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Abstract. Unmanned  aerial  vehicles  (UAVs)  require  precise  system  identification  for  optimal  performance  and  safety,  yet 
sensor  noise  and  signal  distortion  frequently  compromise  data  quality.  Recent  studies  have  explored  various  approaches  to 
mitigate these issues; however, this study introduces a novel method that utilizes wavelet transform techniques, distinctively 
enhancing UAV sensor signal processing. Unlike conventional methods that primarily focus on noise reduction, this approach 
employs  multi-resolution  wavelet  decomposition  to  denoise  and  align  signals  effectively,  crucial  for  accurate  system 
identification. This systematic exploration of various wavelet bases and the application of the Output Error Method for correlating 
signals provide a unique combination not extensively covered in current literature. The technique was validated using simulated 
sensor data at 50 Hz from a small UAV platform, the Multiplex® Fun Cub, specifically targeting longitudinal dynamics response. 
Results  demonstrated  substantial  improvements  in  signal  quality,  with  significantly  enhanced  correlation  coefficients, 
showcasing  the  potential  of  our  wavelet  techniques  to  refine  UAV  system  analysis.  This  paper  presents  a  comprehensive 
framework  for  applying  wavelet-based  techniques  in  UAV  system  identification,  significantly  advancing  the  robustness  and 
reliability  of  identification  processes  and  distinguishing  our  work  from  existing  methods  by  its  integration  of  wavelet 
decomposition and advanced system identification techniques.
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1. INTRODUCTION 

System identification for unmanned aerial vehicles (UAVs) 
critically relies on the accurate and reliable acquisition of data 
from well-calibrated sensors [1]. However, sensor fidelity often 
diminishes in low-speed, low-cost fixed-wing UAVs, 
introducing substantial noise and inaccuracies into flight test 
data [2]. Such distortions can severely impair the effectiveness 
of system identification processes essential for validating 
aerodynamic models, optimizing controllers, and enhancing 
flight safety and efficiency [3], [4], [5]. 
Recent advancements in signal processing have spotlighted 
wavelet transforms as a potent tool for refining system 
identification by adeptly managing signals corrupted by noise 
[6], [7]. This technique allows for the decomposition of a signal 
into its constituent frequency components, facilitating the 
isolation and rectification of distortions typical in data from 
low-quality sensors [6]. Although wavelet transforms have 
been employed across various aerospace applications, their 
integration into UAV system identification remains 
underexplored, particularly in the context of dynamic and 
uncertain environmental conditions [1], [8], [9]. 
This study introduces a novel methodology that leverages 
wavelet decomposition combined with correlation coefficients 
to enhance signal integrity from UAV sensors [1], [10], [11], 

[12], [13]. Unlike existing methods, which often do not address 
the compounded challenges of noise and computational 
limitations in UAV applications [14], [15], [16], this approach 
utilizes aerodynamic derivatives from simulations as a priori 
values to significantly refine the accuracy of system 
identification [17], [18], [19], [20]. This paper delineates how 
this method not only mitigates the impact of sensor noise but 
also aligns with contemporary computational techniques to 
improve predictions of UAV behavior and the reliability of 
derived control systems.  
Distinctly, this research extends the current understanding by 
demonstrating how a dual-domain approach—employing both 
time and frequency characteristics of wavelet-transformed 
signals—can robustly enhance model accuracy and resilience 
against noise. These findings are substantiated by improved 
correlation coefficients post-alignment, showcasing the 
method's capability to offer precise and reliable system 
identification under real-world operational conditions. This 
advancement marks a significant step forward in the application 
of wavelet techniques in aerospace, particularly in optimizing 
system identification processes for UAVs subjected to low-
quality sensor data [11], [21], [22], [23]. 
The structure of this paper is as follows: Section 1 introduces 
the necessity of precise system identification and how wavelet 
decomposition aids in mitigating sensor noise. Section 2 delves 
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into the dynamic modeling of UAVs, detailing the development 
and significance of the longitudinal dynamic model using the 
Multiplex FunCub® R/C airplane. Noise implementation and 
its effect on sensor data quality is explored in Section 3. The 
subsequent sections, 4 and 5, discuss wavelet analysis and the 
application of the Output Error Method for system 
identification under different noise conditions. Section 6 
presents a detailed correlation analysis, comparing the 
effectiveness of wavelet-based signal reconstruction in 
enhancing the accuracy of system identification from noisy and 
noise-free UAV sensor data. Finally, the paper concludes by 
summarizing the findings and implications for future research 
in Section 7, providing a pathway for ongoing advancements in 
UAV system analysis. 

