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Abstract. The 5G enhanced mobile broadband (eMBB) category offers faster data rates, network capacity, and user experiences than prior
generations. This research aims to boost the 5G uplink user equipment (UE) user data transfer rate. We use Python to build frameworks and
analyze data. A 250-m-radius centre-excited picocell base station (PBS) is investigated to support 15 clients. Cell-range Poisson distribution
determines user position. All UEs send channel state information (CSI) to the PBS, which evaluates signal transmission channel conditions. The
study uses Rayleigh, Rician, free space path, and long-distance route loss models. This inquiry produces a channel state dataset and then it is
formulated dataset is dynamic. For service-specific requirements, UEs use k-means clustering. Clustering concatenates bandwidth, enhancing
system efficiency and UE sum rate. The research includes observations from simulation findings, in which UEs are grouped by channel gain,
achievable data rate, and minimum service-required data rate. Users in cluster 3 achieve the highest cumulative rate of 9.09 Mbps after clustering
with an average of 7.16 Mbps. Bandwidth concatenation increased system capacity, meeting each UE service needs. After evaluating performance
criteria for different clustering models, k-means remains the best algorithm for the framework. The methodology was carefully designed to satisfy
study goals. This paper investigates beamforming and dynamic clustering to improve user fairness and performance.
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1. INTRODUCTION
Fifth-generation (5G) wireless technology is the latest mobile
communication standard. 5G builds on its predecessors to im-
prove capacity, decrease latency, speed up data transfer, and sup-
port a large number of networked devices [1]. This innovative
technology can alter transportation, healthcare, telecommuni-
cations, and entertainment, as well as improve user experiences
through faster downloads and uninterrupted connectivity [2].

5G technologies limited global coverage benefitting metro-
politan areas, which is one of the main drawbacks [3] since
remote places may not receive 5G for years. Although 5G tech-
nologies limit transfer speeds to 100 Mbps, they offer rapid
download rates, marking a significant improvement over 4G.
Mobile phone battery technology must also improve for 5G
to work. 5G supports many use cases, including massive ma-
chine type communication (mMTC), enhanced mobile broad-
band (eMBB), and ultra-reliable low latency communication
(URLLC) as the most popular services.

Sum rates are the maximum data rates available to all users
in an area at the same time. This essential parameter affects
network capacity and user experience. 5G optimizes spectrum
efficiency, interference control, and resource allocation to max-
imize the total rate. This enhancement speeds up data rates,
lowers latency, and improves bandwidth-intensive applications
like UHD video streaming, virtual reality (VR), augmented re-
ality (AR), and the Internet of Things (IoT). To efficiently serve
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many customers and supply varied services with reliability, we
need high sum rates [4].

The sum rate is critical in 5G as a performance indicator
that accurately captures the total data throughput of communi-
cation systems, especially in multi-user scenarios. Maximizing
the overall rate enhances network capacity and throughput [5]
and 5G networks can manage more users, providing higher data
rates by optimizing resource allocation to optimize the total rate,
and increasing Quality of Service (QoS) metrics like latency and
reliability. Sum rate optimization ensures network adaptation in
dynamic communication contexts [6]. However, complex opti-
mization methods and advanced interference control solutions
make it challenging to achieve the greatest data transfer speeds
in 5G networks. The susceptibility of sum rate optimization
to channel fluctuations and performance measure concessions
may make stability and scalability in large networks difficult.
Despite these challenges, sum rate optimization research and
development emphasize the need to improve 5G communica-
tion systems [7].

The 5G service category of eMBB offers faster data rates, net-
work capacity, and user experiences than prior generations. It
aims to achieve speeds of multiple gigabits per second. This ac-
celerates the transfer of huge files, HD videos, and data-intensive
applications. It decreases the duration of data transfer between
the user device and the network server, especially for online
gaming, VR, AR, and interactive multimedia services that have
data rate requirements [8].

5G networks can accommodate several users accessing and
transmitting data without sacrificing performance. 5G uses
sophisticated modulation, massive MIMO, beamforming, and
spectrum sharing to maximize spectral efficiency [9]. This opti-
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mizes frequency spectrum use, enhancing network capacity and
data throughput for improved eMBB services.

