
1

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
DOI: 10.24425/bpasts.2025.153832

Description and comparison of fault detection
 algorithms based on a selected building
 automation device

S.WŁOSTOWSKA*, B.KAWA, and P.BORKOWSKI

Department of Electrical Apparatus, Faculty of Electrical, Electronics, Computer and Control Engineering, Lodz University of Technology

Abstract. The article compares selected classification algorithms and those dedicated to anomaly detection. The models used temperature

measurements in four rooms simulated in the Matlab Simscape environment as test signals. The empirical part of the work consists of two

parts. In the first one, an example data from the simulated building heating model object, models were built using unsupervised and supervised

machine learning algorithms. Then, data from the facility was collected again with changed parameters (failures occurred at times other than

the test ones, and the temperature patterns differed from those recorded and used to train the models). The algorithms' effects and test signals

(temperature changes) were saved in the database. The obtained results were presented graphically in the Grafana program. The second part of

the work presents a solution in which the analysis of the operating status of the heating system takes place in real time. Using an OPC server,

data was exchanged between the Matlab environment and the database installed on a virtual machine in the Ubuntu system. The conclusions

present the results and collect the authors' suggestions regarding the practical applications of the discussed classification models.

Key words: fault detection, machine learning, building automation, smart-metering

1. INTRODUCTION

In today's dynamic development of new technologies, work on

fault detection systems is essential for maintaining the

reliability and safety of various processes and devices.

Detecting potential problems or damage enables quick

corrective action before a total failure occurs. It helps to

effectively exclude high repair costs and unfavourable

equipment downtime. The early detection model of potential

threats contributes to a higher reliability level and extends the

devices’s durability. Instead of routine, constant inspections,

detecting damage on an ongoing basis allows for optimal

planning of maintenance works. For some devices, failures may

pose a serious threat to user safety. The fault detection model

can allow for quick intervention and appropriate corrective

measures, minimising risk to people using the device [1].

In the context of this challenge, the presented study focuses on

analysing and comparing various fault detection algorithms.

Thanks to the use of advanced analysis techniques, the

presented research allows for the selection of solutions that can

significantly improve the ability, speed and effectiveness of

detecting, locating and diagnosing irregularities in building

automation systems [2].

2. BUILDING AUTOMATION

Building automation is a field of technology that uses control

and automation systems in buildings to optimise their

performance, energy efficiency, user comfort and safety. It

includes a network of devices that manage various

installations in the building and its surroundings. This

automated connection system creates the so-called intelligent

building that enables control of many of its functions. The

benefits of building automation include improved installation

operation, increased comfort, financial savings, security, and

remote control. Fault detection and analysis in building

automation systems involves identifying, locating and

understanding the causes of device malfunctions or failures.

Many diagnostic methods and fault location techniques

support this process, which includes: data analysis; tests and

inspections; signaling techniques; diagnostics and prediction;

Laboratory tests; fault location techniques; cause and effect

analysis [3,4].

3. MACHINE LEARNING

Machine learning is one of the areas of artificial intelligence

that includes a set of algorithms capable of independently

improving their performance by gaining experience and

analysing data. In other words, it is a process in which the

software can learn from the information provided and

gradually improve its skills through subsequent operations. In

the 1950s and 1960s, Artur Samuel from IBM developed a

program to train chess players, which can be considered the

beginning of machine learning. Samuel introduced the term

"machine learning" as "the ability of computers to learn

without having to program new skills." In 1965, the Dendral

program was created at Stanford University, which was a *e-mail: sandra.wlostowska@p.lodz.pl

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

THIS IS AN EARLY ACCESS ARTICLE.
This article has been accepted for publication in a future issue of this journal,

but has not been fully edited. Content may change prior to final publication.

2

breakthrough in analysing and identifying molecules of

organic compounds based on data [5,6].

Today, there are many types of machine learning, which can

be divided into two main categories: supervised and

unsupervised learning.

Supervised learning [7] involves the presence of a human in

the learning process. In this case, the algorithms learn based

on input data that are labeled, i.e., assigned appropriate

markings or classes. Algorithms learn to recognize patterns

and create predictive models based on labelled-data.

Examples of supervised learning techniques include

classification, regression, and prediction.

Unsupervised learning [8] on the other hand, unsupervised

learning occurs without labeled data and does not require

human supervision. Algorithms learn from the structure and

patterns of input data, identifying relationships and grouping

similar objects. Examples of unsupervised learning

techniques include clustering, dimensionality reduction, and

association.