2. Unmanned Aircraft Vehicle Dynamic Model 

The precision of unmanned aerial vehicle (UAV) operations 
centers on the reliability and accuracy of its system 
identification, which is deeply influenced by the fidelity of its 
dynamic modeling [24]. This study developed a dynamic 
model focusing particularly on its longitudinal dynamics [19]. 
This model is the base for subsequent analyses involving 
wavelet-based signal processing and system identification 
techniques under various noise conditions.  
The model parameters influencing longitudinal flight 
dynamics are listed in Table 1. Initial conditions for the 
simulation, including airspeed, angle of attack, pitch angle, 
and pitch rate, were set based on typical flight conditions 
obtained in flight tests. Then, aerodynamic forces and 
moments acting on the aircraft were computed at each step of 
the integration process, based on the current states [18]. These 
computations feed into the state equations and variables 
shown in section 2.2. The output from the solver provided 
detailed time histories of these states, which were crucial for 
the subsequent noise addition simulating real-world low-cost 
sensors. 

2.1. Multiplex FunCub R/C Airplane Longitudinal 
Dynamic Model 

The Multiplex FunCub® R/C airplane [25] was chosen for this 
study due to its versatility and adaptability in carrying various 
sensors and payloads, ideal for experimental UAV system 
identification, as shown in Fig. 1 [26]. As a low-speed, 
lightweight model, it accurately represents typical UAVs used 
in research and practical applications, allowing for detailed 
analysis and testing of wavelet transform techniques under 
controlled yet realistic conditions. This platform enables the 
simulation of noise effects on sensor data, which is crucial for 
developing and validating advanced signal processing methods.  

TABLE 1. Aircraft Parameters 

Parameter Symbol Value Unit 

Moment of Inertia around Pitch Axis Iyy 0.09504 kgꞏm² 

Mean Aerodynamic Chord c 0.226 meters 

Aircraft Mass m 1.96 kg 

Wing Area S 0.313 m² 

Cruise Velocity 𝑉଴ 21 m/s 

 
 
 
 
 
 
 
 
 
 

2.2. Longitudinal State Equations 

The longitudinal dynamics is crucial for understanding and 
predicting its behavior under various flight conditions. These 
dynamics can be effectively captured through a set of state 
equations that describe the behavior of state variables as the 
aircraft’s velocity 𝑉, angle of attack 𝛼, pitch angle 𝜃, and pitch 
rate 𝑞 [18], [19], [24]. These state equations are derived from 
the fundamental principles of flight dynamics and are 
influenced by aerodynamic forces and the aircraft’s control 
inputs, such as elevator deflection and engine thrust [18]. In 
this model, lateral-directional effects are considered 
decoupled, though similar methodologies could be applied to 
model lateral-directional motion [18]. 
The longitudinal motion is governed by the following state 
equations in continuous time, which integrate aerodynamic 
coefficients, control deflections, and external forces as shown 
in Eq. (1- 4). 
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where the drag Eq.(5), lift Eq.(6), and pitching moment 
coefficients Eq.(7) are modeled as: 
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The symbols in Eq. (1-7) represent parameters of aircraft 
longitudinal dynamics. 𝑉ሶ , 𝛼ሶ , 𝑞ሶ , and 𝜃ሶ   denote the rates of 
velocity change, angle of attack, pitch rate, and pitch angle, 
respectively, 𝑞ത  denotes dynamic pressure, while 𝑆, 𝑚, and 𝐼௬ 
are the wing area, aircraft mass, and moment of inertia about 
the pitch axis. Aerodynamic coefficients 𝐶஽,𝐶௅ 𝑎𝑛𝑑 𝐶௠  
depend on velocity 𝑉, angle of attack α, and pitch rate 𝑞, 
modified by respective coefficients that account for 
conditions like baseline velocity 𝑉଴ and elevator deflection 𝛿௘. 
Additional parameters include 𝑔 for gravitational 
acceleration, 𝐹௘ for engine thrust, and 𝜎், 𝑙௧௫, and 𝑙௧௭ for thrust 
line angles and distances relative to the center of gravity. 
These elements collectively model the aircraft's response to 
control inputs and environmental factors. 