High-speed data transmission is in demand, so modern com-
munication systems must optimize sum rates, which indicate
data throughput. Heuristics and inflexible resource allocation
algorithms may not fully leverage dynamic and complicated
communication settings [10]. Machine learning (ML), whose
specialty is channel prediction, can optimize communication
system components by utilizing data-driven insights to enhance
sum rates [11]. ML models can predict channel conditions based
on historical data. These models anticipate path loss, fading,
and interference to optimize transmission parameters for chan-
nel stability and sum rates [12]. Based on real-time feedback
and optimization goals, the algorithms can dynamically dis-
tribute bandwidth, power, and time slots. Intelligent resource
allocation lets ML-driven systems achieve the highest sum rates
while also being fair and efficient in extremely dynamic and
varied network environments [13]. Advanced machine learning
can optimize channel prediction, resource allocation, interfer-
ence control, and modulation methods to boost communication
system total rates [14].

The main objective of this research is to investigate the
throughput of users using ML models such as k-means, density-
based spatial clustering of applications with noise (DBSCAN),
and Gaussian mixture model (GMM) with the aid of cluster-
ing. This is achieved by calculating the silhouette score and the
Davies Bouldin index (DBI).

The remaining sections of the paper are summarized as
follows: Section 2 delves into current research on enhancing
throughput in 5G networks, while Section 3 explores the cur-
rent status of the proposed effort and technique. Section 4 dis-
cusses the simulation circumstances and then proceeds to an
investigation of clustering using ML models. Finally, Section 5
summarizes the outcomes of the scenarios studied before and
after clustering, as well as the future scope.

2. LITERATURE SURVEY

The authors in [15] introduced an approach that utilizes unsu-
pervised machine learning and conditional independence tests
(CITs) to detect network performance trends based on data. We
assessed the technique by utilizing crowdsourcing data from 5G
UEs and a dataset from a long-term evolution (LTE) network,
using the k-means clustering algorithm. The findings indicated
that the uplink throughput, as assessed, had the greatest impact
on the observed performance patterns. The LTE dataset also
demonstrated a link between the number of signalling resources
assigned in the physical uplink control channel (PUCCH) and
the uplink data transfer rate of the user equipment. Deep learn-
ing algorithms specifically designed for analyzing time-series
data will expand the technique in the future.

In [16], the authors presented a scheduling technique for full-
duplex wireless networks that uses reinforcement learning for
clustering users to optimize the allocation of network radio re-
sources. The algorithm does not require user-to-user channel es-
timation. The study introduced a reinforcement learning method

for scheduling in OFDMA wireless networks, intending to sim-
plify the scheduling process and improve spectral efficiency.
The algorithm exhibited exceptional performance in scenarios
involving the clustering of user equipment. The approach fails to
address inter-cell interferences and instead concentrates solely
on single-cell situations. Future research will focus on situations
involving multiple cells and scheduling techniques.

The authors of [17] produced a better k-means clustering
method that uses nonorthogonal multiple access (NOMA) for
5G cellular wireless networks. The algorithm aims to achieve
the balance between the overall network throughput and fair-
ness among devices, compared to the random-access channel
(RACH) in LTE. Devices with higher channel gain are desig-
nated as cluster heads to enhance the overall network throughput.
The research outperforms typical k-means by achieving a higher
sum throughput in the network. We apply the algorithm itera-
tively to the remaining network to obtain the optimal solution
for the cluster formation problem.

In [18], the authors study user clustering and power allocation
schemes based on reinforcement learning for the NOMA system.
The authors employ the Q-learning technique to optimize power
allocation and maximize the aggregate data rate. The authors de-
ploy the k-means algorithm to cluster users based on channel
gain, thereby aiding in data rate maximization Extensive simula-
tions confirm that the developed Q-learning technique with user
clustering performs better than other scenarios, achieving the
highest sum data rate. Additionally, it is capable of overcoming
several NOMA constraints, such as transmission power budget
limitations and minimum user data rate requirements.