3.1. Data classification.

Classification involves assigning objects to specific, known

categories, where each can be assigned to only one class. The

classification process consists of two stages. The first stage is

learning, generating the knowledge necessary to carry out the

process. The second stage is the actual determination of the

result, during which the knowledge generated in the learning

phase is used [9].

3.2. Data classification algorithms.

Data classification algorithms include various methods and

techniques for creating classification models. An algorithm is

a specific set of clearly defined steps that a computer can

perform to achieve a specific result. With machine learning

models, the goal is to establish or discover patterns that

humans can use to make predictions or classify data [6].

3.3. Anomaly detection algorithms.

Anomaly detection algorithms are unsupervised learning

algorithms and are data analysis techniques that aim to

identify unusual, rare or outlier observations in a dataset.

Anomalies may indicate observations that differ from the

normal pattern or represent potential abnormalities, failures,

fraud, or unusual behaviour [10].

3.4. Criteria for comparing classification algorithms.

When analysing the results obtained by the algorithms,

classification efficiency, i.e. the ability of the algorithm to

correctly assign samples to the correct classes, was chosen as

the main evaluation criterion. Although accuracy is the most

commonly used indicator, sensitivity, i.e. the ability of the

model to detect the most minor deviations from the norm, was

also considered here [11]. It will also be essential to compare

the performance of all algorithms, taking into account the time

required for training and classification. This time is crucial,

especially with large datasets or real-time applications [12].

4. METHODOLOGY

For this work, a model illustrating the heating system of a

building (fig.1) offered in the Matlab-Simulink [13,14] library

was used. The facility consisted of four rooms equipped with

radiators. The simulation calculated the room temperature

values based on the heat exchange with the environment

through its external walls, roof and windows. Each path was

simulated as a combination of thermal convection, heat

conduction, and thermal mass. It was assumed that no heat

was transferred internally between rooms. The heater

consisted of a furnace, a boiler, an accumulator, and a pump

that circulated hot water in the system. A PI controller with an

active integral limit, ani-windup, started fuel flow to the

furnace if the average room temperature fell below 21 °C and

stopped it if the temperature exceeded 25 °C. The disturbance

in the example was the external temperature with a sinusoidal

waveform. It was important that the waveform change

gradually so that the model could be evaluated for subtle

changes in temperature values. For this reason, a sine wave

was used instead of abrupt jumps in values. A fault was

manually introduced into the simulation in the form of open

windows, damaged radiators and a damaged stove to disturb

the temperature inside the rooms.

Fig.1. Matlab building heating model

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

Using the Repeating Sequence block, time series were built

for combinations of different simulation variances of radiator

damage and open windows, manipulating the value of the

furnace efficiency and the leakage of warm air through the

windows. The time series include damage in each room, then

combinations of damaged radiators in two rooms, and for

open windows additionally in three and in all rooms. Damage

to all radiators at once was not possible in the simulation.

Figure 2 shows the Repeating Sequence blocks and the

object's transmittance added to the simulation.

 Fig.2. Repeating Sequence block and object transfer function

The work was then divided into two parts. The first involved

simulating the operating time of the facility, while the second

presented a data exchange solution between the real-time test

facility and the database. In the second, an OPC server

solution (KEPSerwerEX) was used [15].

4.1. Supervised learning of algorithms.

A run was created with the training data, where all possible

variances of the interference were simulated and then given

labels (fig.3).

Fig.3. Temperature waveforms recorded

The data was divided into temperature values for individual

rooms. The runs were divided into parts presenting data for

individual faults and those representing correct operation of

the model (fig.4).

Fig.4. Determining the division points of the route – section

Each fault was assigned an individual variable, and then using

the "for" command, each data sample was associated with a

label describing a specific fault, e.g. Open window in room 1,

Damaged radiator in room 2. The purpose of this procedure is

to later indicate to the algorithms an appropriate rule that will

map the input data to the desired output. In the next step, the

"species" matrix was declared, containing all variables

describing the faults. Based on this matrix and data from all

rooms, a table with training data was created (fig.5).

Fig.5. Training data table

The above steps were repeated to prepare the test data. It was

necessary to remember that the order of faults in the run for

the test data should be different from that for the training data

(fig.6).

