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Abstract. Autonomous driving is currently an issue of heated debate in automotive engineering. Accurate prediction of the future trajectory of
self-driving cars can significantly reduce the occurrence of traffic accidents. However, predicting the future trajectories of vehicles is a challenging
task since it is influenced by the interaction behaviours of neighbouring vehicles. This paper proposes a framework that allows for parameter
sharing and cross-layer independence, based on a dynamic graph convolutional spatiotemporal network, to study the interactions between vehicles
and the temporal dynamics in historical trajectories. By extracting dynamic adjacency matrices from different vehicle interaction features, the
model can describe dynamic spatiotemporal relationships and facilitate addressing changes in traffic scenarios. Finally, the proposed model
is experimentally compared with existing mainstream trajectory prediction methods using the NGSIM dataset. The results demonstrate that
our trajectory prediction model achieved excellent performance in terms of model parameters and prediction accuracy. Compared to the four
mainstream models, our model improved accuracy by 35.73%. In addition, we also analyze the relationship between model complexity and
efficiency.
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1. INTRODUCTION

1.1. Motivation
In recent years, both academia and industry have made signif-
icant efforts to develop verifiable and safe autonomous driving
systems. Artificial intelligence (AI), in this context, refers to the
capability of machines to perform tasks that would normally
require human intelligence, such as visual perception, decision-
making, and real-time response to dynamic environments. In
autonomous driving, AI models are trained to observe and an-
alyze traffic conditions [1], understand the behaviour of other
road users, and adjust their speed and path accordingly. These
models rely on large-scale data and computational power to
simulate human-like decision-making processes.

In urban road scenarios, both human drivers and self-driving
cars need to continuously analyze and adapt to the changing
traffic environment. There are complex dynamic interactions
between vehicles, often characterized by uncertainty and vari-
ability. Therefore, effectively modelling both the explicit and im-
plicit spatiotemporal interactions between vehicles is essential
for accurately predicting future vehicle movements [2], which is
a key challenge that AI helps to address in autonomous driving.
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Traditional vehicle trajectory prediction methods typically
rely on handcrafted features or simplified assumptions. How-
ever, these methods often exhibit limitations in complex dy-
namic environments. For example, rule-based prediction meth-
ods (e.g., [3]) and statistical models (e.g., [4]) fail to fully capture
the nonlinear and diverse interactions in traffic, leading to lower
prediction accuracy. Recently, the widespread adoption of deep
learning techniques has led to new advancements in vehicle
trajectory prediction, utilizing methods such as recurrent neu-
ral networks (RNNs), attention mechanisms, and graph neural
networks (GNNs). However, most existing deep learning-based
methods focus primarily on either spatial or temporal depen-
dencies, neglecting the intrinsic coupling between them [5,6].

To address this gap, we propose a novel graph-temporal con-
volutional with dynamic adjacency network (GTC-DAN) that
effectively captures both spatial and temporal dependencies in
vehicle trajectory prediction. Our model integrates graph convo-
lutional networks (GCNs) and temporal convolutional networks
(TCNs) to jointly study the spatial interactions between vehicles
and the temporal dynamics in historical trajectories [7]. Addi-
tionally, we introduce a dynamic adjacency matrix mechanism
to adaptively adjust the spatial relationships between nodes,
enabling our model to manage the dynamic changes in traffic
scenarios.
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1.2. Problem definition

In this study, the task we need to accomplish is to within a traffic
flow of 𝑁vehicles, given each vehicle historical trajectory over
the previous 𝑇 seconds, study the historical trajectories of vehi-
cles 𝑉 ∈ {1,2,3, ..., 𝑛} and the interactions that occur between
them in space, and predict the ego vehicle future positions 𝑌 𝜏

𝑖

for the next 𝜏 seconds, where 𝜏 ∈ {𝑡 + 1, 𝑡 + 2, ..., 𝑡 + pred}with
the true trajectory denoted by 𝑌 𝑡 and the predicted trajectory
denoted by 𝑌 .

1.3. Related work

1.3.1. Based on the physical model method

Traditional prediction methods are based on physical models,
with mainstream approaches using Kalman filtering prediction
models and Monte Carlo methods. Barth et al. [8] achieved high
accuracy in short-term vehicle prediction by using Kalman filter-
ing with image data input. Carvalho et al. [9] used an interactive
multiple-model Kalman filter (IMM-KF) combined with dedi-
cated filters related to specific road directions at intersections.
Danielsson et al. [10] employed Monte Carlo methods to predict
potential hazards in a scene, enabling vehicles to choose more
reasonable paths. Sepideh et al. [11] utilized Gaussian process
regression to learn motion patterns from noisy historical tra-
jectory data collected by static sensors. Yĳing Wang [12] used
Monte Carlo methods to output probabilistic occupancy grids
for prediction targets, provided mapping from probabilistic oc-
cupancy to actual scenarios, and then used model predictive
control to optimize the reference trajectory.

