
The work forms the author’s basis for further research in this area.
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1. Introduction

High-strength, low-alloy (HSLA) steels are low-carbon 
steels based on Nb, V and Ti micro-additives [1]. The low 
carbon content gives excellent weldability [2] and the presence 
of micro-additives gives these steels unique properties – high 
strength (yield strength even above 1000 MPa) combined with 
very good formability [3].

Thanks to these unique properties, these steels have found 
a wide range of applications in the automotive [4] and construc-
tion industries (especially where structures operate in harsh 
weather conditions) [5], in the offshore industry, and in oil and 
gas transportation [6].

Micro-additives, as already mentioned, mainly affect the 
properties of HSLA steels. These elements form, together with 
C and N atoms, carbides (MC), nitrides (MN) and carbide ni-
trides (MC,N), where M is a metal atom – Nb, V or Ti [7]. The 
presence of these compounds plays a key role in HSLA steels 
in the formation of the microstructure and the final properties 
of the material [8]. It also enables the control of the austenite 
grain size when reheating the steel prior to the rolling process 
as well as the control of the influence of recrystallisation during 
finish rolling or the control of the transformation of austenite to 
ferrite during colling [9].

HSLA-type micro-alloyed steels are produced on an 
industrial scale by controlled thermomechanical rolling [10] 
and, although not always, by cold rolling combined with heat 
treatment [11]. Controlled rolling consists of the rolling pro-
cess in the austenite range with the final deformation taking 
place below the recrystallisation stop temperature (RST), i.e. 
already without recrystallisation, and the subsequent controlled 
cooling process during which the γ → α transformation takes  
place [12]. 

In Poland, the only place where this type of strip metal can 
be rolled is ArcelorMittal’s Hot Rolling Mill in Krakow. Such 
rolling process itself, although well-known and widely used, is 
still often considered as an art rather than a science due to the 
requirement for extreme precision in the selection and control 
of thermo-mechanical parameters [13].

This work aims to systematize the research of the last 
3 years on the topic of HSLA steels rolling and gives a basis for 
further research on these steels in industrial scale.

2. Slab casting and reheating

The final properties of the steel are strongly influenced by 
the closely controlled continuous casting of slabs. The proper 
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chemical composition (e.g. amount of micro-additives <0.15%) 
and process parameters can influence the properties of the final 
product [14, 15]. The authors of work [16] proposed that the 
steel should not be deoxidized with Al as it is usually performed, 
but using a compound based on a combination of Ti, Ca and Zr. 
They proved that, the impact strength of HSLA steel can increase 
almost three times from 58 J to 188 J. In work [17] was shown 
that poorly chosen slab cooling parameters can cause edge crack-
ing problems. Based on Tata Steel’s production process, they 
proved that by reducing slab’s edge cooling during the casting 
process and additionally increasing the crush on edgers already 
during the roughing rolling process, the size of edge cracks can 
be reduced. It was also noticed, that the amount of cracking 
increases with an increase in the micro-additive of V, which is 
an important aspect for HSLA steel.

The thermomechanical rolling process starts with heating 
the slabs after the continuous casting process to the temperatures 
of about 1200°C-1250°C [18]. Both heating time and tempera-
ture are extremely important in terms of the final properties of 
HSLA steels. The temperature and austenitizing time affect the 
solubility of micro-additives but also the final austenite grain 
size, which directly affects the final ferrite grain size. Work [19] 
described extensively that up to about 100 µm a ferrite grain 
of normal size can be expected, and above this the so-called 
abnormal grain growth starts. Austenitizing temperatures above 
1060°C favors such abnormal grain growth (Fig. 1).

Fig. 1. The relationship between the austenite grain size diameter, tem-
perature and time of slab reheating for HSLA Nb-V steel [19]

Reheating also has a high effect on hot ductility, what was 
studied in works [20,21]. The authors of [20] showed that as 
the austenitizing temperature increases, the material becomes 
more brittle. They pointed to coarse-grained AlN and AlN-MnS 
precipitates at grain boundaries as the cause of such material 
behavior. The researchers in work [21], on the other hand, fo-
cused on the effect of the Nb micro-additive and its influence 
on hot ductility during reheating. They showed that an increase 
in Nb content from 0.025% to 0.5% can almost double hot  
ductility.

3. Roughing and finishing rolling

The next step in the thermomechanical rolling process is 
the roughing rolling. The whole process is carried out in the 
austenitic range, usually above 1100°C. Of course, as mentioned 
above, during heating above 1060°C abnormal grain growth can 
occur but it is more important to dissolve the alloying micro-
additives. After a few passes, finishing rolling takes place. 
The finishing rolling temperature (FRT) is around 900°C and 
the process is very often carried out in such a way that the FRT 
is already below the recrystallization stop temperature (RST). 
This guarantees the final deformation in the austenitic range, but 
already without recrystallisation, which strengthens the material 
considerably [22].