Fig.6. Test data table

The data was standardized and, using the Classification

Learner tool available in the Statistics and Machine Learning

Toolbox [16, 17], classification models for supervised

learning algorithms were created. It is an interactive and

graphical user interface that allows easy and fast exploration,

analysis and training of classification models. The first step in

the process of testing algorithms in Matlab is to collect the

data on which classification will be performed. The data has

to be imported into the Classification Learner environment.

As mentioned earlier, the dataset is divided into two main

subsets: training set and test set. The training set is used to

train the model, and the test set is used to evaluate the model

performance on new data. In the initial comparison, all

algorithms offered by Matlab were used. In the model training

process, the algorithms are fitted to the training data in order

to teach the models to recognize patterns and their associated

class labels. After training is completed, it is possible to

evaluate the performance of each model on the test set.

Different performance evaluation metrics are available in

Classification Learner, such as accuracy, precision, and recall.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

In the initial analysis, the accuracy of prediction was taken

into account and five algorithms were selected for further

analysis (table 1).

TABLE 1. Algorithms with the highest failure detection efficiency

 Algorithm type Subtype Accuracy

1. Logistic regression Efficient Logistic Regression 91,10 %

2. Support vector machine Quadratic SVM 91,74 %

3. K-nearest neighbors Cosine KNN 89,99 %

4. Multiple classifiers Bagged Trees 90,80 %

5. Neural network Trillayered Neural Network 92,33 %

Accuracy of classification models is calculated based on the

model's prediction results in relation to known class labels in

the test data set. It is described by the following equation:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

In the initial phase, it is often crucial to filter algorithms in

terms of their overall quality, which accuracy does very

effectively. Only in the subsequent stages of analysis were the

models assessed in terms of precision and recall

• Efficient Logistic Regression – this classifier works

on the basis of classical logistic regression. Still, it

has been optimized to better cope with large data

sets. It uses efficient optimization techniques that

allow the model to fit faster on large data sets. By

optimizing the learning process, this type of logistic

regression achieves higher performance, resulting in

reduced time and resources needed to train the model

on big data [18]. Figure 7 shows the algorithm

training parameters. The parameters include, among

others, data such as the accuracy of validation and

test data. The prediction speed, expressed in the

number of observations per second, which means the

number of predictions that the classifier is able to

make in one second. The total training time and the

size of the model.

Fig.7. Efficient Logistic Regression algorithm training
parameters

• Quadratic SVM – an extension of the standard SVM

algorithm that allows quadratic interactions between

features to be taken into account during the

classification process. This means that the Quadratic

SVM model can detect more complex relationships

between features, particularly useful for data where

decision boundaries are not linear. By considering

quadratic interactions, this algorithm can better deal

with non-linear patterns and provide greater

generalizability for more complex datasets [19].

Figure 8 shows the training parameters of the

Quadratic SVM algorithm. Compared to the

previous algorithm, it achieved a higher value of

accuracy in both validation and training data.

However, the prediction speed is much lower and the

training time of this algorithm is almost 8 times

longer than Efficient Logistic Regression. What can

affect the advantage of the Quadratic SVM algorithm

is the smaller size of the model.

Fig.8. Quadratic SVM algorithm training parameters

• Cosine KNN – a variant of the classic KNN

algorithm that uses cosine similarity. The operation

of this classifier is based on measuring the cosine

similarity between vectors representing objects in the

feature space. Unlike traditional KNN, where

Euclidean distance determines similarity, cosine

similarity measures the angle between two feature

vectors. This is particularly useful when the features

have different amplitudes or do not have a fixed

scale. Cosine KNN can be used, for example, in text

analysis, where feature vectors represent the

frequency of words, and cosine similarity allows the

degree of similarity between documents to be

determined [20]. Figure 9 shows the training

parameters of the Cosine KNN algorithm. It

achieved comparably high accuracy compared to

previous algorithms, but what distinguishes it is the

high prediction speed and small model size.

Fig.9. Cosine KNN algorithm training parameters

• Bagged Trees – is one of the compound classifiers

that uses a set of decision trees to improve

classification performance. By using multiple trees

and various training data, Bagged Trees tends to

show better generalization ability and lower risk of

over-fitting compared to a single decision tree. At the

time of prediction, each tree in the set predicts the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

test data and the final class is selected based on a

majority vote. In binary classification, most trees

unanimously decide to assign the data to one of the

classes [21]. Figure 10 shows the training parameters

of the Bagged Trees algorithm. It achieved the

highest accuracy of all the validation data. The

accuracy of the test data is similar to the rest of the

algorithms. What affects the algorithm's

disadvantage is the very large weight of the model,

approximately 16 MB. The algorithm is

characterized by a very high prediction speed and a

short model training time.