 

Fig.1. Multiplex FunCub® Airplane 
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Initial aerodynamic coefficients and parameters were 
determined using XFLR5, an analysis tool for airfoils, wings, 
and planes operating at low Reynolds Numbers [27]. XFLR5 
uses panel methods and vortex lattice models to compute 
coefficients and performance metrics, providing essential 
preliminary insights for aerodynamic modeling [28]. 
The values obtained from XFLR5 were treated as a priori 
estimates, serving as the initial set of parameters for system 
identification [29] . These a priori values are critical as they 
establish a baseline from which the system's behavior can be 
studied. Coefficients are listed in Table 2. 

TABLE 2. Aerodynamic coefficients a priori values from XFLR5 

Coefficient Description Value 

Lift Coefficient at Zero Angle of Attack CL0 0.1518 

Lift Coefficient due to Angle of Attack CL𝛼 4.2305 

Lift Coefficient due to velocity CLv -0.0025 

Drag Coefficient at Zero Angle of Attack CD0 0.0177 

Drag Coefficient due to Angle of Attack CD𝛼 0.1223 

Drag Coefficient due to velocity CDv 0.0136 

Pitching Moment Coefficient at Zero Angle of 

Attack 

Cm0 0.0446 

Pitching Moment Coefficient due to Angle of 

Attack 

Cm𝛼 -1.6173 

Pitching Moment Coefficient due to pitch rate  Cmq -8.0193 

Pitching Moment Coefficient Due to Elevator 

Deflection 

Cme -1.4830 

Pitching Moment Coefficient due to velocity Cmv -0.0092 

2.3. Multistep Input Signal Design 

The design of input signals for dynamic system identification 
must strategically excite all modes of the system to ensure that 
all dynamic behaviors are adequately observed [30]. The 
analysis emphasizes the importance of designing multistep 
elevator input signals for longitudinal aircraft motion [31], [32]. 
It highlights that the optimal frequency range should extend 
both below and above the short-period mode's natural 
frequency due to inherent uncertainties in eigenfrequencies, 
which also vary with flight conditions. Consequently, it is 
crucial to excite frequencies surrounding the eigenfrequency. 
Such signals can be crafted using a series of equidistant pulse 
inputs, forming a signal of arbitrary shape and amplitude levels 
to match the power spectrum requirements [18].  
Therefore, the development of multistep input signals involves 
a sequential approach: initially determining the spectrum of 
frequencies essential for precise parameter estimation, followed 
by the crafting of appropriately structured multistep inputs to 
span these identified frequencies [33], [34]. 
The assessment of the necessary frequency range for precise 
parameter estimation involves synthesizing the contributions of 
each parameter featured in the force and moment equations. 
This process is facilitated by using Bode diagrams, which assist 
in identifying the required frequencies in the input signal for the 
accurate extraction of specific aerodynamic derivatives. The 
methodology, initially developed by Marchand [35], is 
demonstrated using a linearized model for longitudinal motion, 
which explores the identifiability of aircraft derivatives from 

