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Abstract. The article compares selected classification algorithms and those dedicated to anomaly detection. The models used temperature 

measurements in four rooms simulated in the Matlab Simscape environment as test signals. The empirical part of the work consists of two 

parts. In the first one, an example data from the simulated building heating model object, models were built using unsupervised and supervised 

machine learning algorithms. Then, data from the facility was collected again with changed parameters (failures occurred at times other than 

the test ones, and the temperature patterns differed from those recorded and used to train the models). The algorithms' effects and test signals 

(temperature changes) were saved in the database. The obtained results were presented graphically in the Grafana program. The second part of 

the work presents a solution in which the analysis of the operating status of the heating system takes place in real time. Using an OPC server, 

data was exchanged between the Matlab environment and the database installed on a virtual machine in the Ubuntu system. The conclusions 

present the results and collect the authors' suggestions regarding the practical applications of the discussed classification models. 
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1. INTRODUCTION 

In today's dynamic development of new technologies, work on 

fault detection systems is essential for maintaining the 

reliability and safety of various processes and devices. 

Detecting potential problems or damage enables quick 

corrective action before a total failure occurs. It helps to 

effectively exclude high repair costs and unfavourable 

equipment downtime. The early detection model of potential 

threats contributes to a higher reliability level and extends the 

devices’s durability. Instead of routine, constant inspections, 

detecting damage on an ongoing basis allows for optimal 

planning of maintenance works. For some devices, failures may 

pose a serious threat to user safety. The fault detection model 

can allow for quick intervention and appropriate corrective 

measures, minimising risk to people using the device [1]. 

In the context of this challenge, the presented study focuses on 

analysing and comparing various fault detection algorithms. 

Thanks to the use of advanced analysis techniques, the 

presented research allows for the selection of solutions that can 

significantly improve the ability, speed and effectiveness of 

detecting, locating and diagnosing irregularities in building 

automation systems [2]. 

2. BUILDING AUTOMATION 

Building automation is a field of technology that uses control 

and automation systems in buildings to optimise their 

performance, energy efficiency, user comfort and safety. It 

includes a network of devices that manage various 

installations in the building and its surroundings. This 

automated connection system creates the so-called intelligent 

building that enables control of many of its functions. The 

benefits of building automation include improved installation 

operation, increased comfort, financial savings, security, and 

remote control. Fault detection and analysis in building 

automation systems involves identifying, locating and 

understanding the causes of device malfunctions or failures. 

Many diagnostic methods and fault location techniques 

support this process, which includes: data analysis; tests and 

inspections; signaling techniques; diagnostics and prediction; 

Laboratory tests; fault location techniques; cause and effect 

analysis [3,4]. 

3. MACHINE LEARNING 

Machine learning is one of the areas of artificial intelligence 

that includes a set of algorithms capable of independently 

improving their performance by gaining experience and 

analysing data. In other words, it is a process in which the 

software can learn from the information provided and 

gradually improve its skills through subsequent operations. In 

the 1950s and 1960s, Artur Samuel from IBM developed a 

program to train chess players, which can be considered the 

beginning of machine learning. Samuel introduced the term 

"machine learning" as "the ability of computers to learn 

without having to program new skills." In 1965, the Dendral 

program was created at Stanford University, which was a *e-mail: sandra.wlostowska@p.lodz.pl 
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breakthrough in analysing and identifying molecules of 

organic compounds based on data [5,6]. 

Today, there are many types of machine learning, which can 

be divided into two main categories: supervised and 

unsupervised learning. 

Supervised learning [7] involves the presence of a human in 

the learning process. In this case, the algorithms learn based 

on input data that are labeled, i.e., assigned appropriate 

markings or classes. Algorithms learn to recognize patterns 

and create predictive models based on labelled-data. 

Examples of supervised learning techniques include 

classification, regression, and prediction. 

Unsupervised learning [8] on the other hand, unsupervised 

learning occurs without labeled data and does not require 

human supervision. Algorithms learn from the structure and 

patterns of input data, identifying relationships and grouping 

similar objects. Examples of unsupervised learning 

techniques include clustering, dimensionality reduction, and 

association.  

