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Abstract. The development of automated driving vehicles aims to provide safer, comfortable, and more efficient mobility options. However, the
decision-making control of autonomous vehicles still faces limitations of human performance mimicry. These limitations become particularly
evident in complex and unfamiliar driving scenarios, where weak decision-making abilities and poor adaptation of vehicle behaviour are prominent
issues. This paper proposes a game-theoretic decision-making algorithm for human-like driving in the vehicle lane change scenario. Firstly,
an inverse reinforcement learning (IRL) model is used to quantitatively analyze the lane change trajectories of the natural driving dataset,
establishing the human-like human cost function. Subsequently, joint safety, and comfort to build the comprehensive decision cost function. The
combined decision cost function is used to conduct a noncooperative game of vehicle lane changing decisions to solve the optimal decision of
host vehicle lane changing. The host vehicle lane-changing decision problem is formulated as a Stackelberg game optimization problem. To
verify the feasibility and effectiveness of the algorithm proposed in this study, a lane change test scenario was established. Firstly, we analyze
the human-like decision-making model derived from the maximum entropy inverse reinforcement learning algorithm to verify the effectiveness
and robustness of the IRL algorithm. Secondly, the human-like game decision-making algorithm in this paper is validated by conducting an
interactive lane-changing experiment with obstacle vehicles of different driving styles. The experimental results prove that the human-like driving
decision-making model proposed in this study can make lane-changing behaviours in line with human driving patterns in lane-changing scenarios
of the expressway.

Keywords: expressway lane-changing scenarios; inverse reinforcement learning; Stackelberg game theory; human-like decision-making;
interaction model.

1. INTRODUCTION

Autonomous driving decision-making methods have advanced
significantly. In simple driving scenarios, vehicles can achieve
safe passage. However, many challenges remain in achieving
efficient and human-like driving decisions. Vehicle decision
planning in dynamic environments involves complex interac-
tions among multiple traffic participants, especially in mixed-
traffic situations where self-driving and human-driven vehicles
coexist. Therefore, decision-planning algorithms must consider
the human-likeness of autonomous driving vehicle behaviour
in addition to satisfying the basic requirements of safety and
efficiency. This consideration is essential in dynamic environ-
ments with multiple traffic participants. As shown in Fig. 1,
when faced with scenarios in which the surrounding vehicles
(white vehicles) have uncertain motion states and random in-
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teraction behaviours, the host vehicle (purple vehicle) needs to
have the ability to effectively deal with uncertainty in dynamic
environments.

Fig. 1. Example of high dynamic lane change interaction scenario

Human-like decision-making algorithms for autonomous ve-
hicles in this traffic state must incorporate the intentions of other
drivers.

At present, interaction-based decision-making methods for
uncertain scenarios are primarily classified into probabilistic
reasoning-based methods, learning-based methods, game the-
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ory, and others. Firstly, probabilistic reasoning is a more tradi-
tional method, mainly outputting the behavioural probability of
interacting vehicles. However, it struggles to handle highly dy-
namic, multi-participant traffic situations effectively. With the
rapid development of machine learning technology, researchers
have employed learning-based methods to model the interac-
tion of obstacle vehicles. However, the learning-based method
has the disadvantage of poor interpretation and cannot even
deal with the algorithm failure in the scenario of high dynamic
lane change. Consequently, researchers turn to game theory ap-
proaches, which offer simple modelling and stable convergence,
to address driving decision problems in interactive environ-
ments. Game theory-based methods are widely used to assess
uncertainties in driving environments and can account for inter-
actions among multiple participants.

1.1. Probability-based approaches
In previous studies, the behavioural uncertainty of other par-
ticipants in highly dynamic interactive driving environments
is usually expressed in terms of probabilities. This is the
most traditional solution but cannot properly handle highly
dynamic, multi-participant traffic situations. Probability-based
decision-making methods include probabilistic graphical mod-
els, Bayesian networks, and Gaussian mixture models. Prob-
abilistic graphical modelling approaches describe interaction
characteristics by building functions that map to numbers with
output probabilities of the behaviour of interacting vehicles [1].
Bayesian changepoint detection is used to estimate the pos-
sible strategies and behaviours performed by the surrounding
vehicles [2], but the computational complexity of the algorithm
skyrockets when confronted with a large number of random vari-
ables. To reduce the complexity of the model parameters and the
dependence on prior knowledge, the researcher used Bayesian
networks to model the uncertainty, such as potential strategy
distribution of driving behaviour [3] and human psychology
at multiple levels of abstraction [4]. Gaussian mixture models
can also make inferences about the joint probability distribu-
tion for the future trajectory of vehicles based on the driver’s
intention [5]. During inference using Bayesian networks, uncer-
tainty is continuously quantified during the prediction process
to provide more reliable predictions.

1.2. Learning-based approaches
With the rapid development of machine learning in recent years,
researchers have started to use learning-based approaches, such
as deep learning and reinforcement learning, to solve vehicle-
driving decision-making problems in highly dynamic environ-
ments. Long short-term memory (LSTM) networks are effective
in dealing with long-term dependencies, taking into account the
behaviour and style of surrounding vehicles and the interre-
lationships between vehicles [6]. LSTM networks can also be
used for pedestrian trajectory prediction in combination with
attention mechanisms [7]. The PPO algorithm learns control
strategies in a continuous motion planning space [8], simu-
lates interactions with other vehicles, solves the motion planning
problem with multimodal driving intentions [9], and is used at
unsignalized intersections in mixed traffic environments [10].