Physical methods typically consider the kinematic and dy-
namic constraints of vehicles, such as yaw angle, vehicle type,
and acceleration, as well as environmental factors like road sur-
face friction coefficients. Although these methods can achieve
short-term motion prediction, they overlook prior and posterior
knowledge of the driving scene, such as road structure, traffic
rules, and the subjective intentions of drivers.

1.3.2. Based on deep learning methods

In recent years, the widespread application of neural networks
has brought significant attention to deep learning-based predic-
tion methods. Based on large datasets, deep learning models can
consider both physical models and road environment structures,
as well as train interactions between the target and surrounding
participants.

As trajectory prediction is a specific type of sequential pre-
diction, temporal prediction networks, represented by recurrent
neural networks (RNNs), were initially employed by researchers.
Deo et al. [13] proposed a manoeuvre-LSTM model that predicts
vehicle trajectories by classifying driving manoeuvres, enabling
the model to adjust its predictions based on the identified driv-
ing intents, such as lane changes and turns. In Alahi et al. [14],
a social-LSTM model simulates the interaction between vehi-
cles to account for the influence of surrounding vehicles on the
trajectory of the vehicle. Deo et al. [15] designed a model frame-
work that combines convolutional neural networks (CNNs) with
LSTM to capture spatial and temporal features.

Zyner et al. [16] collected real vehicle driving data and devel-
oped an LSTM network model to validate its predictive capabil-
ity for single-lane roundabout behaviour in urban settings. Dai et
al. [17] addressed the issue of low prediction accuracy in dense
traffic by proposing a spatiotemporal LSTM prediction model.
Xing et al. [18] utilized an LSTM encoder-decoder structure,
assigning a decoder to each driving style to achieve personal-
ized trajectory predictions. Furthermore, some researchers have
explored the use of convolutional neural networks (CNNs) for
better capturing spatial features, including interactions among
various traffic participants. For instance, Cen et al. proposed us-
ing CNNs to extract spatiotemporal information from trajectory
data, followed by gated recurrent units (GRUs) to extract tem-
poral relationships in the trajectories [19]. Similarly, Semwal et
al. [20] designed a model based on an LSTM and CNN encoder
combination to generate trajectories classified by speed.

In many practical applications of trajectory prediction, numer-
ous features are generated in non-Euclidean spaces, particularly
the interactions between different traffic participants. Graph neu-
ral networks (GNNs) are adept at extracting structural and fea-
ture information from graphs, thereby constructing state-space
scene graphs that incorporate these interactions. For instance,
Sharma et al. [21] proposed a model that combines GNN em-
beddings with long short-term memory (LSTM) networks. This
model utilizes GNNs to capture the spatiotemporal patterns in
vehicle trajectory prediction, effectively managing spatiotem-
poral dynamics. Similarly, Wu et al. [22] introduced the graph-
based interaction-aware multi-modality trajectory prediction
framework. In this framework, vehicle movements are conceptu-
alized as nodes in a time-varying graph, aiming to predict future
vehicle trajectories by effectively capturing these interactions.

Cai et al. [23] proposed a hierarchical network called EA-
Net, which is a trajectory prediction model that dynamically
captures the interaction effects between vehicles using GNNs
and an edge attention mechanism. Liang et al. [24] utilized vec-
tor maps to construct lane-to-lane graphs known as LaneGCN.
This graph can extract structural features and topological rela-
tionships of high-precision maps. They used convolutional net-
works to capture vehicle historical trajectory information, then
combined this information with the graph for joint processing to
ultimately obtain the predicted trajectory. Abdelraouf et al. [25]
designed a model framework that combines graph convolutional
networks (GCNs) and long short-term memory (LSTM) net-
works. This model enhances vehicle trajectory prediction by
incorporating personalized driving patterns, effectively captur-
ing the spatiotemporal interactions between the target vehicle
and surrounding traffic.