In [19], the authors worked on enhancing user capacity and
optimizing power allocation, considering the subchannel assign-
ment constraints in wireless networks. The authors calculated
channel data using the Shannon capacity formula and employed
multiple linear regression models. We generated test data to
predict the sub-channel capacity and use it to solve optimiza-
tion models. The model used linear regression equations as
constraints while treating power and capacity as variables. The
study also investigated the enhancement of wireless networks by
allocating distinct network segments to users in order to predict
network performance.

In [20], the authors examined the application of ML algo-
rithms in green cellular networks for optimizing quality of ser-
vice (QoS), signal traffic load, and energy efficiency. The work
additionally addressed the concept of coordinated transceiver
multipoint (CoMP) in TE-advanced networks, which enhances
network coverage and improves data rate. The study explored
the power efficiency of green cellular communication while con-
sidering quality of service (QoS) constraints. It also highlights
the power levels required for transmitting bits and analyses the
relationship between power consumption and latency caused by
bandwidth limitations. The paper also addressed the trade-off
between energy efficiency and spectral efficiency for cellular
networks.

The authors of [21] suggested a new way to group users in
the downlink of the 5G NOMA system that uses artificial neural
networks (ANN) to yield optimal results from the system while
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keeping complexity low. The authors train the ANN model using
a historical dataset, which includes transmitting powers, chan-
nel gains, and user cluster information of NOMA users. After
that, the model is validated to find the best hyper-parameters.
This keeps the model from overfitting and lets us accurately
predict how clusters will grow. The simulation results of an
ANN-based user clustering framework outperform traditional
orthogonal multiple access (OMA) techniques, achieving opti-
mal throughput performance in comparison to the Brute force
method while maintaining an acceptable level of clustering com-
plexity.

In [22], the authors presented a rapid learning system called
extreme learning machine-based user clustering (ELM-UC).
The authors designed this scheme to operate in NOMA en-
vironments, quickly estimating the optimal formation of user
clusters based on their channel gains and powers. The ELM
design is well-suited for UC optimization, as it operates as a
predictor using significant input data. ELM-UC methodology
delivers performance that is almost ideal when compared to the
brute-force search (B-FS) method. Furthermore, it surpasses
existing clustering strategies such as ANN-UC and dynamic
user clustering (DUC). The proposed ELM-UC scheme aims to
address the issue of extended learning times in neural network-
based UC schemes. It is achieved by solving the output weights
in a single step, eliminating the necessity for a time-consuming
backpropagation learning process.

The above literature discusses different system models with
constraints to improve the 5G sum rate through user clustering,
power optimization, beam forming, and other ML algorithms.
However, the research has limitations, such as considering a
single fading environment and not specifying the exact system
scenario for deployment.

To overcome these restrictions, the proposed system scenario
incorporates a real-time visible picocell base station in a hexag-
onal cell. Examined multiple channel conditions and path loss
models during dataset construction to match real signal propaga-
tion channel circumstances. We studied performance indicators
for several models to find the optimal clustering algorithm. Not
only does this research attempt to improve the 5G sum rate
through user clustering but it also meets the service needs of all
eMBB users in the cell, which is novel.

3. PROPOSED METHODOLOGY

This section discusses the deployment of a picocell system and
the creation of a tailored dataset. It details the steps for com-
puting channel parameters for users and analyzing channel ca-
pacity to meet service-specific requirements, aiming to enhance
the sum rate via user clustering algorithms. The chapter covers
model construction and assesses the effectiveness of clustering
in addressing diverse service needs. It aims to demonstrate the
efficacy of optimizing system performance and ensuring seam-
less service delivery through careful examination and compara-
tive analysis of the proposed methodology. Figure 1 presents the
block diagram of the proposed ML-based throughput enhance-
ment system.

Fig. 1. Block diagram of the proposed work

3.1. System model

Deploying the picocell system with 15 users creates the op-
erational environment for future data collection, analysis, and
optimization. It places the work in a real-world context, allowing
for practical insights and outcomes.