Trumpp et al. proposed to learn pedestrian collision miti-
gation decision-making strategies for autonomous vehicles via
deep reinforcement learning (DRL) to learn pedestrian colli-
sion mitigation decision-making strategies for autonomous ve-
hicles [11]. However, deep learning has the drawbacks of inef-
ficient sample usage and low robustness.

Reinforcement learning usually models the problem as a
Markov decision process (MDP), which is used to solve se-
quential decision problems. The optimal policy for the host
vehicle can be obtained by evaluating the behaviour of the other
participants in the MDP framework [12]. High dynamics and
uncertainty of the driving environment mainly stem from the
uncertainty of human drivers’ intentions and noise from sensors,
so the driving task is usually described as a partially observable
Markov decision process (POMDP). Unclear driving intentions
of surrounding vehicles are often used as a hidden variable of
POMDP to address the impact of prediction uncertainty on the
driving strategy of the auto-vehicle, which can be applied to
intersection scenarios [13], expressway driving scenarios [14],
and urban through-congestion scenarios [15]. POMDP has diffi-
culties in solving Markov decision processes involving multiple
spaces or multiple behaviours. Moreover, reinforcement learn-
ing is prone to overfitting or local optimal solutions due to the
disadvantage of reward function setting.

Imitation learning facilitates fast optimization of strategies
by imitating expert demonstrations and is often used to solve
problems where the reward function is difficult to define. Zhu
et al. modelled pedestrian interaction at intersections and pro-
posed a multi-task imitation learning framework for safe and
efficient crossing at intersections [16]. Huang et al. proposed
a vehicle interaction model by inverse reinforcement learning
(IRL) to achieve accurate prediction of surrounding vehicle tra-
jectories [17]. Wen et al. used IRL to derive reward learning
for driving behaviours and behavioural strategies that consider
driving style in the behaviour that follows [18].

1.3. Game theory-based approaches
Game-theoretic approaches have been extensively studied in
modelling vehicle interactions due to their stability and con-
vergence. The decisions of the host vehicle are influenced not
only by the cost functions but also by the future strategies of
interacting vehicles [19]. The host vehicle decision problem in
lane-changing scenarios usually uses game theory to analyze
and model the interaction behaviour of vehicles [20–22]. Zhang
et al. established a game model using fusion model predic-
tive control for forced lane change scenarios and proposed a
method to evaluate the aggressiveness of other drivers, thereby
maintaining a good balance between driving safety and intelli-
gent decision-making [23]. In [24], an adaptive robust control
strategy using the level-k game framework was used to model
uncertainty during vehicle interaction to increase the safety of
lane-changing behaviours in hybrid driving scenarios. Li et al.
established a hierarchical inference game theory formulation
that can be extended to multiple vehicles to model interactions
between drivers and other participants in various driving sce-
narios [25].

In the process of gaming, the vehicle decision cost function
directly affects the decision tendency of the game method. The
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challenge in modelling human-like decision-making lies pri-
marily in the complex interplay of uncertainties in human driv-
ing behaviour. In highly dynamic traffic scenarios, interactions
among traffic participants increase the uncertainty in human
driving behaviour.

1.4. Contributions

The paper aims to design a human-like decision-making game
theory method that incorporates human driving behaviour mod-
els for expressway lane change scenarios and enables vehi-
cles to perform safe and efficient human-like decision-making
behaviours. For the quantitative analysis of human-like be-
haviour, this paper combines a human-like driver model derived
from maximum entropy inverse reinforcement learning with the
Stackleberg game theory to establish a decision-making model
that simulates more realistic traffic flow interaction behaviour.
The main contributions of this paper are as follows:
• Human driving behaviour is modelled using maximum en-

tropy inverse reinforcement learning algorithm on next-
generation simulation (NGSIM).

• The cost function of human-like lane change behaviour
based on the derived real human driving behaviour model
is established and the comprehensive decision-making cost
function is constructed using the Stackleberg noncoopera-
tive game.

• Human-like driving decision-making behaviour in express-
way lane-changing scenarios is implemented using the
Stackelberg game.

1.5. Paper organization

The remainder of the paper is organized as follows: Section 2
introduces the general architecture of the human-like driving
decision-making model. In Section 3, the human-like driving
behaviour model based on maximum entropy inverse reinforce-
ment learning is presented. Subsequently, Section 4 discusses
the Stackelberg game theory interaction model. Section 5 covers
the evaluation and analysis of the proposed model performance.
Finally, the summary of this research work is drawn in Section 6.

2. FRAMEWORK

Figure 2 describes the proposed human-like decision-making
framework for autonomous vehicles in expressway lane change
scenarios, considering vehicle interactions. First, key informa-
tion such as ID, position, and state of the interacting vehicles is
obtained from the natural driving dataset NGSIM. Then, the key
data of the interaction scenario is calibrated and preprocessed,
and a probability-based inverse reinforcement learning method
(maximum entropy inverse reinforcement learning) is used to
model real lane change behaviours. This method learns human
lane change behaviours under multi-participant interactions and
derives the parameters of human feature vectors. Thirdly, a non-
cooperative game optimization problem is constructed based on
the interaction process between the main vehicle and the obstacle
vehicle during lane-changing. The design constructs a compre-
hensive decision cost function based on safety, comfort, and

human-like characteristics for Nash equilibrium solving. This
results in human-like lane change decision-making behaviour
for autonomous vehicles in expressway scenarios.