flight tests or simulations as data shown in Table 2 from XFLR5 
software. Thus, for each expression presented in Eq. (8), the 
magnitudes of the frequency responses from the terms are 
graphically represented as a function of the frequency of the 
input signal.  
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The frequency range to identify aerodynamic coefficients is 
between 0.1 rad/s to 10 rad/s for short period and phugoid 
modes. As a rule of thumb, a derivative is considered 
identifiable when its term has a magnitude of at least 10% of 
the largest term’s magnitude [18], for this case, a frequency of 
𝑓௖ ൌ 0.468 𝑟𝑎𝑑/𝑠 is selected. Hence, the time interval Δt for 
the input is selected to position the natural frequency of the 
targeted mode either centrally or within the upper third of the 
input signal’s spectrum [18]. 
Based on these observations, a Multistep 3- 2-1-1 input signal 
is chosen as the most affordable [36]. The estimated Δt for the 
3-2-1-1 input configuration can be determined as follows in 
Eq.(9): 
 

∆𝑡ଷିଶିଵିଵ ൎ
଴.ଷ

௙೎
ൌ 0.641 s  (9) 

 
As a result, the elevator deflection function of 60s time length, 
0.1deg of amplitude, and ∆𝑡 ൌ 0.641 s is selected for the 3-2-
1-1 excitation. Input deflection is designed to excite the 
aircraft's longitudinal dynamics, capturing both the short-period 
and phugoid response across a spectrum of frequencies 
previously described as shown in Fig.2. 
 
 
 
 
 
 
 
 
 
 

3. Noise implementation 

In this section, the implementation of noise to the UAV's 
sensor data is described. To replicate these conditions within 
a controlled environment, noise is artificially introduced to the 
pre-recorded signal data, further incorporating a realistic 
offset to mimic sensor drift. The procedure begins with 
loading the simulation data, which contains multiple channels 
representing different flight parameters, as shown in Table 3. 

TABLE 3. Channel data definition 

No. Symbol Unit Description 

1 T S time 

2 DELV RAD elevator deflection 

 

Fig.2. Multistep 3-2-1-1 elevator deflection signal 
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No. Symbol Unit Description 

3 PDYN PA dynamic pressure 

4 THRUST N thrust 

5 TASCG M/S true airspeed at CG 

6 ALFCG RAD angle of attack at CG 

7 THE RAD pitch attitude 

8 Q RAD/S pitch rate 

9 QDOT RAD/S² pitch acceleration 

10 AXCG M/S² longitudinal acceleration at CG 

11 AZCG M/S² lateral acceleration at CG 

 
Each channel shown in Table 3, except for the time column, 
is then subjected to a calculated noise addition process, where 
Gaussian noise is specifically tailored to achieve a desired 
signal-to-noise ratio (SNR) of 10 dB. This level was chosen 
to simulate a moderate yet significant noise level that 
challenges the robustness of the system identification 
algorithms [37]. To introduce the noise, the standard deviation 
of the noise is derived based on the desired SNR of 10dB and 
the standard deviation of the original signal within each 
channel. Power Spectrum Density (PSD) analysis was also 
employed to further understand the energy distribution of the 
signal across different frequencies, as shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Additionally, a time shift of 0.3 seconds was applied to the 
entire dataset to simulate a common real-world issue of sensor 
lag or misalignment. This time shift is computed based on the 
sampling rate derived from the time intervals of the dataset, 
ensuring the shift is accurately represented across all data 
points. This is essential for testing the adaptive capabilities of 
the system identification techniques under study [38]. 
Finally, the altered dataset “noisy” is the further input for the 
following sections, preserving the integrity of the original data 
while providing a realistic test scenario. 

4. Wavelet Analysis 

Wavelet decomposition involves breaking down a time-series 
signal into its constituent scales or frequencies using wavelets. 
This technique is advantageous for handling non-stationary 
signals commonly encountered in UAV operations, where 
sensor readings often fluctuate due to varying flight dynamics, 
environmental conditions, and sensor noise. In this study, The 

Haar wavelet was selected for its simplicity and effectiveness 
in capturing signal discontinuities and shifts [39]. The 
decomposition process was applied to both simulated clean 
and noisy sensor data from the UAV, aiming to assess the 
method's robustness against noise. The Discrete Wavelet 
Transform (DWT) provided a multi-resolution analysis, 
allowing the isolation and examination of signal components 
across different frequency bands. 
Signals were decomposed into a set of wavelet coefficients at 
specified decomposition levels [40]. The choice of 
decomposition level was determined based on the frequency 
content necessary to capture the dynamics of the UAV. 