The dataset construction is crucial as it provides the raw data
needed for analysis and optimization. By computing channel
parameters for each user, it captures diverse real-world channel
conditions. This extensive dataset forms the basis for analysis,
enabling informed decision-making and optimization strategies.

The CSI equations analyze free space, log-distance path loss,
Rayleigh, and Rician fading channels [23]. The model calculates
SINR, communication quality metric, after channel gain. Using
SINR values, the model calculates each user channel capacity,
which is the maximum data rate under certain conditions.

The path loss can be shown as

𝐹𝑆𝑃𝐿 = 20∗ log10
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where 𝑑0 is the reference distance, FSPL is the free space path
loss [24], LDPL is the log distance path loss [24], 𝜆 is the
wavelength, and then 𝑛 is the path loss exponent.

The Rayleigh channel can be calculated as shown in equa-
tion (3)
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The Rician channel can be calculated as shown in equation
below

𝑓 (𝑥 : 𝐾) = 2(𝑘 +1)
𝑘

e−𝑘−1𝐼0
√︁
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where 𝑥 is a signal power, 𝜎 is the Standard deviation, 𝑘 is the
cluster size and 𝐾 is the normal distribution. The channel gain
can be calculated and SINR is

𝐻 = 10−𝛼/20 ∗ 𝛽, (5)

Γ = 10log10

{
𝑃signal

𝑃interfernce +𝑃noise

}
. (6)

The capacity can be calculated as

𝐶 = 𝐵 log2 (1+ 𝑆𝐼𝑁𝑅) , (7)
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where 𝛼 is the path loss component, 𝛽 is the signal power, 𝐶 is
the capacity of the user, SINR is the signal-to-interference plus
noise ratio and B is the bandwidth.

The system model closely interconnects the derived parame-
ters, namely channel gain, SINR, capacity, and sum rate. Chan-
nel gain, determined by path loss and fading factors, directly in-
fluences SINR. Concerning interference and noise, the strength
of the received signal increases, resulting in a higher SINR value.
SINR, in turn, plays a pivotal role in calculating channel capac-
ity, following Shannon’s capacity formula, where higher SINR
values lead to increased capacity. The individual capacities of
user channels, influenced by their respective SINR values, col-
lectively contribute to the overall sum rate of the system. Hence,
changes in channel gain can affect SINR and capacity calcula-
tions, which in turn affect the sum rate by changing the total data
rate of all users in the system. The sum rate can be calculated as

𝑅sum =

𝑁∑︁
𝑖=1
𝑐𝑖 , (8)

where 𝑅sum is the sum rate and 𝑐𝑖 is the capacity of the users
varying from 1 to 𝑁 . Furthermore, the model extends its analysis
to encompass the collective performance of all users within the
picocell through sum rate calculation. This computation aggre-
gates individual capacities to provide insights into the system
overall capacity. This systematic approach ensures a thorough
understanding of the system behaviour under diverse channel
scenarios, laying the groundwork for subsequent analysis and
sum rate enhancement.

3.2. Channel capacity analysis

Analyzing channel capacity and fixing service requirements is
critical for ensuring that the system meets users’ demands and
expectations. This research optimizes the system ability to de-
liver high-quality communication services by assessing channel
capacity and aligning it with service-specific requirements. This
step sets clearly defined performance benchmarks and objectives
for the optimization process. According to 3GPP standards [25],
Table 1 tabulates the minimum data rate required for the services
considered under the eMBB application.

Each UE is assigned a fixed service that is demanded by them
and their minimum required data rate ranges from 0.064 Mbps
to 5 Mbps.