3.1. Data classification. 

Classification involves assigning objects to specific, known 

categories, where each can be assigned to only one class. The 

classification process consists of two stages. The first stage is 

learning, generating the knowledge necessary to carry out the 

process. The second stage is the actual determination of the 

result, during which the knowledge generated in the learning 

phase is used [9]. 

3.2. Data classification algorithms. 

Data classification algorithms include various methods and 

techniques for creating classification models. An algorithm is 

a specific set of clearly defined steps that a computer can 

perform to achieve a specific result. With machine learning 

models, the goal is to establish or discover patterns that 

humans can use to make predictions or classify data [6]. 

3.3. Anomaly detection algorithms. 

Anomaly detection algorithms are unsupervised learning 

algorithms and are data analysis techniques that aim to 

identify unusual, rare or outlier observations in a dataset. 

Anomalies may indicate observations that differ from the 

normal pattern or represent potential abnormalities, failures, 

fraud, or unusual behaviour [10]. 

3.4. Criteria for comparing classification algorithms. 

When analysing the results obtained by the algorithms, 

classification efficiency, i.e. the ability of the algorithm to 

correctly assign samples to the correct classes, was chosen as 

the main evaluation criterion. Although accuracy is the most 

commonly used indicator, sensitivity, i.e. the ability of the 

model to detect the most minor deviations from the norm, was 

also considered here [11]. It will also be essential to compare 

the performance of all algorithms, taking into account the time 

required for training and classification. This time is crucial, 

especially with large datasets or real-time applications [12]. 

4. METHODOLOGY 

For this work, a model illustrating the heating system of a 

building (fig.1) offered in the Matlab-Simulink [13,14] library 

was used. The facility consisted of four rooms equipped with 

radiators. The simulation calculated the room temperature 

values based on the heat exchange with the environment 

through its external walls, roof and windows. Each path was 

simulated as a combination of thermal convection, heat 

conduction, and thermal mass. It was assumed that no heat 

was transferred internally between rooms. The heater 

consisted of a furnace, a boiler, an accumulator, and a pump 

that circulated hot water in the system. A PI controller with an 

active integral limit, ani-windup, started fuel flow to the 

furnace if the average room temperature fell below 21 °C and 

stopped it if the temperature exceeded 25 °C. The disturbance 

in the example was the external temperature with a sinusoidal 

waveform. It was important that the waveform change 

gradually so that the model could be evaluated for subtle 

changes in temperature values. For this reason, a sine wave 

was used instead of abrupt jumps in values. A fault was 

manually introduced into the simulation in the form of open 

windows, damaged radiators and a damaged stove to disturb 

the temperature inside the rooms. 

 

 

Fig.1. Matlab building heating model
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Using the Repeating Sequence block, time series were built 

for combinations of different simulation variances of radiator 

damage and open windows, manipulating the value of the 

furnace efficiency and the leakage of warm air through the 

windows. The time series include damage in each room, then 

combinations of damaged radiators in two rooms, and for 

open windows additionally in three and in all rooms. Damage 

to all radiators at once was not possible in the simulation. 

Figure 2 shows the Repeating Sequence blocks and the 

object's transmittance added to the simulation. 

 

 Fig.2. Repeating Sequence block and object transfer function 

The work was then divided into two parts. The first involved 

simulating the operating time of the facility, while the second 

presented a data exchange solution between the real-time test 

facility and the database. In the second, an OPC server 

solution (KEPSerwerEX) was used [15]. 

4.1. Supervised learning of algorithms. 

A run was created with the training data, where all possible 

variances of the interference were simulated and then given 

labels (fig.3). 

 

 

 

 

 

 

 

 

 

Fig.3. Temperature waveforms recorded 

 

The data was divided into temperature values for individual 

rooms. The runs were divided into parts presenting data for 

individual faults and those representing correct operation of 

the model (fig.4). 