Fig. 2. Algorithmic framework for human-like driving decisions

3. HUMAN-LIKE DRIVING MODEL

The inverse reinforcement learning method interprets the
Markov decision-making process as the interaction between the
agent and the environment, aiming to solve the mapping re-
lationship between the driver’s behavioural characteristics and
the driving environment, which is essentially the agent’s be-
havioural strategy. We assume that the reward function for the
vehicle expressway lane change behaviour is linear and is a
weighted sum of the selected features. So that the reward func-
tion 𝑟 (𝑠𝑡 ) for the 𝑠𝑡 state can be set as:

𝑟 (𝑠𝑡 ) = 𝝀𝑇 f (𝑠𝑡 ) , (1)

where 𝝀𝑇 = [𝜆1, 𝜆2, 𝜆3, . . . , 𝜆𝐾 ] is a 𝑘-dimensional weight vec-
tor, f(𝑠𝑡 ) = [ 𝑓1 (𝑠𝑡 ), 𝑓2 (𝑠𝑡 ), . . . , 𝑓𝐾 (𝑠𝑡 )]𝑇 are the feature vectors
extracted in the state 𝑠𝑡 . The selection of feature vectors is based
on the definition of the internal reward function for driving be-
haviours. Therefore, the reward function of the trajectory is:

𝑅(𝜏) =
∑︁
𝑡

𝑟 (𝑠𝑡 ) = 𝝀𝑇
∑︁
𝑠𝑡 ∈𝜏

f (𝑠𝑡 ) , (2)

where f𝜏 denotes the accumulative characteristics of trajec-
tory 𝜏. The feature information is specified in Section 4. The
natural dataset D = {𝜏1, 𝜏2, . . . , 𝜏𝑁 } contains information about
𝑁 trajectories. The problem of solving the maximum entropy
model is equivalent to solving the optimization problems. The
optimization problem is formulated as follows:

max
𝑝

∑︁
𝜏∈D

−𝑃(𝜏 |𝝀) log𝑃(𝜏 |𝝀),

subject to :


∑︁
𝜏

𝑃(𝜏 |𝝀)f𝜏 = f̃,∑︁
𝜏

𝑃(𝜏 |𝝀) = 1,
(3)
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where 𝑃(𝜏 |𝝀) represents the state 𝜏 = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑇 } proba-
bility of a trajectory under the parameter 𝝀. f𝜏 =

∑
𝜏 f (𝑠𝑡 ) rep-

resents the feature expectation of this trajectory f̃ represents the
characteristic expectation of the expert trajectory. Thus, the op-
timization problem of equation (3) can be transformed into the
following expression:

min
𝑝

∑︁
𝜏∈D

𝑃(𝜏 |𝝀) log𝑃(𝜏 |𝝀). (4)

The solution of the optimization problem is the solution of
the maximum entropy inverse reinforcement learning model and
also the solution of the reward function sought. We define a
Lagrange function 𝐿 (𝑃, 𝝁):

𝐿 (𝑃, 𝝁) =
∑︁
𝜏∈D

𝑃(𝜏 |𝝀) log𝑃(𝜏 |𝝀) + 𝜇0

(
1−

∑︁
𝜏

𝑃(𝜏 |𝝀)
)

+
𝑛∑︁
𝑖=1

𝜇𝑖

(
𝑓𝑖 −

∑︁
𝜏

𝑃(𝜏 |𝝀) 𝑓𝜏,𝑖

)
, (5)

where 𝜇0, 𝜇1, 𝜇2, . . . , 𝜇𝑛 is the Lagrange operator, and 𝑛 denotes
the number of features in the feature vector 𝑓 (𝜏). The original
optimization problem of equation (4) is expressed as:

min
𝑝

max
𝝁

𝐿 (𝑃, 𝝁) . (6)

Its dyadic expression is:

max
𝝁

min
𝑝

𝐿 (𝑃, 𝝁) . (7)

The Lagrange function 𝐿 (𝑃, 𝝁) is a convex function that can
be used to solve the dual problem

Ψ(𝝁) = min
𝑝

𝐿 (𝑃, 𝝁) = 𝐿
(
𝑃𝝁 , 𝝁

)
, (8)

𝑃𝝁 = argmin
𝑝

𝐿 (𝑃, 𝝁) = 𝑃𝝁 (𝜏). (9)

Combined with the formula
∑
𝜏 𝑃(𝜏 |𝝀) = 1, the partial deriva-

tive of the Lagrange function 𝐿 (𝑃, 𝝁) with respect to 𝑃(𝜏 |𝝀):

𝜕𝐿 (𝑃, 𝝁)
𝜕𝑃(𝜏 |𝝀) =

∑︁
𝜏∈D

(log𝑃(𝜏 |𝝀) +1)

−
∑︁
𝜏

𝜇0 −
𝑁∑︁
𝑖=1

𝜇𝑖

∑︁
𝜏

𝑓𝜏,𝑖

=
∑︁
𝜏∈D

(
log𝑃

(
𝜏
��𝝀) +1− 𝜇0 − 𝜇𝑖

∑︁
𝜏

𝑓𝜏,𝑖

)
, (10)

𝑃
(
𝜏
��𝝀) = exp (𝜇0 −1) · exp

(∑︁
𝜏

𝝁𝑖 𝑓𝜏,𝑖

)
, (11)

𝑍𝝁 (𝜏) =
∑︁
𝜏

exp

(
𝑛∑︁
𝑖=1

𝜇𝑖 𝑓𝜏,𝑖

)
≈

𝑁∑︁
𝑖=1

exp
(
𝝁𝑇 𝑓𝜏𝑖

)
, (12)

𝑃
(
𝜏
��𝝀) = 1

𝑍𝝁 (𝜏)
exp

(
𝑁∑︁
𝑖=1

𝝁𝑖 𝑓𝜏,𝑖

)
, (13)

𝑃
(
𝜏
��𝝀) = 1

𝑁∑︁
𝑖=1

exp
(
𝝀𝑇 𝑓𝜏𝑖

) exp
(
𝝀𝑇 𝑓 (𝑠𝑡 )

)
, (14)

where 𝑃
(
𝜏
��𝝀) denotes the probability of trajectory 𝜏 under pa-

rameter 𝝀, 𝑍𝝁 (𝜏) denotes normalization factor, 𝑓
𝜆
𝑖 denotes the

eigenvectors of the trajectory, and 𝑁 denotes the number of gen-
erated trajectories. Note that the partition function is easy to
solve when the space in which it is located is low-dimensional
and predictable. However, the state space in which it is located
is high-dimensional and dynamic, making solving the partition
function very complicated.