Resource allocation and system optimization depend on
choosing the best ML technique for user clustering. We chose
k-means clustering over density-based scanning (DB-scan) and
the Gaussian mixture model (GMM) because it groups users
quickly based on channel characteristics, which maximizes the
use of resources and improves system performance. This deci-
sion sets the stage for model building, and implements user clus-
tering using machine learning algorithms, particularly k-means
clustering, with the aim of improving the sum rate. The sug-
gested study used k-means, DB-scan, and GMM ML techniques
to cluster users. The study uses machine learning performance
evaluation metrics such as silhouette scores and Davies Bouldin

Table 1
eMBB service requirements

Services
Specifications

Data rate 64 Kbps

Channel Stereo

Audio Sample rate 44 KHz

Format MP3

Data rate 1.5 Mbps

Video call Resolution 720p

Video compression standard H265

Data rate 5 Mbps

Video HD Resolution 1080p

Video compression standard H265

indices to select between these models. This proves that k-means
is the best clustering algorithm for the database.

3.3. Model construction and sum rate analysis

Model building is essential for turning raw data into actionable
insights. User clustering using channel state information (CSI)
data reveals channel condition trends, which facilitates targeted
tuning. This phase lays the groundwork for optimizing system
performance and sum rate.

Figure 2 depicts the flowchart for the workings of the k-means
clustering algorithm in the proposed system scenario, where 𝑘
denotes the number of clusters (𝑘 = 3), Ci is the computed
capacity of each user, and Cs is the required capacity for specific

Fig. 2. Working of k-means based user clustering
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services. We position the users into a cluster by maintaining the
computed cluster capacity above the required data rate.

Evaluating the achieved sum rate before and after cluster-
ing provides a quantitative measure of the effectiveness of the
optimization strategy and by comparing system performance
metrics, the project assesses the impact of user clustering on
overall system throughput. This comparative analysis adheres
to excellent decision-making and optimization efforts, guiding
future enhancements and improvements.

Meeting service-specific requirements is paramount for en-
suring user satisfaction and system usability. This research aims
to meet the service demands of all eMBB users in the hexagonal
cell. Prioritizing the allocation of system capacity toward meet-
ing these requirements, it ensures an optimal user experience
across diverse communication modalities. This focus on service
quality and user satisfaction underscores the commitment to
delivering practical and impactful outcomes.

4. RESULTS AND DISCUSSION

These simulation settings are customized to match real-world
conditions and can be performed using Python. Our analysis
also includes key performance metrics derived from compre-
hensive simulations. This detailed analysis compares system
performance both before and after clustering. Clustering meth-
ods show advantages by enhancing system performance. We
also provide a comprehensive review of user clustering machine
learning algorithms.

4.1. Simulation parameters

Deploying the picocell system with 15 users creates the op-
erational environment for future data collection, analysis, and
optimization. It places the work in a real-world context, allow-
ing for practical insights and outcomes. Table 2 tabulates the
considerations for this research.

Table 2
Simulation parameters

S. No Parameters Values

1 Number of UEs 15

2 Cell type Picocell (100–250 m)

3 Path loss Free space and log distance

4 Fading channels Rayleigh and Rician

5 Number of pico BS 1

6 Carrier frequency 6 GHz

7 Bandwidth 10 MHz

8 Transmit power 30 dBm

4.2. Performance metrics

This study calculates the capacity and sum rate for each UE
in the system under consideration. For the system scenario, we
obtain the following simulation parameters for the free-space

Rayleigh fading channel. Tables 3 and 4 compute the channel
gain, SINR, and Sum rate.

Table 3
Computation of channel gain and SINR

UE ID Distance (m) Channel gain SINR (Watt)

1 131 2.29826E–05 0.007524608

2 137 7.10471E–05 0.003667752

3 147 1.97082E–05 0.017823362

4 155 3.18995E–05 0.007800755

5 137 4.55325E–05 0.000531125

6 162 2.26961E–05 0.011070093

7 138 4.79879E–05 0.01448357

8 147 4.93726E–05 0.02258521

9 158 3.08838E–05 0.00573407

10 145 5.22657E–05 0.004169871

11 156 2.70481E–05 0.013023036

12 134 5.2124E–05 0.011908173

13 141 8.57054E–05 0.016861267

14 159 3.06909E–05 0.007925278

15 145 3.13109E–05 0.004908504

Table 4
Computation of user sum rate

UE ID Distance (m) SINR (Watt) Sum rate (Gbps)