Fig.10. Bagged Trees algorithm training parameters

• Trillayered Neural Network – is one of the

fundamental types of neural networks. It is also

called a unidirectional neural network (feedforward

neural network) because data flows through the

network in only one direction, i.e. from the input

layer to the output layer. It consists of three main

layers: an input layer, where input data is received; a

hidden layer, where feature values are processed by

neurons that perform calculations using weights and

activation functions; and an output layer, where

results are generated based on the processed data

from the hidden layer [22,23]. Figure 11 shows the

parameters of the Trilayered Neural Network

training. Compared to the previous algorithms, the

quality of the neural network is better in almost every

respect. The classifier achieved the highest accuracy

on the test data, and its prediction speed reaches

190000 obs/sec. What is also worth noting is the very

small size of the model, reaching only 21 KB.

Fig.11. Training parameters of the Trilayered Neural Network
algorithm

4.2. Unsupervised learning of algorithms.

Unlike classification models in supervised learning,

unsupervised learning does not require initial training on

labelled data or the assignment of labels. The process of

training the algorithm takes place automatically, without user

intervention. The data generated by the algorithm can identify

those that differ from the overall trend. Models have been built

using K-means, One-Class SVM and iForest algorithms.

• K-means (fig.12) – is called the centroid algorithm; its

learning process works iteratively, aiming to find K

groups (centroids). Each point is assigned to the

nearest centroid, minimizing the sum of squares of the

distances between the data and the centroids.The

algorithm was configured to display two clusters of

data, i.e. normal values and anomalies [24]. The

'Display' parameter has been set to 'final', which means

that only the final progress information will be

displayed during the execution of the K-means

algorithm. The 'Distance' parameter specifies the

distance metric used to calculate the distance between

points and cluster centroids. In this case, after testing

several, the most suitable option for the given case was

the "cityblock" option, i.e. Manhattan Distance, where

the sum of the absolute values of the differences

between corresponding features is calculated. The

'Replicates' parameter specifies how many times the

K-means algorithm should be run with different

random initial centroid positions. The final result will

be the result of the replication that achieved the best

result. This value was chosen experimentally.

 Fig.12. K-means algorithm classification model

• One-class SVM (fig.13) – a variant of the standard

SVM algorithm, it is used to identify unusual

observations in the data by training the model on only

one class of data (without labelled outliers). The

model creates a hyperplane (or hyper curve in the case

of non-linear kernels) in a multidimensional feature

space that attempts to constrain most data points inside

the boundaries (hyperplane) or at the periphery of the

boundaries. Points outside these boundaries are

considered unusual and may be classified as outliers

from the rest of the data [25]. The efficiency of the

model depends on the selection of parameters, which

were determined experimentally. The 'ocsvm' function

was used. The function itself, without the selection of

parameters, gave unsatisfactory results - only a few

samples were classified as anomalies. To make the

model more efficient, the data were standardized

'StandardizeData=true'. The automatic kernel scale

function was selected, which is an element in the SVM

algorithm and controls the transformation of the data

space. "Auto" suggests that the kernel scale will be

adjusted automatically. The 'Lambda' parameter is a

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

regularization parameter that affects the flexibility of

the model's decision boundary, also set automatically

and the most important element influencing the

efficiency of the 'ContaminationFraction' model, i.e.

the expected percentage of anomalies in the training

data. Knowing the training data, the parameter was set

to 25%. This parameter should be selected carefully,

because too high a value leads to overfitting the

model.

Fig.13. One-class SVM algorithm classification model

• iForest (fig.14) – is one of the commonly used

unsupervised learning algorithms belonging to the

family of decision trees. It is one of the most popular

models for detecting anomalies in data, i.e.

observations that deviate significantly from the

predicted norm. The algorithm builds decision trees

based on the features of the data and identifies those

points that do not fit the rest of the set. The syntax of

the algorithm is quite similar to that of a one-class

SVM. Equally important is selecting an appropriate

percentage of anomalies in the training data. Since the

training data set remained constant. In addition, a

parameter was introduced to determine the number of

trees (learning classifiers) in the iForest algorithm.

Each tree is a certain number of samples from which

the model attempts to isolate anomalies.