4.1. Wavelet decomposition 

The wavelet transform facilitates the decomposition of a 
primary signal into its constituent elements, each reflecting 
specific frequency characteristics detectable at distinct times 
[1], [11]. This decomposition is achieved through the 
application of a series of functions known as wavelets, which 
are scaled and translated across the signal. The mathematical 
representation of a wavelet function is given by Eq.(10): 
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where, 𝜓 represents the wavelet function, 𝑎 is the scale 
parameter affecting the frequency, and 𝑏 is the time offset 
parameter, determining the wavelet's position along the 
signal. For practical applications, the discrete wavelet 
transform (DWT) is used. The DWT employs the Mallat 
algorithm, also known as the pyramid scheme, which 
simplifies the signal into layers of approximations and details 
[41]. This method ensures that each level of decomposition 
maintains a consistent number of data points, essential for 
accurately reconstructing the original signal. The coefficients 
for approximation and detail in the context of multiple flight 
parameters can be mathematically expressed using the 
following relationships expressed in Eq.(11) and Eq.(12): 
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where 𝑖 denotes the flight parameter index, 𝑗 the level of 
decomposition, and 𝑘 represents the discrete frequency. The 
functions ሺℎటሻ and ሺ𝑔టሻ are the respective high-pass and low-
pass filters, which are applied after a delay of ሺ2𝑙ሻ. Then, the 
Haar wavelet is defined by the function in Eq.(13): 
 

𝛹ሺ𝑡ሻ ൌ ൝
1 0 ൑ 𝑡 ൏ 0.5
െ1 0.5 ൑ 𝑡 ൏ 1
0 𝑡 ∉ ሾ0 1ሻ

 (13) 

While other types of wavelets like Daubechies or Meyer could 
also be used, The Haar wavelet was preferred due to its 
simplicity and effectiveness, which aligns with the findings 
presented at the end of this section. For validating the 
outcomes from wavelet decomposition, the signal 
reconstruction formula incorporated into the system 
identification process is shown in Eq. (14). 

 

Fig.3. Multiplex funcub Noisy responses 
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For this study, the simulation model was configured with a 
time step of 0.02 seconds to align with the standard 50 Hz 
sampling rate commonly employed in aircraft system 
identification [7] [18]. The decomposition process was 
conducted up to level 11 to encompass a wide dynamic 
spectrum, suitable for the expected aircraft modes occurring 
below 9.5 rad/s. The specific frequency ranges are captured at 
various decomposition levels, focusing on the finer 
frequencies between 0.19531 Hz and 3.125 Hz, which are 
critical for accurately characterizing the aircraft's dynamics 
from the noise-free signal. As a matter of fact, decomposition 
level 4 was the lowest used for parameter estimation, with 
level 7 providing the highest detail and best correlation 
results. Parameter estimation focused on 60 seconds of flight 
data at level 7, balancing detail and computational efficiency 
to capture the aircraft's dynamics within this timeframe 
effectively. 

4.2. Original and noisy reconstruction 

Wavelet decomposition was applied to both original and noisy 
datasets using MATLAB Software working with wavelet 
analysis functions, which facilitated the processing of UAV 
sensor data. The signals were specifically reconstructed at the 
seventh level of decomposition, as shown in Fig. 4. This figure 
displays the original and reconstructed signals for channel 7, 
highlighting the pitch response derived from both noise-free 
and noisy data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For each channel, wavelet decomposition was followed by the 
reconstruction of both the approximation and detail 
coefficients at the seventh level. The resultant reconstructed 
signals for both original and noisy datasets are then stored in 
ASCII format for further system identification. 