The solution problem of maximum entropy inverse reinforce-
ment learning is equivalent to the constrained optimization prob-
lem. The maximum entropy model is subjected to great likeli-
hood estimation:

max
𝝁

Ψ(𝝁) = max
𝝁

∑︁
𝜏∈D

log𝑃(𝜏 |𝝀). (15)

Combine equations (14) and (15) to obtain the objective func-
tion:

L (𝝀) =
∑︁
𝜏∈D

[
𝝀𝑇 𝑓𝜏 − log

𝑁∑︁
𝑖=1

exp
(
𝝀𝑇 𝑓𝜏 𝑖

)]
. (16)

We optimize equation (16) via the gradient approach

∇𝝀L (𝝀) =
∑︁
𝜏∈D

[
𝑓𝜏 −

𝑀∑︁
𝑖=1

exp(𝜆𝑇 𝑓𝜏𝑖 )∑𝑀
𝑖=1 exp(𝜆𝑇 𝑓𝜏𝑖 )

𝑓𝜏𝑖

]
, (17)

∇𝝀L (𝝀) =
∑︁
𝜏∈D

[
𝑓𝜏 −

𝑀∑︁
𝑖=1

𝑃

(
𝜏𝑖

��𝝀) 𝑓𝜏𝑖 ] , (18)

where 𝑓𝜏 is the trajectory feature vector of the human driver’s
driving, and 𝜏𝑖 is the trajectory generated based on the initial
conditions of the trajectory 𝜏. In the gradient update, we add
L2 regularization on the weights into the objective function. L1
regularization is suitable for sparse coding and feature selection.
However, L2 regularization reduces the model parameter com-
plexity and slows down overfitting. Then, the objective function
and gradient are:

L (𝝀) =
∑︁
𝜏∈D

[
𝝀𝑇 𝑓𝜏 − log

𝑀∑︁
𝑖=1

exp(𝝀𝑇 𝑓𝜏𝑖 )
]
−𝛾𝝀2, (19)

∇𝝀L (𝝀) =
∑︁
𝜏∈D

[
𝑓𝜏 −

𝑀∑︁
𝑖=1

𝑃

(
𝜏𝑖

��𝝀) 𝑓𝜏𝑖

]
−2𝛾𝝀, (20)

where 𝛾 is the regularization parameter and 𝛾 > 0 objective func-
tion gradient is expressed as the sum of the expected eigenvalue
difference and the regularization gradient.
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4. INTERACTIVE HUMAN-LIKE DECISION-MAKING

The human driver’s lane-changing behaviour is a decision the
driver makes after considering the host vehicle state (includ-
ing speed, acceleration, heading angle, etc.), the state of the
surrounding vehicles, and the predicted trajectory information.
This process is recognized as the interaction process between
the host vehicle and the environment. The decision-making pro-
cess made by the vehicles during the interaction is equivalent
to the optimal solution process of the game model between the
vehicles.

We choose the Stackelberg game method to model the dy-
namic game between the interacting parties in the noncoop-
erative game method. In this paper, according to the vehicle
location information and driving environment, we designate the
vehicle identity as either a leader or a follower in the game. The
game process is dynamic, and the decision-making process of
each vehicle adjusts according to the changes in revenue. The
Nash equilibrium is eventually reached through the iterative pro-
cess, forming the optimal strategy that minimizes the cost (or
maximizes the benefit) for multiple participants.

Figure 3 shows a simple driving environment we set up for
lane-changing behaviour. A low-speed vehicle is assumed to
exist in front of the host vehicle, which needs to decide whether
to change lanes or not. Usually, we consider the host vehicle as
car 1, and the obstacle vehicle as car 2. Table 1 lists the example
gains for all scenarios during the game between the host vehicle
and the obstacle vehicle, with a specific number of costs. The
host vehicle chooses the optimal strategy by predicting the action
of the obstacle vehicle. The host vehicle is the leader in the
Stackelberg game and can choose to make the left lane change
or stay in lane. The obstacle car is the follower and responds
to the leader. The driving strategies of both vehicles must be
rational and based on the principle of cost minimization. For
example, when the host vehicle chooses to stay in the lane, the
obstacle vehicle chooses to accelerate in response. Similarly,
when the host vehicle chooses to change lanes, the obstacle
vehicle chooses to yield. In this example, the optimal strategy
of the game is for the host vehicle to change lanes, and for the

Fig. 3. Lane change scenario

Table 1
Cost magnitude of different interaction behaviours

Action cost
Obstacle vehicle

Accelerate Yield

Host vehicle
Change lane 5.1 3.2

Stay 6.2 4.3

obstacle vehicle to yield, which is the result of the predictions
made by the main vehicle about the behaviours of the obstacle
vehicle.