 

 

Fig.4. Determining the division points of the route – section 

 

Each fault was assigned an individual variable, and then using 

the "for" command, each data sample was associated with a 

label describing a specific fault, e.g. Open window in room 1, 

Damaged radiator in room 2. The purpose of this procedure is 

to later indicate to the algorithms an appropriate rule that will 

map the input data to the desired output. In the next step, the 

"species" matrix was declared, containing all variables 

describing the faults. Based on this matrix and data from all 

rooms, a table with training data was created (fig.5). 

 

 

Fig.5. Training data table 

 

The above steps were repeated to prepare the test data. It was 

necessary to remember that the order of faults in the run for 

the test data should be different from that for the training data 

(fig.6). 

 

 

Fig.6. Test data table 

 

The data was standardized and, using the Classification 

Learner tool available in the Statistics and Machine Learning 

Toolbox [16, 17], classification models for supervised 

learning algorithms were created. It is an interactive and 

graphical user interface that allows easy and fast exploration, 

analysis and training of classification models. The first step in 

the process of testing algorithms in Matlab is to collect the 

data on which classification will be performed. The data has 

to be imported into the Classification Learner environment. 

As mentioned earlier, the dataset is divided into two main 

subsets: training set and test set. The training set is used to 

train the model, and the test set is used to evaluate the model 

performance on new data. In the initial comparison, all 

algorithms offered by Matlab were used. In the model training 

process, the algorithms are fitted to the training data in order 

to teach the models to recognize patterns and their associated 

class labels. After training is completed, it is possible to 

evaluate the performance of each model on the test set. 

Different performance evaluation metrics are available in 

Classification Learner, such as accuracy, precision, and recall. 
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In the initial analysis, the accuracy of prediction was taken 

into account and five algorithms were selected for further 

analysis (table 1). 

TABLE 1. Algorithms with the highest failure detection efficiency 

 Algorithm type Subtype Accuracy 

1. Logistic regression Efficient Logistic Regression 91,10 % 

2. Support vector machine Quadratic SVM 91,74 % 

3. K-nearest neighbors Cosine KNN 89,99 % 

4. Multiple classifiers Bagged Trees 90,80 % 

5. Neural network Trillayered Neural Network 92,33 % 

 

Accuracy of classification models is calculated based on the 

model's prediction results in relation to known class labels in 

the test data set. It is described by the following equation: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

 

In the initial phase, it is often crucial to filter algorithms in 

terms of their overall quality, which accuracy does very 

effectively. Only in the subsequent stages of analysis were the 

models assessed in terms of precision and recall 

• Efficient Logistic Regression – this classifier works 

on the basis of classical logistic regression. Still, it 

has been optimized to better cope with large data 

sets. It uses efficient optimization techniques that 

allow the model to fit faster on large data sets. By 

optimizing the learning process, this type of logistic 

regression achieves higher performance, resulting in 

reduced time and resources needed to train the model 

on big data [18]. Figure 7 shows the algorithm 

training parameters. The parameters include, among 

others, data such as the accuracy of validation and 

test data. The prediction speed, expressed in the 

number of observations per second, which means the 

number of predictions that the classifier is able to 

make in one second. The total training time and the 

size of the model. 
 

 

Fig.7. Efficient Logistic Regression algorithm training 
parameters 

 

• Quadratic SVM – an extension of the standard SVM 

algorithm that allows quadratic interactions between 

features to be taken into account during the 

classification process. This means that the Quadratic 

SVM model can detect more complex relationships 

between features, particularly useful for data where 

decision boundaries are not linear. By considering 

quadratic interactions, this algorithm can better deal 

with non-linear patterns and provide greater 

generalizability for more complex datasets [19]. 

Figure 8 shows the training parameters of the 

Quadratic SVM algorithm. Compared to the 

previous algorithm, it achieved a higher value of 

accuracy in both validation and training data. 