1.4. Contribution

The main contributions of this paper include:
1. Proposing a novel graph-temporal convolutional with dy-

namic adjacency network (GTC-DAN) that captures both
temporal and spatial dependencies in vehicle trajectory pre-
diction tasks. This model combines graph convolutional
networks (GCNs) and temporal convolutional networks
(TCNs), effectively learning features from both sequential
and structured data.
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2. Introducing a dynamic adjacency matrix mechanism that
dynamically adjusts the spatial topological relationships be-
tween nodes. This effectively captures the dynamic changes
in node relationships in spatiotemporal data, enhancing the
model applicability to complex scenarios.

3. Employing an attention-enhanced GRU structure in the de-
coder, which can automatically extract more critical infor-
mation for the prediction target, effectively capturing long-
term dependencies and generating accurate future trajectory
prediction sequences.

2. OVERALL STRUCTURE OF THE MODEL

In real traffic scenarios, there are complex interactions between
traffic participants such as pedestrians and vehicles. The future
movement trajectory of a vehicle depends not only on its histor-
ical trajectory (i.e., the influence of temporal factors) but also
on the trajectories of surrounding vehicles (i.e., the influence of
spatial factors). Therefore, a vehicle trajectory prediction model
must consider dependencies in both temporal and spatial di-
mensions. Our proposed GTC-DAN model, as shown in Fig. 1,
aims to effectively capture spatiotemporal dependencies in ve-
hicle trajectory prediction tasks. This model integrates graph
convolutional networks (GCN) [26] and temporal convolutional
networks (TCN) [27] and introduces a novel dynamic adjacency
matrix mechanism to dynamically adapt the spatial topological
relationships between nodes. The encoder part of the model em-
ploys a spatiotemporal convolutional structure with shared and
independent layers, achieving a good balance between feature
extraction capability and computational efficiency.

Specifically, the GCN part of the model captures spatial in-
teractions between traffic participants. Through the dynamic
adjacency matrix mechanism, the model can adjust the connec-
tion weights between nodes in real time, adapting to dynamic
changes in complex traffic scenarios. The TCN part focuses
on temporal dynamics in historical trajectories, capturing both

short-term and long-term dependencies through convolutional
operations. The shared layers of the encoder extract common
features, while the independent layers optimize specific features
for different vehicles.

Additionally, to further improve prediction accuracy, the
decoder part of the model adopts an attention mechanism-
enhanced gated recurrent unit (GRU) structure, which can au-
tomatically extract critical information for the prediction target,
capture long-term dependencies, and generate precise future
trajectory prediction sequences.

3. GTC-DAN MODEL

3.1. Model introduction

Each GTC-DAN layer includes shared and independent parts.
The shared part shares parameters across layers, which not only
reduces the number of model parameters but also extracts stable
feature patterns. The independent part has separate parameters
for each layer, capturing specific features at various levels, en-
abling the model to better understand and represent hierarchical
details in the data.

3.1.1. Input representation

The input representation. Raw data is often unstructured or semi-
structured, making it unsuitable for direct use. Thus, it is neces-
sary to convert the raw data into a format conducive to efficient
subsequent computation. Suppose that in the past 𝑇0 time steps,
we observed 𝑁 vehicles in the scene. The information at the 𝑛-th
layer is represented by an input tensor W𝑛 of size (𝑁 ×𝑇𝑜 ×𝐶),
where 𝐶 = 2 represents the coordinates of the vehicles (𝑥𝑛𝑡 𝑦𝑛𝑡 ).
The input hidden state is processed by two modules in the inde-
pendent part:

W𝑆
𝑛 = 𝑓 𝑛,𝑆 (W𝑛) , W𝑇

𝑛 = 𝑓 𝑛,𝑇 (W𝑛) , (1)

Fig. 1. GTC-DAN Model. The overall structure of the model consists of an encoder, a dynamic adjacency matrix module, a multi-head attention
module, and a future trajectory decoder. The encoder is composed of identical layers, each containing shared and independent parts. The spatial

convolution module and temporal convolution module process the spatial and temporal hidden state vectors, respectively
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where 𝑓 𝑛,𝑆 and 𝑓 𝑛,𝑇 are the spatial and temporal modules of
the 𝑛-th layer independent part, respectively. The input hidden
state also passes through the shared part:

W𝑆′
𝑛 = 𝑓 𝑆 (W𝑛) , W𝑇 ′

𝑛 = 𝑓 𝑇 (W𝑛) , (2)

where 𝑓 𝑆 and 𝑓 𝑇 are the spatial and temporal modules of the
shared part, respectively, with the same parameters shared across
different layers. Finally, the hidden states from the four modules
in this layer are fused:

W′
𝑛 = P𝑛, 𝑓 ∗

[
W𝑆

𝑛 ; W𝑇
𝑛 ; W𝑆′

𝑛 ; W𝑇 ′
𝑛

]
+b𝑛, 𝑓 , (3)

where W′
𝑛 is the fused information of the input W𝑛 of the 𝑛-th

layer after nonlinear transformation. Then, the residual connec-
tion and normalization are applied to obtain the input for the
next layer:

W𝑛+1 = Batch norm
(
W𝑛 +ReLU

(
W′

𝑛

) )
. (4)

3.2. Dynamic adjacency matrix module

In traditional graph convolutional networks (GCNs), the adja-
cency matrix 𝐴 is usually static and unchanging [28]. How-
ever, in dynamic spatiotemporal data scenarios, the strength
of relationships between nodes may change dynamically over
time. A fixed static adjacency matrix cannot accurately capture
these dynamic relationship changes. To effectively capture the
influence of temporal changes on the strength of spatial topo-
logical relationships between nodes, we introduce a dynamic
adjacency matrix module, as shown in Fig. 2. This module dy-
namically adjusts the spatial relationship strength between nodes
based on time, updating the adjacency matrix to better capture
the dynamic evolution characteristics in spatiotemporal data, as
shown.

The construction process of the dynamic adjacency matrix
A𝜙 (𝑡 ) ∈ R𝑁×𝑁 is as follows:

𝐴𝜙 (𝑡 ) ,𝑖 𝑗 =
𝑆𝑖 𝑗∑
𝑘𝑆𝑖𝑘

. (5)

Fig. 2. Dynamic adjacency matrix construction for lane graphs

First, the input feature matrix 𝑊𝑛 is mapped to a new feature
space through a linear transformation, resulting in a new feature
matrix 𝑊 ′

𝑛. Based on the new feature matrix 𝑊 ′
𝑛, the similarity

matrix 𝑆 is calculated. Each element 𝑆𝑖 𝑗 of the similarity matrix
is computed using the following formula:

𝑆𝑖 𝑗 = exp

(
−


𝑊 ′

𝑛 (𝑖, :) −𝑊 ′
𝑛 ( 𝑗 , :)



2

2𝜎2

)
, (6)

where ∥𝑊 ′
𝑛 (𝑖, :) −𝑊 ′

𝑛 ( 𝑗 , :)∥2 represents the Euclidean distance
between the feature vectors of the 𝑖-th and 𝑗-th nodes, and 𝜎 is
a scale parameter that controls the similarity calculation.

The similarity matrix 𝑆 captures the relationship strengths
between nodes based on their features. By normalizing this
matrix, we obtain the dynamic adjacency matrix A𝜙 (𝑡 ) , which
reflects the adjusted spatial relationships between nodes over
time:

𝐴𝜙 (𝑡 ) ,𝑖 𝑗 =
𝑆𝑖 𝑗∑
𝑘𝑆𝑖𝑘

. (7)

Normalization ensures that the sum of the similarities for each
node is 1, making A𝜙 (𝑡 ) a proper adjacency matrix for the graph
convolutional operations. This dynamic adjustment allows the
model to better capture the evolving spatial relationships in
the traffic scene, thereby improving the accuracy of trajectory
predictions.

By dynamically updating the adjacency matrix, our model
can adapt to the changing interactions between vehicles, reflect-
ing the real-time evolution of traffic scenarios. This enhances
the model ability to predict future trajectories accurately by in-
corporating both temporal and spatial dependencies effectively.

3.3. Trajectory encoder

3.3.1. Spatial convolution module

To better represent the dynamic spatial relationships between
vehicles, we first construct a spatial state scene graph at time 𝑡

to describe the current traffic scenario 𝐺 = [𝑉𝑡𝐸𝑡 ]:

𝑉𝑡 = 𝑏𝑖𝑔{𝑣𝑖𝑡 | ∀ 𝑖 ∈ {1, . . . , 𝑁}
}
.

This represents the set of all vehicles at time 𝑡 where 𝑣𝑚𝑡 is
the feature vector of the 𝑚-th vehicle at time step 𝑡, including
its position, velocity, and heading angle. 𝐸𝑡 represents the set
of all edges: 𝐸𝑡 = {𝑒𝑖 𝑗𝑡 | ∀ 𝑖 𝑗 ∈ {1, . . . , 𝑁 . This represents the
potential relationship or spatial interaction influence of vehicle
𝑖 on vehicle 𝑗 .