Automatically, this value is set to 100 trees, but due to

the large dataset, it was increased to 150, which

improved the classification result by several per cent

[26].

Fig.14. iForest algorithm classification model

Unlike supervised learning algorithms, which produce a

constant result each time they are run, unsupervised learning

algorithms perform a series of calculations in the classification

process, and their result always differs by a few percent. This

can negatively affect the usability of these algorithms.

4.3. OPC server

Matlab-Simulink provides many possibilities to compare the

performance of algorithms, first of all you can freely "damage"

model elements to detect any potential damage and teach

algorithms to recognize it, which is not the case with real

systems. However, this program also has a number of

difficulties, which are often impossible to solve. First of all, it

is a real-time simulation. To prepare training and test data, it is

necessary to finish the simulation and then save it in a file,

which is later used to train algorithms, which forces a fixed

simulation time.

The paper proposes a solution to the above problem using a

communicator, which is the OPC server. However, this requires

the use of Statistic and Machine Learning Toolbox blocks,

because all simulation-related activities for test data are

performed directly in Simulink without using a script in Matlab.

This toolbox offers only blocks related to supervised machine

learning. The scope of these algorithms is very small, which is

not the case in the previously discussed Classification Learner.

First, the procedure is standard, i.e. a training set with class

labels of possible failures should be prepared. For the needs of

the paper, a simulation with one failure was created, because at

this point the algorithms will not be compared, and only a way

to solve the simulation problem in real mode will be shown.

Attempts were made to prepare a model with all possible

failures, but during real-time simulation, despite the lack of

errors in compilation, the time was very slow, until finally the

simulation stopped at the level of microseconds, which could

be caused by the program version or internal limitations of the

computer system.

After preparing the test data and labeling the time samples, the

classes were changed to numerical values to avoid later errors

in the data type in the database. The classification model was

trained using the 'fitcecoc' function, which is used to train a

multiclass classifier using the Error-Correcting Output Codes

(ECOC) coding strategy. This technique solves the multiclass

classification problem by transforming it into a series of binary

classification problems. The ECOC strategy is based on the fact

that each class is represented as a combination of the binary

outputs of the classifiers. Each of these binary classifiers is

responsible for recognizing one pair of classes: the "target

class" (the class the user wants to recognize) and the "other

class" (the remaining classes that are not the target class). The

results of these classifiers are then combined to obtain the final

decision.

Then, a preliminary simulation with a damaged furnace was

prepared for the test data to check the algorithm's performance.

The available ClassificationECOC Predict block was used and

Scope was connected to it (fig.15).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

Fig.15. Real-time simulation using the predict block

Figure 16 shows the response of the classification model to the

simulation of the heating model operation, which indicates

correct fault detection.

Fig.16. Classification model response

4.4. Data import into InfluxDB and PostgreSQL
databases.

The InfluxDB [27,28] database is one of the most popular

open-source time series databases. It was designed as a

solution for projects that generate large amounts of data over

time, especially for smart metering. For this reason, it was

chosen as the most suitable tool for the issues addressed in the

article.

A PostgreSQL [28,29] database was used for the stage using

the OPC server. A relational database was used because of the

ease of communication of such a database with Matlab.

4.5. Visualisation in the Grafana system.

Grafana [30] is an open-source tool for data visualisation and

monitoring that visualizes the results obtained. It enables the

creation of attractive data visualizations such as graphs, bar

charts, dot plots, pie charts, heat maps, and much more. This

allows users to to understand better and analyse data. Grafana

supports various data sources, such as InfluxDB and

PostgreSQL databases.

5. RESULTS

5.1. Simulated time operation.

After the data was stored in the database, InfluxDB was

communicated to the Grafana visualization system. The

simulation simulation run as a function of time with different

combinations of faults and the responses of the supervised

learning algorithms are shown in fig.17. At first glance, the

neural network and quadratic SVM performed best with the

classification. At some points, they misclassified the damage

at the beginning of the detection, while after providing more

measurements, they eventually recognized the correct

damage. The other algorithms happened to detect damage in

the correct data, which can confuse real objects and wasted

time detecting damage that does not occur. All algorithms

mostly confused the values for open windows and classified

them as damaged radiators. This is due to the similar

behaviour of the temperature values for these types of

damage.