However, the prediction speed is much lower and the 

training time of this algorithm is almost 8 times 

longer than Efficient Logistic Regression. What can 

affect the advantage of the Quadratic SVM algorithm 

is the smaller size of the model. 

 

 

Fig.8. Quadratic SVM algorithm training parameters 

 

• Cosine KNN – a variant of the classic KNN 

algorithm that uses cosine similarity. The operation 

of this classifier is based on measuring the cosine 

similarity between vectors representing objects in the 

feature space. Unlike traditional KNN, where 

Euclidean distance determines similarity, cosine 

similarity measures the angle between two feature 

vectors. This is particularly useful when the features 

have different amplitudes or do not have a fixed 

scale. Cosine KNN can be used, for example, in text 

analysis, where feature vectors represent the 

frequency of words, and cosine similarity allows the 

degree of similarity between documents to be 

determined [20]. Figure 9 shows the training 

parameters of the Cosine KNN algorithm. It 

achieved comparably high accuracy compared to 

previous algorithms, but what distinguishes it is the 

high prediction speed and small model size. 
 

 

Fig.9. Cosine KNN algorithm training parameters 

 

• Bagged Trees – is one of the compound classifiers 

that uses a set of decision trees to improve 

classification performance. By using multiple trees 

and various training data, Bagged Trees tends to 

show better generalization ability and lower risk of 

over-fitting compared to a single decision tree. At the 

time of prediction, each tree in the set predicts the 
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test data and the final class is selected based on a 

majority vote. In binary classification, most trees 

unanimously decide to assign the data to one of the 

classes [21]. Figure 10 shows the training parameters 

of the Bagged Trees algorithm. It achieved the 

highest accuracy of all the validation data. The 

accuracy of the test data is similar to the rest of the 

algorithms. What affects the algorithm's 

disadvantage is the very large weight of the model, 

approximately 16 MB. The algorithm is 

characterized by a very high prediction speed and a 

short model training time. 
 

 

Fig.10. Bagged Trees algorithm training parameters 

 

• Trillayered Neural Network – is one of the 

fundamental types of neural networks. It is also 

called a unidirectional neural network (feedforward 

neural network) because data flows through the 

network in only one direction, i.e. from the input 

layer to the output layer. It consists of three main 

layers: an input layer, where input data is received; a 

hidden layer, where feature values are processed by 

neurons that perform calculations using weights and 

activation functions; and an output layer, where 

results are generated based on the processed data 

from the hidden layer [22,23]. Figure 11 shows the 

parameters of the Trilayered Neural Network 

training. Compared to the previous algorithms, the 

quality of the neural network is better in almost every 

respect. The classifier achieved the highest accuracy 

on the test data, and its prediction speed reaches 

190000 obs/sec. What is also worth noting is the very 

small size of the model, reaching only 21 KB. 
 

 

Fig.11. Training parameters of the Trilayered Neural Network 
algorithm 

4.2. Unsupervised learning of algorithms. 

Unlike classification models in supervised learning, 

unsupervised learning does not require initial training on 

labelled data or the assignment of labels. The process of 

training the algorithm takes place automatically, without user 

intervention. The data generated by the algorithm can identify 

those that differ from the overall trend. Models have been built 

using K-means, One-Class SVM and iForest algorithms. 

• K-means (fig.12) – is called the centroid algorithm; its 

learning process works iteratively, aiming to find K 

groups (centroids). Each point is assigned to the 

nearest centroid, minimizing the sum of squares of the 

distances between the data and the centroids.The 

algorithm was configured to display two clusters of 

data, i.e. normal values and anomalies [24]. The 

'Display' parameter has been set to 'final', which means 

that only the final progress information will be 

displayed during the execution of the K-means 

algorithm. The 'Distance' parameter specifies the 

distance metric used to calculate the distance between 

points and cluster centroids. In this case, after testing 

several, the most suitable option for the given case was 

the "cityblock" option, i.e. Manhattan Distance, where 

the sum of the absolute values of the differences 

between corresponding features is calculated. The 

'Replicates' parameter specifies how many times the 

K-means algorithm should be run with different 

random initial centroid positions. The final result will 

be the result of the replication that achieved the best 

result. This value was chosen experimentally. 