4.1. Cost function design

The feasibility evaluation of the host vehicle lane change be-
haviour is quantified through a cost function, typically encom-
passing driving factors such as safety, traffic efficiency, ride
comfort, and spatial benefits of lane-changing. The dynamic
decision-making process of lane-changing can be seen as a dy-
namic game among participants with varying driving strategies.
This study considers a combined cost function incorporating
driving safety, ride comfort, and human likeness in driving be-
haviour for Nash equilibrium determination.

The safety cost function of vehicle travel during lane-
changing behaviour is manifested in both lateral and longitu-
dinal directions. When the vehicle opts to keep the lane, the cost
function primarily concerns the longitudinal cost. The formula
for the safety cost function is:

𝑈saf = 𝛼𝑈lat +𝑈log . (21)

𝑈log and𝑈lat in the above equation denote the longitudinal and
lateral safety cost functions, respectively. 𝛼 denotes the driving
decision-making behaviour of the host vehicle, 𝛼 ∈ {1, 0} :=
{change lane, keep lane}.

The safety cost function in the transverse direction is defined
utilizing the split-axis theorem. Vehicles are presumed to be
rectangles of specific length and width, and the lateral safety
cost function between vehicles is evaluated based on the overlap
between these two rectangles. The positions of the rectangles
representing the two vehicles are illustrated in Fig. 4. The prob-
ability of collision is computed as:

𝑈lat = exp
©­­«−

√︄
𝐷2

col,𝑣 +𝐷
2
col,𝑢

2
ª®®¬ , (22)

𝐷col,𝑣 =
√︃
𝐷2

proj(𝑣,1) +𝐷
2
proj(𝑣,2) , (23)

𝐷col,𝑢 =
√︃
𝐷2

proj(𝑢,1) +𝐷
2
proj(𝑢,2) , (24)

𝐷proj(𝑣,𝑖) =


min

(����𝑣𝑖 · 𝑣𝑣𝑖

����) if ∀𝑣𝑖 · 𝑣|𝑣𝑖 |
< 0,

min
(����𝑣𝑖 · 𝑣𝑣𝑖

����− |𝑣𝑖 |
)

if ∀𝑣𝑖 · 𝑣|𝑣𝑖 |
> |𝑣𝑖 |,

0 otherwise,

(25)

where 𝐷proj (𝑣, 𝑖) denotes the gaps along the separating axis, 𝑣𝑖
represents a vector defining the rectangle and 𝑣 represents the
vector to the opposite corner. Similarly, 𝐷proj (𝑢, 𝑖) is calculated
in the same way. 𝑈lat in the above equation represents the index
value of the collision with 𝑈lat ∈ [0,1]. A larger separation axle
clearance of the vehicle corresponds to a 𝑈lat value close to 0,
indicating greater safety.

We define the longitudinal safety cost function based on in-
formation such as the relative speed of interacting vehicles and
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Fig. 4. Vehicle position diagram

the longitudinal gap:

𝑈log = 𝑘𝑣saf𝜆𝑣 (Δ𝑣𝑥)
2 +

𝑘 𝑥saf[
(Δ𝑋𝑥)2 + 𝜖

] , (26)

Δ𝑣𝑥 = 𝑣 𝑓 ,𝑥 − 𝑣𝑟 ,𝑥 , (27)
Δ𝑋𝑥 = 𝑋 𝑓 − 𝑋𝑟 − 𝐿 𝑓 , (28)

𝜆𝑣 =

{
0 𝑣 𝑓 ,𝑥 ≥ 𝑣𝑟 ,𝑥 ,

1 𝑣 𝑓 ,𝑥 < 𝑣𝑟 ,𝑥 ,
(29)

where 𝑣 𝑓 ,𝑥 and 𝑣𝑟 ,𝑥 denote the longitudinal velocities of the
front and rear vehicles, 𝑋 𝑓 and 𝑋𝑟 denote the longitudinal po-
sitions of the front and rear vehicles, respectively. 𝑘𝑣saf and 𝑘 𝑥saf
are the correlation weight coefficients of speed and distance. 𝜖
is a very small value to avoid the case where the denominator is
zero, and 𝐿 𝑓 is the length of the front vehicle. The longitudinal
positional relationship of the vehicle is shown in Fig. 5.

Fig. 5. Vehicle longitudinal position relationship

The ride comfort is related to lateral and longitudinal accel-
eration, and the cost function expression for comfort is:

𝑈com = 𝑘𝑥,com (𝑎𝑥)2 + 𝑘𝑦,com (𝑎𝑦)2, (30)

where 𝑘𝑥,com and 𝑘𝑦,com are the weight coefficients of transverse
and longitudinal acceleration, 𝑎𝑥 and 𝑎𝑦 are the magnitude of
transverse and longitudinal acceleration.

Referring to the trajectory reward function in equation (2),
we define the human-like cost function as:

𝑈hum = 𝝀𝑇
∑︁
𝑠𝑡 ∈𝜏

f (𝑠𝑡 ) , (31)

f (𝑠𝑡 ) =
[
𝑓𝑣 , 𝑓𝑎𝑥 , 𝑓𝑎𝑦 , 𝑓 𝑗 𝑥 , 𝑓𝑇𝐻𝑊𝐹 , 𝑓𝑇𝐻𝑊𝐵, 𝑓collision

]𝑇
. (32)

The selection of the trajectory features is based on the human
driving state. The selection and definition of features is presented
in Section 5.1.