RST or the temperature of non-recrystallization (TNR) can 
be calculated using equation (1):

 

877 464C 6445Nb 644 Nb

732V 230 V 890Ti 363Al 357Si
NRT     

     	 (1)

Where C, Nb, V, Ti, Al and Si are mass fractions of the compo-
nents in % [23]. In work [24] the authors used the same equation 
but first number was 887. This is so called Boratto equation.

Much of the research works on rolling HSLA steels concern 
the development of models for calculating force during finish-
ing rolling [25-28]. Models based on machine learning or other 
algorithms when substituted with data obtained from the process 
show high data correlations. This shows that we can predict, with 
a high degree of accuracy, what is happening during the rolling, 
and thus better design and control the process (Fig. 2).

Equally important to researchers and widely investigated 
are models describing recrystallization – static (SRX), dynamic 
(DRX) and metadynamic (MDRX) [27-30]. In [29] there was 
shown, for example, that stable dynamic recrystallisation during 

Fig. 2. Comparisons of measured and predicted rolling forces of the 
investigated steel strip. Steel compositions: 0.07C-0.03Si-0.95Mn-0.004 
N-0.07Ti-Fe (wt.%) [27]
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thermodynamic rolling, according to their model, occurs under 
high temperature and low strain rate. The stress increases with 
increasing strain rate and decreasing temperature. The volume 
of the recrystallized grains (by DRX) in steel increases with 
decreasing strain rate and increasing temperature.

4. Controlled cooling, coiling and final properties

The rolling process is followed by a controlled cooling 
stage. It is mainly at this stage, by selecting both the final tem-
perature to which the material is cooled (the so-called coiling 
temperature – CT) and the cooling rate (CR), the final micro-
structure and properties of the product can be tailored [31-33]. 
A significant amount of work is related precisely to the study of 
the effect of the controlled cooling path on the final properties of 
the rolled material. The general conclusions coming from many 
works are quite consistent. As grain size decreases, strength 
properties (such as YS) increase. In order to obtain a finer grain 
size, the finishing rolling temperature needs to be lowered to roll 
well below RST and CR needs to be increased [34]. The grain 
is clearly finer for high CRs such as 50°C/s or 100°C/s than for 
1°C/s. In addition, as YS increases, microhardness increases – in 
work [35] there was confirmed the correctness of the equation 
describing the variation in microhardness in HSLA steels:

 Microhardness [HV] = 101.4 + 16.5 · ln(CR + 0.41) (2)

where CR is cooling rate in °C/s. Furthermore, changes in CR 
affect changes in the final product microstructure and so with an 
increase in CR the proportion of bainite or martensite increases 
at the expense of the basic ferritic-pearlitic structure [24,36]. 

In several papers, the authors focused on the effect of 
controlled cooling not only on the overall final properties, but 
on the individual components of the strengthening. It has been 
shown that the calculated component values are well correlated 
with values obtained from physical tests [37,38]. In works 
[39,40], the researchers suggest that the highest YS values can 
be achieved with a CT in the range of 600°C-650°C. Moreover, 

by using a non-stoichiometric Ti to N content (exceeding 3.42), 
significant grain size reduction (average grain size <3 µm) can 
be achieved. In work [41], the authors show slightly different 
results – as the CT decreases, the YS increases, and its highest 
value is not achieved at 600°C or 650°C, but at 500°C. They also 
show that, compared to other mechanisms, the effect of precipi-
tation strengthening is small and amounts to about 26-35 MPa 
(in comparison, the strengthening from dislocation is about 
115-150 MPa and from grain refinement about 126-156 MPa 
– as shown in Fig. 3).

Fig. 3. Calculated results revealing the amount of solid solution strength-
ening (σs), grain refinement hardening (σg), dislocation hardening (σd) 
and precipitation hardening (σp) in the investigated HSLA steel, treated 
at different simulated coiling temperatures [41]

In work [42], the authors focused on investigating the effect 
of the processing path on the size and distribution of particles 
affecting the strengthening. They showed that the coiling tem-
perature or cooling rate did not translate well into particle size 
and distribution (Fig. 4).

Fig. 4. a) Measured particle size and volume fraction and b) measured hardness and strength contribution according to Orowan-Ashby [42]
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The work [43], on the other hand, focused on the study 
of the transformation of austenite to ferrite during controlled 
cooling. There was investigated the effect of the cooling rate on 
the variation of this transformation and reported how, using the 
various formulae available in the literature, the temperatures of 
Ar1 and Ar3 can be calculated:

 Ar3 = 914 – 6.85CR – 650C – 134Mn + 179Si (3)

 Ar1 = 814 – 9.08CR – 532C – 121Mn + 165Si	 (4)

 Ar3 = 903 – 328C – 102Mn + 116Nb – 0.909CR (5)

 Ar3 = 902 – 527C – 62Mn + 60Si (6)

 Ar3 = 879.4 – 516.1C – 65.7Mn + 38.01Si + 274.7P (7)

 Ar1 = 706.4 – 350.4C – 118.2Mn (8)

 Ar3 = 910 – 310C – 8Mn – 20Cu – 15Cr – 
 55Ni – 80Mo + 0.35 (d – 8)	 (9)

 Ar3 = 910 – 273C – 74Mn – 56Ni – 
 16Cr – 9Mo – 5Cu (10)

 Ar3 = 910 – 230C – 21Mn – 15Ni + 
 + 32Mo + 45Si + 13W + 104V (11)

where: CR is cooling rate [°C/s], d is sheet thickness [mm], and 
C, Mn, Si, Nb, P, Cu, Cr, Ni, Mo are mass fractions of chemical 
components in %.