          Fig.12. K-means algorithm classification model 

 

• One-class SVM (fig.13) – a variant of the standard 

SVM algorithm, it is used to identify unusual 

observations in the data by training the model on only 

one class of data (without labelled outliers). The 

model creates a hyperplane (or hyper curve in the case 

of non-linear kernels) in a multidimensional feature 

space that attempts to constrain most data points inside 

the boundaries (hyperplane) or at the periphery of the 

boundaries. Points outside these boundaries are 

considered unusual and may be classified as outliers 

from the rest of the data [25]. The efficiency of the 

model depends on the selection of parameters, which 

were determined experimentally. The 'ocsvm' function 

was used. The function itself, without the selection of 

parameters, gave unsatisfactory results - only a few 

samples were classified as anomalies. To make the 

model more efficient, the data were standardized 

'StandardizeData=true'. The automatic kernel scale 

function was selected, which is an element in the SVM 

algorithm and controls the transformation of the data 

space. "Auto" suggests that the kernel scale will be 

adjusted automatically. The 'Lambda' parameter is a 
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regularization parameter that affects the flexibility of 

the model's decision boundary, also set automatically 

and the most important element influencing the 

efficiency of the 'ContaminationFraction' model, i.e. 

the expected percentage of anomalies in the training 

data. Knowing the training data, the parameter was set 

to 25%. This parameter should be selected carefully, 

because too high a value leads to overfitting the 

model. 

 

Fig.13. One-class SVM algorithm classification model 

 

• iForest (fig.14) – is one of the commonly used 

unsupervised learning algorithms belonging to the 

family of decision trees. It is one of the most popular 

models for detecting anomalies in data, i.e. 

observations that deviate significantly from the 

predicted norm. The algorithm builds decision trees 

based on the features of the data and identifies those 

points that do not fit the rest of the set. The syntax of 

the algorithm is quite similar to that of a one-class 

SVM. Equally important is selecting an appropriate 

percentage of anomalies in the training data. Since the 

training data set remained constant. In addition, a 

parameter was introduced to determine the number of 

trees (learning classifiers) in the iForest algorithm. 

Each tree is a certain number of samples from which 

the model attempts to isolate anomalies. 

Automatically, this value is set to 100 trees, but due to 

the large dataset, it was increased to 150, which 

improved the classification result by several per cent 

[26]. 

Fig.14. iForest algorithm classification model 

 

Unlike supervised learning algorithms, which produce a 

constant result each time they are run, unsupervised learning 

algorithms perform a series of calculations in the classification 

process, and their result always differs by a few percent. This 

can negatively affect the usability of these algorithms. 

4.3. OPC server 

Matlab-Simulink provides many possibilities to compare the 

performance of algorithms, first of all you can freely "damage" 

model elements to detect any potential damage and teach 

algorithms to recognize it, which is not the case with real 

systems. However, this program also has a number of 

difficulties, which are often impossible to solve. First of all, it 

is a real-time simulation. To prepare training and test data, it is 

necessary to finish the simulation and then save it in a file, 

which is later used to train algorithms, which forces a fixed 

simulation time. 

The paper proposes a solution to the above problem using a 

communicator, which is the OPC server. However, this requires 

the use of Statistic and Machine Learning Toolbox blocks, 

because all simulation-related activities for test data are 

performed directly in Simulink without using a script in Matlab. 

This toolbox offers only blocks related to supervised machine 

learning. The scope of these algorithms is very small, which is 

not the case in the previously discussed Classification Learner. 

First, the procedure is standard, i.e. a training set with class 

labels of possible failures should be prepared. For the needs of 

the paper, a simulation with one failure was created, because at 

this point the algorithms will not be compared, and only a way 

to solve the simulation problem in real mode will be shown. 