In summary, the cost function of the host vehicle is a linear
combination of integrated driving safety and human-like prop-
erties, expressed as:

𝑈1 = 𝑤saf𝑈saf +𝑤com𝑈com +𝑤eff𝑈eff +𝑤hum𝑈hum , (33)
𝑈2 = 𝑤saf𝑈saf +𝑤com𝑈com +𝑤eff𝑈eff , (34)

where𝑤saf ,𝑤com,𝑤eff ,𝑤hum represent the weighting coefficients
of the safety, comfort, effective, and human-like cost functions,
respectively.𝑈1 represents the integrated decision cost function
containing the human-like cost function. And 𝑈2 is the cost
function considering without human-like cost function.

4.2. Noncooperative decision-making based on
Stackelberg equilibrium

In the Stackelberg game, vehicles adhere to the principle of
cost minimization when making lane change decisions. The
followers respond to the leader’s actions based on their cost
functions and the influence of the leader’s behaviour. Therefore,
the Stackelberg game problem is transformed into a two-layer
optimization problem. The decision made by the leader affects
the behaviour of the follower, but the leader cannot intervene
in the follower’s behavioural decision. Similarly, the follower’s
choice of strategy cannot alter the leader’s decision.

A common lane-change scenario involves an interaction game
between two participants, with the vehicle lane-change interac-
tion game illustrated in Fig. 3. The optimization problem for the
two-vehicle game is formulated as:

𝛾1∗ =
(
𝑎∗1, 𝑐

∗
1
)
= argmax

(
min

(𝑎ℎ𝑣
𝑥2 ,𝑐2 ) ∈𝛾2

𝑈1 (𝑎1, 𝑐𝑙 , 𝑎2)
)
, (35)

𝛾2 (𝑎1, 𝑐1) ≜
{
𝜉 ∈ Γ2 :

𝑈2 (𝑎1, 𝑐𝑙 , 𝜉) ≥ 𝑈2 (𝑎1, 𝑐𝑙 , 𝑎2), ∀𝑎2, 𝑐2 ∈ Γ2}, (36)

subject to:

0 ≤ 𝑉𝑥,𝑖 ≤ 𝑉𝑥,max, 𝑖 = 1,2, (37)
𝑎min ≤ 𝑎𝑥,𝑖 ≤ 𝑎max, 𝑖 = 1,2, (38)

where 𝑎1 denotes the possible acceleration, 𝑎∗1 denotes the opti-
mal acceleration of the host vehicle, 𝑐𝑙 shows if car 1 is changing
lanes, 𝑐∗

𝑙
shows if changing lanes is beneficial for car 1. 𝛾𝑖 , 𝑖 = 1,2

denotes the behavioural decision of the vehicle, 𝑈𝑖 , 𝑖 = 1,2 de-
notes the total cost function of the vehicle, 𝛾2 (𝑎1, 𝑐𝑙) denotes
the optimal decision of car 2 under the influence of car 1, and
Γ𝑖 , 𝑖 = 1,2 is the set of possible actions of the vehicle.

5. TESTING RESULTS AND PERFORMANCE EVALUATION

This section focuses on verifying the feasibility and effectiveness
of the human-like driving decision-making algorithm. We first
perform data preprocessing. Next, we use the dataset to validate
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the effectiveness of the maximum entropy inverse reinforcement
learning algorithm. Finally, we test and evaluate the human-
like driving decision-making algorithm in a typical interaction
scenario.

5.1. Data preparation and processing

The NGSIM dataset is a publicly available dataset developed and
released by the National Highway Traffic Safety Administration
(NHTSA) of the US Department of Transportation for the study
of road traffic flow and driving behaviour. The dataset provides
researchers with real road traffic information that can be used to
simulate and analyze issues related to driving behaviour, traffic
flow, and road safety, which is one of the indispensable funda-
mentals for the study of human-like driving decision-making
algorithms.

In this paper, we use the NGSIM dataset to process and ana-
lyze the U.S. Highway 101. The structure and area recorded in
the US-101 dataset are schematically shown in Fig. 6. The high-
way section recorded by the dataset is about 2100 feet (about
640 m) and contains five lanes (lanes 1 to 5), with lane 6 con-
necting lanes 7 and 8 at both ends, which are the merge-in
and merge-out lanes, respectively. The camera used for data ac-
quisition records the traffic state of vehicles travelling in the
form of snapshots according to a sampling period of 100 ms
(10 Hz). The dataset records information, including global and
local position information, speed, and type of vehicles. This
paper focuses on the human-like decision-making problem in
the vehicle lane change scenario. Thus, the driving behaviour
of vehicles on ramps is not considered. We randomly selected
three hundred vehicle trajectories from the five main lanes as a
secondary sampling dataset to serve as reward function learning
samples for human-like driving.

(a)

(b)

Fig. 6. Dataset preparation: (a) US-101 dataset; (b) road structure
schematic

Human driving trajectories are influenced by the driver’s con-
scious control and the surrounding environment. For example,
during driving, the driver’s intent to accelerate and the level of
safety threat from surrounding vehicles affect the magnitude of
vehicle acceleration. Therefore, the selection of trajectory char-
acteristic variables will be considered in terms of efficiency,
safety, and comfort of the vehicle. Specifically, we chose speed 𝑣

to represent vehicle travelling efficiency, lateral acceleration 𝑎𝑥 ,
longitudinal acceleration 𝑎𝑦 and longitudinal jerk 𝑗𝑥 to repre-
sent comfort. Safety indicator was represented by the headways
(THWB and THWF) and collision.