Traditional graph convolutions, while capable of extracting
local spatial information to manage the relationships between
nodes in space, do not account for features that evolve. To dy-
namically model the strength of interactions between two nodes,
the spatial convolution in the GTC-DAN model replaces the nor-
mal adjacency matrix with a dynamic adjacency matrix, thereby
more accurately capturing and reflecting the complex spatial de-
pendencies in trajectory data.

First, the dynamic adjacency matrix A𝜙 (𝑡 ) ∈ R𝑁×𝑁 is gener-
ated based on the temporal and spatial features of the vehicles
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and can perform spatial convolution operations. Below, we intro-
duce the independent and shared parts of the spatial convolution
module.

The spatial convolution of each layer has independent param-
eters to extract spatial features at various levels:

𝑓 𝑛,𝑆 (W𝑛):,𝑖 =
𝑁∑︁
𝑗=1

A𝑛,𝑆

𝜙 (𝑡 ) ,𝑖, 𝑗W
𝑛
:, 𝑗 , (8)

where 𝑓 𝑛,𝑆 (W𝑛):,𝑖 represents the spatial convolution features
of the dynamic graph independent part at the 𝑛-th layer;
W𝑛 ∈ R𝑁×𝑑 is the input feature matrix at the 𝑛-th layer, where
𝑁 is the number of nodes and 𝑑 is the feature dimension.
A𝑛,𝑆

𝜙 (𝑡 ) ∈ R
𝑁×𝑁 is the dynamic adjacency matrix at the 𝑛-th layer,

representing the relationships between nodes at time step 𝜙(𝑡)
and W𝑛

:, 𝑗 represents the feature vector of neighbour node 𝑗 . The
purpose of the spatial convolution module is to aggregate the
feature vector information of all neighbour nodes to node 𝑖 based
on A𝜙 (𝑡 ) .

In the shared part of the spatial convolution module at the
𝑛-th layer, it is defined as follows:

𝑓 𝑆 (W𝑛) = W𝑛 ×2 A𝑆
𝜙 (𝑡 ) , (9)

where A𝑆 represents the dynamic adjacency matrix of the shared
part, sharing the same parameter set across different layers.

3.3.2. Temporal convolutional module

To capture the temporal dependencies of historical vehicle data,
we use a temporal convolution module. This module mainly ex-
tracts temporal domain information between vehicles through
convolution operations. Similar to the spatial convolution mod-
ule mentioned earlier, the temporal graph convolution in the
independent part of the 𝑛-th layer can be defined as:

𝑓 𝑛,𝑇 (W𝑛)𝑖 =
𝐷∑︁
𝑗=1

A𝑛,𝑇

𝜙 (𝑡 ) ,𝑖, 𝑗W
𝑛
:, 𝑗 , (10)

where 𝑓 𝑛,𝑇 (W𝑛):,𝑖 represents the temporal convolution features
of the dynamic graph in the independent part of the 𝑛-th layer. In
the shared part of the 𝑛-th layer, the temporal graph convolution
module is defined as:

𝑓 𝑇 (W𝑛) = W𝑛 ×1 A𝑇
𝜙 (𝑡 ) , (11)

where A𝑇 represents the dynamic adjacency matrix shared by
other layers, sharing the same parameter set across different
layers. Through this approach, the temporal convolution module
can dynamically capture the complex temporal dependencies
between vehicles, thereby improving the temporal correlation
and accuracy of trajectory predictions.

3.4. Future trajectory joint decoder

After extracting the spatiotemporal features of trajectory data,
the vehicle trajectory prediction task can be transformed into a

typical sequence generation problem. Given the computational
efficiency and superior performance of the gated recurrent unit
(GRU) in sequence modelling tasks, this paper adopts an at-
tention mechanism-based GRU [29] decoder structure to mine
critical information from the extracted feature data and generate
future trajectory predictions.