1 131 0.007524608 1.08

2 137 0.003667752 0.52

3 147 0.017823362 2.54

4 155 0.007800755 1.12

5 137 0.000531125 0.07

6 162 0.011070093 1.58

7 138 0.01448357 2.07

8 147 0.02258521 3.22

9 158 0.00573407 0.82

10 145 0.004169871 0.06

11 156 0.013023036 1.36

12 134 0.011908173 1.70

13 141 0.016861267 2.41

14 159 0.007925278 1.13

15 145 0.004908504 0.07

The channel gain influences the signal strength, coverage, and
throughput of the user equipment (UEs), ensuring the QoS in
the simulated environment. SINR is then used by determining
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the performance and capacity of the 5G networks to calculate
the sum rate of the users, and Table 3 shows the results of the
channel gain and SINR value. It achieves a moderated SINR
value of 5 dB to 12 dB, making it suitable for mobile broadband
users.

The sum rate determines the network overall capacity and it is
performed by maintaining QoS to improve user experience and
make better use of available resources, and as shown in Table 4,
it achieves roughly 2 Gbps for mobile users.

4.3. Performance analysis

This section includes an analysis of performance metrics, specif-
ically the sum rate and ML model evaluation metrics. This in-
cludes comparing the sum rate before and after clustering, as
well as comparing three different ML models to select the most
suitable model for user clustering.

Table 5 lists each user’s system capacity, along with the min-
imum capacity needed to meet the service-specific throughput
requirements for that user. Among fifteen users, nine users met
their minimum service requirements, whereas the remaining
UEs were not able to satisfy the minimum service requirement.
Only 60% of the users were able to meet the requirements.

Table 5
Capacity of the system before clustering

UE ID Distance
(m)

Throughput
before

clustering

Service
demanded

Minimum
service
required

Service
met

1 131 1.08 Audio 0.064 Yes

2 137 0.52 Audio 0.064 Yes

3 147 2.54 Video call 1.5 Yes

4 155 1.12 Video_Hd 5 No

5 137 0.07 Audio 0.064 Yes

6 162 1.58 Video call 1.5 Yes

7 138 2.07 Video_Hd 5 No

8 147 3.22 Video call 1.5 Yes

9 158 0.82 Audio 0.064 Yes

10 145 0.06 Video call 1.5 No

11 156 1.36 Video call 1.5 No

12 134 1.70 Video call 1.5 Yes

13 141 2.41 Audio 0.064 Yes

14 159 1.13 Video_Hd 5 No

15 145 0.07 Video call 1.5 No

Figure 3 displays the UEs that belong to each cluster after
clustering, along with their coordinates in the picocell. Different
shapes denote UEs belonging to three different clusters.

Figure 4 represents a unique cluster of users, classified based
bandwidth and SINR, and calculates the total rate. Therefore,
clusters with higher sum-rate bars indicate superior network
performance in meeting the service requirements of UEs inside

Fig. 3. Picocell scenario after clustering

Fig. 4. Capacity after cluster formation

such clusters. Furthermore, we compute the average throughput
for all clusters to be 7.16 Mbps.

Picocells are used after clustering to optimize network per-
formance. They achieve this by improving the user experience,
enhancing user capacity to prevent interference, and ultimately
enhancing the quality of service for consumers through through-
put enhancement.

Figure 5 shows which cluster the UE belongs to and its dis-
tance from the BS.

The distances within the cluster, which comprises three users,
are much closer than the other clusters. Cluster 1 has smaller
distances; this means the cluster members are likely to be close
or far apart depending on the distances given. Cluster 2 is located
on the opposite side, and the distance between it and the other
two clusters is significantly smaller than that of Cluster 1 and
significantly larger than that of Cluster 3. Such an approach could
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Fig. 5. Distance of user inside picocell

potentially detect trends in user distances, as well as investigate
aspects such as user behaviour, regional distribution, and future
network construction.

Figure 6 depicts the maximum achievable capacity for each
cluster (𝑘) and the minimum required capacity (P) for that cluster
to satisfy every UE service-specific requirement.