4.3. Reconstructed cases - wavelet decomposition 

In this section, a detailed correlation analysis between 
reconstructed noisy signals and their corresponding noise-free 
counterparts was conducted to evaluate the efficacy of the 
wavelet-based signal reconstruction technique.  
The primary objective was to determine the optimal time 
shifts and the corresponding maximum correlation 

coefficients for each channel. This involved adjusting the 
noisy data within a shift range of -20 to +20 samples and 
calculating the correlation coefficient against the original, 
noise-free data for each possible shift [2].  
This iterative process allowed for identifying the shift value 
that maximized the correlation coefficient for each channel, 
thus potentially correcting any misalignments caused by noise 
or other factors. 
Figure 5 illustrates the correlation analysis between noise-free 
reconstructed signals and their corresponding noisy, shifted 
reconstructions across several channels of flight data.  
A notable alignment between the two signal types, with 
correlation coefficients ranging from 0.91 to 0.98. These high 
correlation values indicate that the wavelet-based signal 
reconstruction, followed by optimal shifting, effectively 
minimizes the discrepancies caused by noise.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Output Error Method – System Identification 

The previous section demonstrated how wavelet 
decomposition can mitigate noise from low-cost sensors, 
enhancing model robustness and accuracy with system 
identification methods that assess noise-free, noisy, and 
wavelet-reconstructed data. This section introduces the 
Output Error Method (OEM), a powerful system 
identification technique used to derive dynamic 
characteristics from measured data [18].  
The focus is on applying OEM to UAV system identification, 
specifically for determining aerodynamic derivatives and 
aircraft state behaviors. OEM iteratively refines model 
parameters to fit the data optimally, proving effective in 

 

Fig.4. Original and Noisy signals reconstruction 

 

Fig.5. Noise free and reconstructed and shifted correlations 
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handling noisy and nonlinear conditions [15], crucial for 
managing the intricate dynamics of UAVs [4].  In this study, 
the OEM is applied under three distinct conditions: using 
noise-free data, using data corrupted with simulated sensor 
noise, and using data reconstructed via wavelet decomposition 
techniques. The goal is to evaluate the performance of the 
system identification process under varying levels of data 
quality, highlighting the potential benefits of wavelet 
preprocessing in enhancing the accuracy of the identified 
system models. The method iteratively adjusts the model 
parameters to achieve the best fit with the experimental data. 
The primary equation for the output error 𝑒ሺ𝑡ሻ is shown in 
Eq.(15): 

𝑒ሺ𝑡ሻ ൌ 𝑦ሺ𝑡ሻ െ 𝑦ොሺ𝑡,𝜃ሻ (15) 
 
Where 𝑦ሺ𝑡ሻ represents the measured output, 𝑦ොሺ𝑡,𝜃ሻ is the 
predicted output from the model dependent on parameters 𝜃, 
and 𝑡 indicates the time. The core objective in OEM is to 
minimize the sum of the squared errors, formulated in Eq.(16), 
 

𝐽ሺθሻ ൌ ∑ ሾ𝑦ሺ𝑡ሻ െ 𝑦ොሺ𝑡,θሻሿଶ்
௧ୀଵ   (16) 

 
This sets up an optimization problem to find the parameter set 
𝜃∗ , it results in the minimum cost as shown in Eq.(17): 
 

𝜃∗ ൌ arg minఏ 𝐽ሺθሻ (17) 
 

Then, the Maximum Likelihood Estimation (MLE) is 
employed to enhance the parameter estimation by assuming 
that the errors 𝑒ሺ𝑡ሻ are probabilistically modeled, as normally 
distributed with zero mean and constant variance. This 
assumption aligns with the principle of maximizing the 
likelihood that the observed data could be produced by the 
model parameters. The process involved an iterative 
optimization loop where UAV system outputs were simulated, 
and parameters adjusted to minimize the discrepancy between 
model predictions and observed data.  