Specifically, for the trajectory prediction sequence of the 𝑖-th
vehicle Y𝑖 = 𝑦1

𝑖
𝑦2
𝑖
, . . . , 𝑦𝑇

′
𝑖

, where 𝑇 ′ represents the prediction
length, and 𝑦𝑡

𝑖
∈ R𝐶′ is a 𝐶′ dimensional vector that typically

includes features such as position coordinates and velocity, the
hidden state h𝑡

𝑖
of the decoder at time step 𝑡 is updated by the

following formula:

𝑚𝑎𝑡ℎ𝑏 𝑓 ℎ𝑡𝑖 = DecoderGRU
(
y𝑡−1
𝑖 , h𝑡−1

𝑖 , c𝑖
)
, (12)

where DecoderGRU denotes the GRU unit of the decoder, y𝑡−1
𝑖

is the predicted output from the previous time step, h𝑡−1
𝑖

is
the previous hidden state, and c𝑖 is the context vector obtained
from the encoder, which remains constant for all time steps. The
context vector c𝑖 is calculated through a multi-head attention
mechanism from the hidden states of the last layer of the encoder
Henc

𝑖
∈ R𝑁×𝑑 , where 𝑁 is the number of encoder layers and 𝑑 is

the hidden state dimension:

c𝑖 = MultiHeadAttn
(
Henc

𝑖 , Henc
𝑖 , Henc

𝑖

)
. (13)

MultiHeadAttn denotes the multi-head attention mecha-
nism [23]. By computing attention coefficients, the model can
dynamically adjust its focus on different historical information,
thereby better capturing complex spatiotemporal dependencies.
As shown in Fig. 3, the weight 𝑎𝑖 𝑗 represents the attention co-
efficient of the decoder at the 𝑗-th position of the encoder:

𝛼𝑖 𝑗 =
exp

(
𝑒𝑖 𝑗

)
𝐿∑
𝑘=1

exp (𝑒𝑖𝑘)
,

𝑒𝑖 𝑗 = v⊤ tanh
(
W1h𝑡

𝑖 +W2henc
𝑛

)
,

(14)

Fig. 3. Multi-head attention mechanism
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where henc
𝑛 is the hidden state of the 𝑛-th layer of the encoder,

and v, W1, W2 are learnable parameters. Given the hidden state
h𝑡
𝑖

of the decoder, the future trajectory output is:

ŷ𝑡𝑖 = OutLayer
(
h𝑡
𝑖 ,c𝑖

)
= W𝑜

[
h𝑡
𝑖 ; c𝑖

]
+b𝑜 , (15)

where OutLayer is a fully connected output layer, and W𝑜 and
b𝑜 are the weight and bias, respectively.

4. EXPERIMENTS AND ANALYSIS

4.1. Experimental setup

The experiments were conducted on an Ubuntu 20.04.6 LTS
system, with training performed on an Nvidia GTX 3060Ti GPU.
All models were implemented using PyTorch. The stochastic
gradient descent (SGD) algorithm was adopted as the optimizer.
The model was trained for 300 epochs with a batch size of 128.
The initial learning rate was set to 0.01, and a decay of 0.002
was applied after 150 epochs.

For evaluation, we used the next-generation simulation
(NGSIM) dataset, which contains high-resolution vehicle tra-
jectory data from real-world highway scenarios. This dataset
captures various traffic behaviours, such as lane changes and
vehicle-following patterns, providing a robust benchmark for
trajectory prediction models.

4.2. Experimental results comparison and analysis

4.2.1. Model prediction – accuracy comparison

We conducted comparative experiments between the proposed
model and existing trajectory prediction models. The models
were evaluated using the root mean square error (RMSE) to
measure prediction accuracy, which calculates the square root
of the average squared differences between the predicted and
actual trajectories. Manoeuvre-LSTM (M-LSTM): M-LSTM is
an encoder-decoder-based model where the encoder encodes the
trajectories of the target and surrounding vehicles. The encoded
vector and manoeuvre code are input into the decoder, which
decodes them to generate multimodal trajectory predictions.

Social-LSTM (S-LSTM): This model addresses the prob-
lem by connecting LSTMs corresponding to adjacent sequences
through a new architecture. It introduces a “social” pooling layer,
which can automatically learn typical interactions occurring be-
tween trajectories that overlap in time.

EA-Net: This model uses graph neural networks (GNNs) to
extract the interaction relationships between vehicles and a re-
current neural network (RNN) decoder to predict the future
trajectories of target vehicles.

CS-LSTM: This model combines convolutional neural net-
works (CNNs) and long short-term memory networks (LSTMs).
It extracts features from trajectory data through convolutional
layers and then uses LSTM layers to capture dynamic depen-
dencies in the time series.

Table 1 and Fig. 4 list the comparative experiment results of
the proposed model and the aforementioned trajectory predic-
tion models.