5. Cold rolling and heat treatment

From an economic point of view, HSLA steels should ide-
ally be produced by a single process – thermomechanical hot 
rolling. However, it is sometimes necessary to use cold rolling 
and heat treatment to obtain either different material thicknesses 
or higher strength properties [44-46]. Cold-rolling is not a neces-
sary operation and a significant proportion of HSLA steels – es-
pecially where a simple change in properties is desired – are heat 
treated immediately after the hot-rolling process [23]. Additional 
heat treatment not only controls the properties such as YS and 
ductility, but also influences microstructural changes – depend-
ing on the heat treatment path, we can obtain ferritic-pearlitic, 
bainitic or martensitic microstructures [47-49]. In work [50], the 
authors showed, that after heat treatment the microstructure of 
metastable austenite makes it possible to achieve high YS values 
of 749-772 MPa. In work [51] there was additionally focused 
on the influence of the V micro-additive. By increasing the 
V content in the steel together with appropriate heat treatment, 
YS values above 800 MPa and even 900 MPa can be achieved. 
Heat treatment operations together with an appropriately selected 
composition can make it possible to exceed a YS of 1000 MPa 
in HSLA steel [52] (Fig. 5).

6. Final product

As mentioned in the introduction to this paper, HSLA steels 
have been widely used in a variety of industries – in the auto-
motive sector, in the transport of media such as oil and gas, and 
in all kinds of large structures often operating in harsh weather 
conditions. Due to the high degree of structural responsibility, 
HSLA steels must be of the highest quality. This is important 
and interesting also from a scientific point of view, what showed 
recent works on that subject. In work [53], the authors show 
how to approach the subject of quality problems in a scientific 
manner. Through the analysis, edge cracks caused by side guides 
materials were reduced by 33.16%. Structures made of HSLA 
steel are often subjected to cyclic loading. In works [54,55] 
the researchers investigated the fatigue strength of these steels. 
They showed that the fatigue strength decreased with increasing 
YS, but also that the pre-stressing of S355MC steel, compared 
to S460MC steel, worsened these results. S355MC withstood 
pre-stressing prior to fatigue testing much worse than S460MC. 
Moreover, in the work [54] was shown that the main determinant 
of failure was the stress amplitude.

Due to their low carbon content, HSLA steels are well suited 
for welded structures. The welding process itself, however, is 
not completely indifferent to the performance of the overall 
structure. In work [56,57] the so-called heat affected zone (HAZ) 
was investigated. This zone is created by the welding process 
through the many temperature fluctuations between Ac1 and Ac3. 
These fluctuations result in a significant decrease in hardness 
and fatigue strength. In work [58], the authors showed that up to 
714°C (Ac1) the HAZ is stable. When the steel is heated above 
this temperature, the strength properties in the HAZ region 
decrease by about 15% (YS). This is mainly due to significant 
grain growth. In contrast, heat treatment of the structure prior 
to welding guarantees a stability of the properties to up to ap-
prox. 950°C.

Fig. 5. The engineering stress-strain curves for the AQ, QL, QT and 
QLT heat-treated HSLA specimens [52]
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7. Conclusions

The summary of the above review can be divided into two 
parts. In general, it can be seen that HSLA steels are enjoying an 
unflagging popularity among researchers and in just a few years 
many papers can be found focused on these steels. Unfortunately, 
most of them are either purely theoretical or the research does 
not go beyond the laboratory area. Studies conducted under 
industrial conditions, yielding results on a large population, on 
an almost mass scale, are rare, which gives great scope for future 
research in this direction. Testing on an industrial scale will also 
allow verification of theoretical or laboratory results of other 
work, which may be of particular interest to those interested in 
these steels. 

However, to sum up the articles themselves in more detail, 
it can be stated that:
–	 the process of continuous casting of steels has a significant 

impact on the end properties of the material, and that the 
amount of the key micro-additives – Nb, V or Ti – must be 
properly selected;

–	 the heating process should be carried out at the temperatures 
of about 1200°C-1250°C in order to quench the dissolution 
of the micro-additives, but at the same time without over-
heating in order to prevent abnormal growth of austenite 
grains;

–	 thermomechanical rolling should be carried out close to 
the material recrystallisation temperature and the final 
deformation should be carried out below the RST;

–	 a well-chosen deformation path, defining proper CR and 
CT, allows for significant and proper development of the 
microstructure of the final product and its properties;

–	 according to the literature reviewed, CT should be kept 
between 500°C and 650°C;

–	 the application of additional heat treatment after the hot 
rolling process can significantly change the material prop-
erties, and can achieve unprecedented YS values in excess 
of 1000 MPa for HSLA steels.
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