𝑓𝑣 (𝑠𝑡 ) = 𝑣(𝑡), (39)
𝑓𝑎𝑥 (𝑠𝑡 ) = |𝑎𝑥 (𝑡) | , (40)
𝑓𝑎𝑦 (𝑠𝑡 ) =

��𝑎𝑦 (𝑡)�� , (41)
𝑓 𝑗 𝑥 (𝑠𝑡 ) =

�� 𝑗 𝑒𝑟𝑘 𝑥 (𝑡)�� = | ¤𝑎𝑥 (𝑡) | , (42)

𝑓𝑇𝐻𝑊𝐹 (𝑠𝑡 ) =
𝑋 𝑓 (𝑡) − 𝑋host (𝑡)

𝑣host (𝑡)
, (43)

𝑓𝑇𝐻𝑊𝐵 (𝑠𝑡 ) =
𝑋host (𝑡) − 𝑋𝑟 (𝑡)

𝑣𝑟 (𝑡)
, (44)

𝑓collision (𝑠𝑡 ) =
{

1 if collision,
0 otherwise,

(45)

where 𝑥 𝑓 (𝑡) is the longitudinal position of the nearest front
vehicle, 𝑋host (𝑡) and 𝑣host (𝑡) are the position and speed of the
host vehicle, and 𝑋𝑟 (𝑡) and 𝑣𝑟 (𝑡) are the longitudinal position
and speed of the nearest rear vehicle, respectively. 𝑓𝑇𝐻𝑊𝐹 and
𝑓𝑇𝐻𝑊𝐵 represent the time headway between the host vehicle
and the front and rear vehicles, respectively.

Note that the transverse and longitudinal driving models of
surrounding vehicles use MOBIL (minimize overall braking
induced by lane change) and IDM (intelligent driving model) to
predict their future behaviours.

5.2. IRL model analysis

In the process of vehicle lane-changing, we focus on lateral
position change and longitudinal speed change to simplify the
algorithm. Therefore, the vehicle decision sampling space is
denoted as Φ = {𝑣𝑥𝑜, 𝑦𝑜}, and the transverse information col-
lection only records its lane change information. The sample
of the lateral lane change is {𝑦𝐿 , 𝑦, 𝑦𝑅}, where 𝑦 represents the
initial lateral position, 𝑦𝐿 and 𝑦𝑅 are the position of the left
lane and right lane, respectively. The simulated trajectories of
the vehicle are generated using polynomial curves, where the
trajectory horizons are 5 s. The driving model IDM parameters
of the surrounding vehicles are set as follows: desired velocity
𝑣 = 𝑣current m/s, maximum acceleration 𝑎max = 5 m/s2, and com-
fortable acceleration 𝑎com = 3 m/s2, minimum desired spacing
𝑠0 = 1 m.

The initial values of the parameter vectors of the IRL algo-
rithm are randomly sampled using a normal distribution with a
mean of 0 and a standard deviation of 0.5. The performance of
traditional deep learning optimization algorithms, such as gra-
dient descent and stochastic gradient descent, is often limited
by fixed learning rates and parameter update strategies. The pa-
rameter optimization in this study uses an adaptive learning rate
optimization algorithm, in which the optimization algorithm pa-
rameters are: the regularization parameter 𝛾 = 0.01, the learning
rate 𝛼 = 0.05, the exponential decay rate of the first and second
order 𝛽1 = 0.9, 𝛽2 = 0.99.

The raw data of the driving trajectory of a vehicle is divided
into multiple short trajectories with horizons of 5 seconds for
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learning. Thirty-five trajectory data will be randomly selected
from the short trajectories to train the parameters of the reward
function. In contrast, the remaining trajectory data will be used
as the test data. During the training process, the difference be-
tween the feature expectations of the human driving trajectory
and the simulated trajectory is used to establish the gradient for
the iterative updating of the cost function parameters. The final
displacement error (FDE) and the average displacement error
(ADE) between the human driving trajectory and the simulated
trajectories are used as the human-likeness evaluation indexes.
The training process is illustrated in Fig. 7.

(a) (b)

Fig. 7. Training process: (a) plot of trajectory feature expectation
difference; (b) plot of human-likeness

Figure 7a plots the trajectory feature expectation difference
curves between the IRL model and the real trajectory during
the iteration process. The human-like driving strategy obtained
by the IRL model could be close to the real trajectory data and
the differences between them converge to 0. Figure 7b plots
the human-likeness of trajectories curve, where the parameters
of the learned reward function are gradually adjusted as the
training period increases, allowing the IRL model to better fit
human driver behaviour. Figure 7 indicates that the IRL algo-
rithm is learning human-like strategies that increasingly resem-
ble human-driving strategies with more iterations. The experi-
mental results demonstrate the feasibility of the IRL algorithm
in enabling the learning of human-like decisions.

5.3. Human-like driving decision-making algorithms

In this paper, we designed two simple expressway lane-change
scenarios to analyze and evaluate the effectiveness and human-
like nature of the lane-change behaviour of this algorithm. Sce-
nario 1 is a two-lane highway with a lane width of 4 meters.
Scenario 2 is a merger scenario. The initial positions and initial
speeds of each vehicle are shown in Fig. 8. As shown in Fig. 8a,
the driver of the host vehicle intends to change to the adjacent
lane and interact with the obstacle vehicle when the ahead ve-
hicle moves slowly. Similarly, Scenario 2 is the ramp import
where the host vehicle interacts with the obstacle vehicle on the
main road when it cuts into the adjacent lane. All driving sce-
narios were constructed and tested on the MATLAB-Simulink
platform.