Fig.17. Diagram showing the result of the supervised learning algorithms

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

The algorithms handled the heater damage very well, as such

damage results in temperatures in all rooms dropping to the

outside temperature, which cannot be mistaken for any other

fault. Other than that, the operation of the algorithms is

relatively correct - they reacted to every anomaly present in

the data. To better illustrate the performance of the algorithms,

a graph of the misclassified data against the manual

description of the data sample labels is also shown (fig.18).

The fewest errors were observed in the performance of the

Trillayered Neural Network algorithm.

Fig.18. Sum of incorrect classifications of supervised learning algorithms

Another visualization was carried out for the unsupervised

learning algorithms. The results of the One-class SVM and

iForest algorithms were compared simultaneously, as the

syntax of their models is similar. They produced similar

results, with a slight advantage in favour of One-Class SVM

(fig.19). They reacted to every anomaly present. In contrast,

with most of the anomalies present, they had a problem

making a final decision, which is why, as seen in the graphs,

the markers jump from 0 to 1. The performance of the K-

means algorithm did not give satisfactory results. It detected

about 50 per cent of anomalies in the data, only where the

temperature in the facility reached the outside temperature.

When it fell by a few °C, e.g., due to open windows, the

algorithm did not classify this as a fault.

However, it is essential to note that for the One-class SVM

and iForest algorithms, a definite disadvantage in building

classification models based on these algorithms is the need for

a percentage of anomalies present in the data. Without this,

the performance of the algorithms was decidedly inferior to

K-means - they classified only a few data samples for the

damaged heater as abnormal.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

Fig.19. Diagram showing the result of the One-class SVM algorithm

5.2. Real-time operation.

For real-time simulation, the alerting offered by Grafana has

also been added to the data visualization. This is the process

of monitoring and detecting anomalies or abnormal behaviour

in systems and metrics and generating notifications or alerts

when certain thresholds or conditions are exceeded. As for

previous visualisations, Grafana was connected to a database,

this time, PostgreSQL. Alerting was then configured,

depending only on the values returned by the classification

model. A value of 0 indicates no damage in the system, while

1 indicates damage. Therefore, a condition was set so that for

all values above 0, an alert about a detected anomaly is

triggered. The fig.20 shows the real-time simulation run along

with the response of the classification model. The system

worked as expected - it correctly detected the anomaly at a

time that agreed with the simulation run.

Fig.20. Real-time simulation diagram

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

6. CONCLUSIONS

Analysing the obtained results, the popular supervised learning

algorithms remain reliable: the Trilllayered Neural Network

and Support Vector Machine SVM (Quadrtatic SVM).

However, two unsupervised learning algorithms—one-class

SVM and iForest—achieved comparable results.

The goal of supervised learning is to train a model to predict or

classify data based on the labels provided in the training data.

The model is trained by examples to assign input data to the

appropriate categories accurately. Such learning algorithms

require labeled training data that contains input-output (feature-

label) pairs. They find their uses in classification, regression and

anomaly detection where there are clearly defined labels or

predictive goals. The ability to evaluate is relatively easier than

unsupervised learning algorithms because there are comparison

labels. Measures such as accuracy, precision, sensitivity and

confusion matrix are commonly used for evaluation [7,9,31].

Unsupervised learning aims to discover hidden patterns,

structures, or relationships in data without using labels. There

are no labels, and unsupervised algorithms try to group similar

data or reduce the dimensionality of the data. Activities take

place on unlabeled or unlabeled data. They are often used to

group data, reduce dimensionality, detect anomalies and

generate data structures. Assessing their effectiveness is more

difficult because there are no comparative labels. Other

evaluation methods must be used, such as internal measures

[32].

The choice between supervised and unsupervised machine

learning depends on the data's characteristics, the labels'

availability, and the purpose of the analysis. In practice, these

two methods can often be combined to obtain better results and

a deeper understanding of the data. In this case, supervised

algorithms work better when dealing with an object consisting

of several rooms. They detect specific damage in a specific

room, which will save time wasted on locating damage in the

case of unsupervised algorithms. They are also much more

accurate; they always detect an anomaly and, although at the

beginning, the measurements delivered frequently were wrong

about the type of damage, after providing more samples, they

classified correctly.

The advantage of unsupervised learning models is the

classification time. In the case of this facility, where the data

determines the temperature values in the rooms, it affects the

thermal comfort of the inhabitants. Therefore, it is important to

react as quickly as possible. This time is only disturbed by the

lack of knowledge in which room the damage occurred.