5.1. Noise Free and noisy OEM cases  

The noise-free dataset was initially employed for system 
identification to establish a baseline of accuracy and evaluate 
the method's efficiency, achieving a maximum relative 
standard deviation (RSD) of 0.76. Convergence was reached 
within 7 iterations, affirming the method's precision. 
Subsequently, OEM was applied to the noisy dataset, resulting 
in a higher maximum relative standard deviation of 16.09 after 
5 iterations, as depicted in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 

5.2. Reconstructed cases - wavelet decomposition 

OEM was also applied to data reconstructed through wavelet 
decomposition techniques, studying its effectiveness under 
varying levels of noise reduction and signal restoration. This 
phase evaluated preprocessing data using wavelet transform 
as input data to the System Identification script, resulting in a 
higher maximum relative standard deviation of 6.09 after 11 
iterations, demonstrating the method's robustness under 
wavelet reconstruction, as shown in Figure 7. Table 4 presents 
the relative standard deviation (RSD) of the parameter Cmq 
estimation, illustrating the high accuracy of system 
identification when employing the reconstructed signal 
compared to estimations derived from a priori values in a 
noisy environment. 

TABLE 4. Comparison of estimation of Pitching Moment Coefficient 
due to pitch rate - Cmq [1/rad/s] 

 A 

priori 

XFLR5 

Clear 

simulated 

Noisy 

Simulated 

Wavelet 

Reconstructed 

Estimated Value -8.01 -7.06 -1.61 -7.12 

RSD  - 0.76 16.09 0.86 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Correlation analysis 

This section contrasts system identification outcomes for 
datasets with and without noise, both before and after 
applying wavelet reconstruction. Each plot features two lines: 
a blue line for the system identification from clean data and a 
red dashed line for the noisy data. Correlation coefficients, 
noted in the plot legends, quantify the alignment between 
these two results. Figure 8 displays correlations between 0.92 
and 0.96, indicating some discrepancies possibly due to signal 
drift and shifting, leading to higher relative errors as 
previously noted. In contrast, Figure 8 exhibits improved 
correlations, particularly for the pitch rate parameter at 0.98, 
suggesting enhanced accuracy in system identification after 
noise removal via wavelet reconstruction. The effectiveness 
of this approach is further validated by the lower relative 
errors shown in Table 5, which presents estimation errors 
post-reconstruction. 

 

Fig.7. Measured and estimated data – wavelet reconstructed  

 

Fig.6. Measured and estimated data - Noise case 
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Table 5. Relative Errors in Aerodynamic Parameters 

Parameter CD0 CDV CDAL CL0 CLV CLAL CM0 CMAL CMQ CMV CMDE 

Relative Error 0.03% 5.13% 0.57% 0.37% -4.52% -0.10% 0.71% -0.78% 4.64% 3.11% -0.80% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Conclusions 

This study improves UAV system identification by using 
wavelet decomposition to enhance the handling of noise 
from low-cost sensors. Unlike traditional methods primarily 
focusing on noise filtering, this research introduces 
wavelet-based signal reconstruction which provides a 
sophisticated means of restoring data integrity. The 
methodology employed here shows marked improvements 
in correlation coefficients and reduced error margins, 
setting it apart from other methods cited in recent studies 
such as [1], [10], [11], [12], [13]. This approach uniquely 
combines the robustness of wavelet transformations with 
practical system identification techniques, offering a 
significant enhancement in model accuracy and reliability 
under noisy conditions.  
The primary advantage of the proposed method lies in its 
ability to effectively isolate and correct distorted signal 
components, which are typically challenging to manage 
with low-cost UAV sensors. This leads to more accurate 
system identification, even in the presence of significant 
environmental and sensor´s noise.  However, one limitation 
is the computational complexity associated with wavelet 
transformations, which may extend processing times or 
require more powerful computing resources [42]. Future 
improvements might focus on optimizing the algorithm to 
reduce computational demands or exploring more efficient 
wavelet bases that balance performance and computational 
overhead [41]. 
Looking forward, the methodology presented in this paper 
lays a solid foundation for further research into adaptive 

noise management techniques in UAV system 
identification. Future studies could explore the integration 
of real-time adaptive filtering techniques to enhance the 
responsiveness of the system identification process to 
dynamic changes. Finally, further analysis will validate the 
proposed method using real flight-test data, which can be 
sourced from new experimental studies [4], [18]. 
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