Fig. 6. Maximum achievable capacity for each cluster

The combined SINR values for each cluster are given,
providing information on the signal quality that users in
these clusters experience. Aggregate SINR for each cluster:
[0.053, 0.032, 0.063].

When approaching the first base station, the throughput af-
ter clustering proves just 4.70 Mbps – about a factor of two
lower than what it is without base stations routing information
into place. As the distance from the base station increases, af-
ter clustering, throughput seems relatively stable an effect that
suggests improving longer distances. Clustering maintains high
throughput within a specific range or across all ranges. Even at
a further distance of 156 meters, throughput is still 9.09 Mbps,
which is quite good for video calls and HD video streaming.

After clustering, the throughput reaches its peak in the pro-
cess, maintaining or surpassing the minimum service for all
users, regardless of their distance from the base station.

Hence, picocell clustering probably enhanced and relayed the
capabilities of the network and suppressed interference, thus al-
lowing users, even if they are situated a maximum of 156 meters
away, to receive an extremely high throughput that satisfies their
service requirements.

Table 6 illustrates how the capacity after clustering enables
each user to meet their service requirements, as the minimum
required throughput is less than the obtained capacity after clus-
tering. This ensures that clustering increases the overall system
capacity, thereby enhancing the throughput of the entire system
and meeting service-specific needs for every single user.

Table 6
Capacity of the system after clustering

UE ID Distance
(m)

Throughput
after

clustering

Service
demanded

Minimum
service
required

Service
met

1 131 4.70 Audio 0.064 Yes

2 137 4.70 Audio 0.064 Yes

3 147 9.09 Video call 1.5 Yes

4 155 9.09 Video_Hd 5 Yes

5 137 4.70 Audio 0.064 Yes

6 162 9.09 Video call 1.5 Yes

7 138 7.71 Video_Hd 5 Yes

8 147 7.71 Video call 1.5 Yes

9 158 9.09 Audio 0.064 Yes

10 145 4.70 Video call 1.5 Yes

11 156 9.09 Video call 1.5 Yes

12 134 4.70 Video call 1.5 Yes

13 141 7.71 Audio 0.064 Yes

14 159 9.09 Video_Hd 5 Yes

15 145 4.70 Video call 1.5 Yes

4.4. ML model comparison

We test different ML models for user clustering. We use the
silhouette score and Davies-Bouldin index. We test all clustering
models, including k-means, DBSCAN, and Gaussian mixture
models (GMM), to divide UEs into clusters.

Higher silhouette ratings indicate more distinct clusters and
levels of cohesiveness and separation. However, the Davies-
Bouldin index evaluates cluster separation by comparing cluster
centroids and diameters, and lower values indicate better clus-
tering. A careful analysis and comparison of these measures
across multiple clustering models reveals subtle pros and cons
of each technique.

Table 7 shows that the k-means algorithm outperforms the
other two models by obtaining better evaluation scores for both
metrics.
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Table 7
Clustering performance of ML models

S. No ML model Silhouette
score

Davies
Bouldin
index

1 k-means 0.343 0.8144

2 DBSCAN 0.196 2.006

3 GMM 0.285 1.0598

5. CONCLUSIONS

To conclude the system deployment scenario, we examined four
different channel scenarios, each involving combinations of fad-
ing channels and path loss models. We developed a thorough
dataset with 15 users, each distinguished by specific channel pa-
rameters and service requirements tailored to their unique needs.
The demonstration of the k-means machine learning method for
user clustering showed encouraging results in optimizing sys-
tem efficiency, improving the overall sum rate, and fulfilling
user service requirements.

In the future, researchers may focus on using advanced ma-
chine learning techniques, such as extreme learning machines
(ELM), k-means, convolutional neural networks (CNNs), and
deep neural networks (DNNs), to compare how well different
methods work. Additionally, they can explore beamforming sys-
tems that focus on improving signal delivery to individual users.
Real-time feedback on quality of service (QoS) can guide the
implementation of dynamic user clustering processes. This will
lead to ongoing enhancements in network performance and user
satisfaction.
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