Unsupervised algorithms can discover hidden patterns in new

data, which is impossible with supervised learning. However,

due to the lack of labels, it is more difficult to understand why

the model makes certain decisions [33].

An exciting aspect of the work was an attempt to directly

communicate the Matlab Simulink program with the database,

so that it was possible to control the temperature values in real

time constantly. For this purpose, an OPC server was used to

act as an intermediary in data transfer. The OPC server

collected data from the Simulink process then processed it into

specified data types and then sent it to a previously selected

database communicated with the server. However, this method

does not allow you to test all the algorithms discussed by

everyone due to the lack of appropriate blocks in Simulink. The

complexity of the simulated processes and the large number of

labels in the training data also slowed down and blocked the

system [15].

6.1. Possible development.

The topics discussed in the above article provide ample

opportunities for further development. First of all, application

in a real environment. Selected fault detection algorithms can

be tested in a real building automation environment. By

carefully analysing test results, operating conditions,

confounding factors and potential challenges in implementing

algorithms can be considered. It is also possible to further

combine the algorithms to increase their efficiency and

integrate with existing systems, adapt to various devices and

monitor performance in the long run. Further testing the

algorithms on different devices, it will be possible to see how

the algorithms behave in different conditions and

environments. In the further development of this issue, it will

be essential to conduct a cost-benefit analysis of the

implementation of the developed fault detection algorithms

and compare the estimated benefits with the implementation

and maintenance costs to assess the effectiveness of the

technology in practice.

7. REFERENCES

[1] V. Chandola, D. Cheboli and V. Kumar, “Detecting anomalies in a time
series database”, Computer Science & Engineering (CS&E) Technical

Reports, 2009.

[2] K. Różanowski, „Sztuczna inteligencja rozwój, szanse i zagrożenia”,
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki, 2(2), pp.

109-135, 2007.

[3] H. Chaouch, A. S. Bayraktar and C. Çeken, “Energy Management in
Smart Buildings by Using M2M Communication”, International

Istanbul Smart Grids and Cities Congress and Fair (ICSG), Istanbul,

Turkey, pp. 31-35, 2019, doi: 10.1109/SGCF.2019.8782357.
[4] P. Borkowski, B. Bolanowski and E. Walczuk, „Inteligentne systemy

zarządzania budynkiem”, Wydawnictwo Politechniki Łódzkiej, 2011

[5] M. Szeliga, „Data Science i uczenie maszynowe” Wydawnictwo
Naukowe PWN, 2017.

[6] A. Duraj, E. Korzeniewska, and A. Krawczyk, “Classification

algorithms to identify changes in resistance”, Przegląd
Elektrotechniczny, 91(12), pp. 80-83, 2015.

[7] V. Nasteski, “An overview of the supervised machine learning

methods”, Horizons. b, 4(51-62), pp. 56, 2017.
[8] F. Hahne, W. Huber, R. Gentleman, S. Falcon, R. Gentleman and V. J.

Carey, “Unsupervised machine learning”, Bioconductor case studies,

pp. 137-157, 2008.

[9] P. Fatyga and R. Podraza, „Klasyfikacja danych–przegląd wybranych

metod”, Zeszyty Naukowe Wydziału ETI Politechniki Gdańskiej, 2010

[10] V. Chandola, A. Banerjee and V. Kumar, “Anomaly detection: A
survey”, ACM computing surveys (CSUR), 41(3), pp. 1-58, 2009.

[11] P. Lula, „Wykorzystanie sztucznej inteligencji w prognozowaniu”,

Materiały Seminarium Statsoft „Prognozowanie w przedsiębiorstwie”,
Warszawa, pp. 39-69, 2000.

[12] M. Walesiak, „Wybór grup metod normalizacji wartości zmiennych w

skalowaniu wielowymiarowym”, Przegląd Statystyczny, 63(1), pp. 7-
18, 2016.

[13] “MATLAB - MathWorks”. [Online].

Available: https://www.mathworks.com/products/matlab.html,
[Accessed: 13. Sep. 2024].

[14] “House Heating System - MATLAB & Simulink”. [Online]. Available:

https://www.mathworks.com/help/simulink/ug/model-a-house-
heating-system.html, [Accessed: 13. Sep. 2024].

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/help/simulink/ug/model-a-house-heating-system.html
https://www.mathworks.com/help/simulink/ug/model-a-house-heating-system.html

11

[15] “KEPServerEX / ThingWorx Kepware Server”, INEE Sp. z o.o.