Table 1
Model prediction accuracy comparison

Datasets Methods
Prediction horizon

1 s 2 s 3 s 4 s 5 s

M-LSTM 0.58 1.26 2.12 3.24 4.56

S-LSTM 0.84 1.49 2.31 3.32 4.57

NGSIM EA-NET 0.42 0.88 1.43 2.15 3.07

CS-LSTM 0.61 1.27 2.09 3.10 4.37

GTC-DAN (Our) 0.41 0.75 1.25 1.88 2.51

Fig. 4. Model accuracy line chart

Figure 4 visualizes the data from Table 1 which compares
model accuracy within a five-second prediction horizon. From
both the table and the figure, it is evident that the proposed tra-
jectory prediction model shows significant advantages over the
listed models through experimental comparison. Specifically,
compared to the EA-Net model, which also uses graph neural
networks, our model achieves approximately a 15% improve-
ment in overall prediction performance on the NGSIM dataset.
Compared to the CS-LSTM model, which uses convolutional
pooling to establish interaction relationships, our model shows a
40% improvement in prediction accuracy. These results indicate
that our model has higher accuracy and robustness in handling
complex traffic scenarios and vehicle interactions. Furthermore,
compared to current existing research, our model shows signifi-
cant improvements at 3 s, 4 s, and 5 s prediction intervals. This
demonstrates that our model has reliable performance in long-
term prediction, better capturing the future movement trends of
vehicles, especially in scenarios that require consideration of
long-term dependencies.

4.2.2. Model time analysis

In the previous model comparison experiments, we unified the
input historical duration to 3 seconds. However, the variation
in the time domain can also impact prediction accuracy. To in-
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vestigate the influence of different historical time domains on
prediction accuracy, we tested the models using three historical
time domains: 1 second, 3 seconds, and 5 seconds. As shown in
Fig. 5, for the same prediction duration, the longer the historical
trajectory relationship between the target vehicle and surround-
ing vehicles utilized by this model, the smaller the root mean
square error (RMSE). Under the same historical trajectory du-
ration, the longer the prediction time, the larger the error. This
is because driving behaviour is uncontrollable, and the longer
the prediction time, the greater the error.

Fig. 5. xperimental results on the influence of different historical time
domains on prediction accuracy

4.2.3. Model complexity analysis

In practical applications, although model performance is impor-
tant, overall model efficiency is even more crucial. To explore
the efficiency of this model, we compared the model size of
GTC-DAN with some representative baselines. Table 2 shows
the total number of parameters for each model. For the NGSIM
dataset, Fig. 6 presents a scatter plot of model size versus accu-
racy. We can observe that GTC-DAN strikes a balance between
spatial complexity and performance.

Table 2
Comparison of parameter count, training time, and testing time across

different models

Model M-
LSTM

CS-
LSTM

S-
LSTM

EA-
NET

GTC-DAN
(Our)

Total
parameters
(byte)

67 342 97 821 159 628 185 264 128 456

Training
time (s) 26 52 72 71 56

TestF time (s) 22 48 70 67 53

Fig. 6. Total parameters of model vs RMSE

4.2.4. Model ablation experiment

To further validate the effectiveness of each module in the pro-
posed model, we conducted an ablation study on the NGSIM
dataset. We compared the performance by separately remov-
ing the independent module without utilizing all layers of the
encoder, the shared module without utilizing all layers of the en-
coder, replacing it with a fixed adjacency matrix, and removing
the multi-head attention mechanism module.

The results are shown in Table 3 and Fig. 7.

Table 3
Model ablation study results

Method
RMSE

𝑇 = 1 s 𝑇 = 2 s 𝑇 = 3 s 𝑇 = 4 s 𝑇 = 5 s

No sharing blocks 0.63 1.16 1.53 1.95 2.54

No independent blocks 0.59 1.12 1.49 1.83 2.32

Fixed adjacency matrix 0.68 1.15 1.78 2.12 2.66

No attention blocks 0.79 1.21 1.90 2.21 2.75

GTC-DAN (Our) 0.41 0.75 1.25 1.88 2.51

Figure 7 shows the ablation study comparing different model
variants. GTC-DAN is the proposed model in this paper. “No
Sharing blocks” is the model without the shared module. “No In-
dependent blocks” is the model without the independent module.
“Fixed adjacency matrix” uses a fixed adjacency matrix. “No
Attention blocks” is the model where the decoder does not use
the attention mechanism.

As shown in the figure, with the increase in prediction time,
capturing the spatial and temporal dynamic relationships be-
comes increasingly important. Therefore, the impact of the dy-
namic adjacency matrix and independent module gradually in-
creases, while the impact of the shared module and multi-head
attention mechanism is relatively small in the short term but also
becomes important over a longer time. Compared to the mod-
els without independent blocks and shared blocks, GTC-DAN
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Fig. 7. Comparison of the impact of different modules on model
prediction accuracy

demonstrates better performance, indicating the importance of
hierarchical parameter learning at different layers. Additionally,
the results suggest that the hierarchical parameter mechanism
outperforms the shared mechanism.