The longest common subsequence (LCSS) judging met-
ric is introduced to quantify the similarity of lane change

(a)

(b)

Fig. 8. Expressway lane change scenario traffic information map:
(a) Scenario 1; (b) Scenario 2

trajectories. Define two trajectories 𝜏1 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} and
𝜏2 = {𝑝′1, 𝑝

′
2, . . . , 𝑝

′
𝑚} between the similarity function SF as well

as for:
𝑆𝐹 (𝜀, 𝜏1, 𝜏2) =

𝐿𝐶𝑆𝑆𝜀 (𝜏1, 𝜏2)
min(𝑛,𝑚) , (46)

where

LCSS𝜀 (𝜏1, 𝜏2)

=



0,
if 𝑛 = 0 or 𝑚 = 0,

1+LCSS (Rest(𝜏1),Rest(𝜏2)) ,
if 𝑑 (Head(𝜏1),Head(𝜏2)) ≤ 𝜀,

max
(
LCSS𝜀

(
𝜏1,Head(𝜏2)

)
,LCSS𝜀

(
Head(𝜏1), 𝜏2

))
,

otherwise,

(47)

where (Head(𝜏1), Head(𝜏2)) =
√︁
(𝑥𝑛 − 𝑥𝑚)2 + (𝑦𝑛 − 𝑦𝑚)2 rep-

resents the distance between two points 𝑝𝑛 = (𝑥𝑛, 𝑦𝑛) and
𝑝𝑚 = (𝑥𝑚, 𝑦𝑚) on the trajectory. 𝜀 represents the matching sim-
ilarity threshold. The output result interval of the similarity
function SF is [0, 1], which represents the trajectories that have
no similarity at all and are identical, respectively.

In this study, we selected 10 volunteers with driver’s licenses
and driving experience to conduct lane change driving experi-
ments in Scenario 1 and Scenario 2. Each volunteer performed
10 repetitions of lane-changing behaviour and formed a com-
prehensive lane-changing trajectory curve used to reflect the
lane-changing driving behaviour of each volunteer, as shown in
Fig. 9.

The results of the lane-changing experiments in the two sce-
narios are shown in Fig. 10, where the synthetic trajectories of
10 volunteers are represented by dashed lines of 10 different
colours, as shown in Fig. 10. We record each trajectory location
information and calculate similar functions separately.

In real traffic driving environments, the social behaviour of
the obstacle vehicle affects the decision-making and planning
of the host vehicle. Therefore, this study simulates the obsta-
cle vehicle interaction in a real traffic environment by defining
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Fig. 9. Synthetic trajectory

(a) (b)

Fig. 10. Track diagram of lane change driving experiment:
(a) Scenario 1; (b) Scenario 2

different driving styles for the obstacle vehicle. In obstacle ve-
hicle modelling, different driving styles are expressed by setting
different parameter weights: 𝑤saf , 𝑤eff , 𝑤com. The details of the
three driving styles are shown in Table 2.

Table 2
Weighting coefficients of the cost function for different driving styles

Weighting
coefficients

Driving style

Aggressive Normal Cautions

𝑤saf 20% 50% 75%

𝑤eff 70% 25% 10%

𝑤com 10% 25% 15%

To verify the driving ability of the human-like driving
decision-making algorithm in expressway lane change scenar-
ios under the influence of social vehicles with different driving
styles, we use 𝑈1 and 𝑈2 from equations (33) and (34), re-
spectively, for the lane-changing decision-making in expressway
scenarios. Table 3 shows the human-like experimental results.

Faced with three driving styles in lane-changing experiments,
10 volunteers performed consecutive lane-changing driving ex-
periments. The experimental results show that different driving
styles of the obstacle vehicle led to different interaction out-
comes for the main vehicle, resulting in various lane-changing
behaviours. According to the lane-changing trajectories of the
main vehicle under the influence of the three driving styles, it
can be seen that the lane-changing trajectories account for risk
aversion. The aggressive driving style prioritizes efficiency and
reduces the comfort and safety weighting in the cost function.
In contrast, obstacle vehicles with conservative driving styles

Table 3
Results of simulation

Driving
style

Cost
function

SF (Scenario 1) SF (Scenario 2)

Range Average Range Average

Aggressive
𝑈1 0.65 ∼ 0.70 0.68 0.62 ∼ 0.70 0.65
𝑈2 0.62 ∼ 0.68 0.65 0.61 ∼ 0.66 0.63

Normal
𝑈1 0.69 ∼ 0.78 0.73 0.65 ∼ 0.74 0.69
𝑈2 0.65 ∼ 0.71 0.69 0.62 ∼ 0.68 0.64

Conservative
𝑈1 0.65 ∼ 0.72 0.71 0.63 ∼ 0.73 0.68
𝑈2 0.61 ∼ 0.69 0.65 0.60 ∼ 0.68 0.62

focus more on safety and driving comfort, leading to interac-
tion lane-change results where the primary vehicle has faster
lane-change acceleration. The interaction results of the obstacle
vehicle with a normal driving style fall between the aggressive
and conservative types.

As shown in the experimental results, the host vehicle can
make safe and efficient lane-changing decisions under the influ-
ence of the different social behaviours of surrounding vehicles.
Moreover, the game algorithm, which includes the human-like
driving decision cost function, can realize human-like trajecto-
ries in lane-changing decisions.

6. CONCLUSIONS

In this paper, we set out to find a driving decision algorithm that
is more human-like and applicable to highly dynamic, multi-
participant interaction highway lane-changing scenarios. The
method is validated and analyzed for effectiveness through sim-
ulation. We use the inverse reinforcement learning algorithm
to construct the cost function for human-like decision-making
and combine the safety, comfort, and other basic cost functions
to form a comprehensive decision in a lane change decision
game. The Stackelberg game approach is employed to address
the noncooperative decision-making challenges posed by vary-
ing driving styles in social vehicle interactions. The algorithm
demonstrates strong effectiveness and robustness in handling
different interaction vehicle styles.
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