[Online]. Available: https://inee.pl/produkty/kepserverex-thingworx-

kepware-server, [Accessed: 13. Sep. 2024].
[16] „Simscape”. [Online].

Available: https://www.mathworks.com/products/simscape.html

[Accessed: 13. Sep. 2024].
[17] „Simulink - Simulation and Model-Based Design”. [Online].

Available: https://www.mathworks.com/products/simulink.html

[Accessed: 13. Sep. 2024].
[18] M. Mamczur, „Jak działa regresja logistyczna?”, 20 marzec 2023.

[Online]. Available: https://miroslawmamczur.pl/jak-dziala-regresja-

logistyczna/, [Accessed: 13. Sep. 2024].
[19] M. Jukiewicz, „Wykorzystanie maszyny wektorów nośnych oraz

liniowej analizy dyskryminacyjnej jako klasyfikatorów cech w

interfejsach mózg-komputer”, Poznan University of Technology
Academic Journals. Electrical Engineering, (79), pp. 25-30, 2014.

[20] T. Pamuła, „Ocena predykcji natężenia ruchu pojazdów z użyciem

algorytmu kNN-najbliższych sąsiadów i sieci neuronowych”,
Logistyka, (6), pp. 8313-8320, 2014.

[21] E. Szpunar-Huk, „Pozyskiwanie wiedzy z danych przy wykorzystaniu

klasyfikatorów złożonych”, Prace Naukowe Akademii Ekonomicznej

we Wrocławiu, pp. 268-279, 2005.

[22] J. Tchórzewski and K. Leszko, “Artificial neural networks as models

neuronal electronic state offices”, Information Systems in Management,
4(3), pp. 219-227, 2015.

[23] P. Lula and R. Tadeusiewicz, “Introduction to Neural Networks”,

Kraków: StatSoft Polska Sp. z o.o., 2001.

[24] B. Całka, „Grupowanie nieruchomości lokalowych za pomocą metody

K-średnich”, Przegląd geodezyjny, 84(11), pp. 3-8, 2012.

[25] Y. Chen, X. S. Zhou and T. S. Huang, “One-class SVM for learning in
image retrieval”, In Proceedings 2001 international conference on

image processing (Cat. No. 01CH37205), Vol.1, pp. 34-37, IEEE, 2001.

[26] X. Zhao, Y. Wu, D. L. Lee and W. Cui, “iForest: Interpreting random
forests via visual analytics”, IEEE transactions on visualization and

computer graphics, 25(1), pp. 407-416, 2018.

[27] “InfluxDB Time Series Data Platform”, InfluxData. [Online].
Available: https://www.influxdata.com/, [Accessed: 13. Sep. 2024].

[28] S. Włostowska, J. Szabela, A. Chojecki and P. Borkowski, “Comparison

of SQL NoSQL and TSDB database systems for smart buildings and
smart metering applications”, Przeglad Elektrotechniczny, 2023.

[29] P. G. D. Group, “PostgreSQL” [Online].

Available: https://www.postgresql.org/, [Accessed: 13. Sep. 2024].
[30] „Grafana: The open observability platform”, Grafana Labs. [Online].

 Available: https://grafana.com/, [Accessed: 13. Sep. 2024].

[31] L. Deri, S. Mainardi and F. Fusco, “TSDB: A compressed database for
time series”, In Traffic Monitoring and Analysis: 4th International

Workshop, TMA 2012, Vienna, Austria, March 12, 2012. Proceedings

4, pp. 143-156, Springer Berlin Heidelberg, 2012.

[32] Y. Ma, Q. Zhang, J. Ding, Q. Wang and J. Ma, “Short term load

forecasting based on iForest-LSTM”, 2019 14th IEEE Conference on

Industrial Electronics and Applications (ICIEA), pp. 2278-2282, IEEE,
2019.

[33] D. Conway, Uczenie maszynowe dla programistów, Helion, 2014.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

https://inee.pl/produkty/kepserverex-thingworx-kepware-server
https://inee.pl/produkty/kepserverex-thingworx-kepware-server
https://www.mathworks.com/products/simscape.html
https://www.mathworks.com/products/simulink.html
https://miroslawmamczur.pl/jak-dziala-regresja-logistyczna/
https://miroslawmamczur.pl/jak-dziala-regresja-logistyczna/
https://www.influxdata.com/
https://www.postgresql.org/
https://grafana.com/