4.2.5. Attention weight analysis and visualization

Attention weights can reflect the importance of one element
to other elements [30]. To further analyze the performance of
the proposed model, we visualized the attention distribution of
the last layer, as shown in Fig. 8. Each sub-figure represents
an attention head, with the horizontal axis representing features
(including position, velocity, and acceleration), and the vertical
axis representing time steps from the past to the present. Darker

Fig. 8. Weight distribution of multi-head attention mechanism

colours in the figure indicate higher attention weights. It can be
observed that different heads exhibit varying degrees of attention
to distinctive features. From the overall trend, the closer to the
current time step, the higher the attention weight; the farther
away from the current time step, the lower the attention weight.
The results indicate that future trajectories depend on the driving
trajectories at the current moment and a period in the past.

Next, we will highlight and analyze the learned spatial at-
tention weight distribution of the model through visualization.
The spatial attention mechanism enables the model to adaptively
capture the dynamic spatial dependencies between different ve-
hicle nodes, which is key to accurately predicting future vehicle
trajectories.

Figures 9, 10, and 11 illustrate a typical traffic scenario before,
during, and after a vehicle lane change. The real-time com-
plex interactive behaviours between vehicles lead to dynamic
changes in their spatial relationships. Distinct colours represent
different vehicles in the figures.

Fig. 9. Before lane change: trajectory prediction of the ego vehicle in
pre-lane change driving scenario

Fig. 10. During lane change; trajectory prediction of the ego vehicle in
lane change driving scenario

Fig. 11. After lane change; trajectory prediction of the ego vehicle in
post-lane change driving scenario

The red vehicle is the ego vehicle. The bottom part of Fig. 9
visualizes the real trajectories of vehicles in this scenario, where
we can observe distinct vehicle behaviours such as lane chang-
ing and following. In this figure, the yellow curve represents
the real trajectories, while the deep blue lines indicate mul-
tiple predicted trajectories generated by the proposed model,
highlighting the various potential future movements based on
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different contextual factors. The small figures at the top of
Fig. 9 show the distribution of spatial attention weights as-
signed by the model to each pair of vehicle nodes at different
time steps. Deeper colours indicate larger learned spatial at-
tention weights, representing stronger spatial dependencies be-
tween nodes.

From the visualization results, we can see that the spatial at-
tention weight distribution exhibits noticeable dynamic changes.
Taking the blue vehicle about to change lanes as an example,
we can observe that the model automatically increases the atten-
tion weights between it and nearby vehicles in the new lane, as
their future trajectories will have significant spatial dependen-
cies. Meanwhile, the attention weights between the blue vehicle
and vehicles in its future lane also increase accordingly.

This dynamic adjustment behaviour fully demonstrates our
model capability to autonomously learn and capture the dynamic
spatial topological relationships between nodes in complex in-
teractive scenarios. By effectively modelling the dynamically
changing spatial dependencies, the model can more accurately
predict future vehicle motion trajectories.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel graph-temporal convolutional
with dynamic adjacency network (GTC-DAN) that effectively
captures spatio-temporal dependencies to achieve accurate vehi-
cle trajectory prediction. Our model seamlessly integrates graph
convolutional networks (GCNs) and temporal convolutional net-
works (TCNs) to jointly learn spatial interactions between ve-
hicles and temporal dynamics from historical trajectories. Fur-
thermore, we introduced a dynamic adjacency matrix mecha-
nism that can adaptively adjust the spatial relationships between
nodes, enabling our model to manage dynamic changes in com-
plex traffic scenarios.

The encoder part of our model adopts a unique architecture
with shared and independent components, striking a good bal-
ance between feature extraction capability and computational
efficiency. Extensive experiments on real-world datasets show
that our proposed GTC-DAN model outperforms existing pop-
ular methods for vehicle trajectory prediction. The visualization
of spatial attention weights further validates our model ability
to dynamically capture the constantly changing spatial depen-
dencies.

The GTC-DAN model paves a new way for spatio-temporal
modelling and has tremendous application potential in au-
tonomous driving and related fields. Likely future directions
include extending our model to manage more complex scenar-
ios with heterogeneous traffic agents, incorporating high-level
semantic information, and exploring more efficient real-time
deployment architectures.
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