Attempts were made to prepare a model with all possible 

failures, but during real-time simulation, despite the lack of 

errors in compilation, the time was very slow, until finally the 

simulation stopped at the level of microseconds, which could 

be caused by the program version or internal limitations of the 

computer system. 

After preparing the test data and labeling the time samples, the 

classes were changed to numerical values to avoid later errors 

in the data type in the database. The classification model was 

trained using the 'fitcecoc' function, which is used to train a 

multiclass classifier using the Error-Correcting Output Codes 

(ECOC) coding strategy. This technique solves the multiclass 

classification problem by transforming it into a series of binary 

classification problems. The ECOC strategy is based on the fact 

that each class is represented as a combination of the binary 

outputs of the classifiers. Each of these binary classifiers is 

responsible for recognizing one pair of classes: the "target 

class" (the class the user wants to recognize) and the "other 

class" (the remaining classes that are not the target class). The 

results of these classifiers are then combined to obtain the final 

decision. 

Then, a preliminary simulation with a damaged furnace was 

prepared for the test data to check the algorithm's performance. 

The available ClassificationECOC Predict block was used and 

Scope was connected to it (fig.15). 
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Fig.15. Real-time simulation using the predict block 

 

Figure 16 shows the response of the classification model to the 

simulation of the heating model operation, which indicates 

correct fault detection. 

Fig.16. Classification model response 

4.4. Data import into InfluxDB and PostgreSQL 
databases. 

The InfluxDB [27,28] database is one of the most popular 

open-source time series databases. It was designed as a 

solution for projects that generate large amounts of data over 

time, especially for smart metering. For this reason, it was 

chosen as the most suitable tool for the issues addressed in the 

article.  

A PostgreSQL [28,29] database was used for the stage using 

the OPC server. A relational database was used because of the 

ease of communication of such a database with Matlab. 

4.5. Visualisation in the Grafana system. 

Grafana [30] is an open-source tool for data visualisation and 

monitoring that visualizes the results obtained. It enables the 

creation of attractive data visualizations such as graphs, bar 

charts, dot plots, pie charts, heat maps, and much more. This 

allows users to to understand better and analyse data. Grafana 

supports various data sources, such as InfluxDB and 

PostgreSQL databases. 

5. RESULTS 

5.1. Simulated time operation. 

After the data was stored in the database, InfluxDB was 

communicated to the Grafana visualization system. The 

simulation simulation run as a function of time with different 

combinations of faults and the responses of the supervised 

learning algorithms are shown in fig.17. At first glance, the 

neural network and quadratic SVM performed best with the 

classification. At some points, they misclassified the damage 

at the beginning of the detection, while after providing more 

measurements, they eventually recognized the correct 

damage. The other algorithms happened to detect damage in 

the correct data, which can confuse real objects and wasted 

time detecting damage that does not occur. All algorithms 

mostly confused the values for open windows and classified 

them as damaged radiators. This is due to the similar 

behaviour of the temperature values for these types of 

damage. 

 

 

 

 

 

Fig.17. Diagram showing the result of the supervised learning algorithms 
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The algorithms handled the heater damage very well, as such 

damage results in temperatures in all rooms dropping to the 

outside temperature, which cannot be mistaken for any other 

fault. Other than that, the operation of the algorithms is 

relatively correct - they reacted to every anomaly present in  

the data. To better illustrate the performance of the algorithms, 

a graph of the misclassified data against the manual 

description of the data sample labels is also shown (fig.18). 

The fewest errors were observed in the performance of the 

Trillayered Neural Network algorithm. 

 

 

Fig.18. Sum of incorrect classifications of supervised learning algorithms 

 

Another visualization was carried out for the unsupervised 

learning algorithms. The results of the One-class SVM and 

iForest algorithms were compared simultaneously, as the 

syntax of their models is similar. They produced similar 

results, with a slight advantage in favour of One-Class SVM 

(fig.19). They reacted to every anomaly present. In contrast, 

with most of the anomalies present, they had a problem 

making a final decision, which is why, as seen in the graphs, 

the markers jump from 0 to 1. The performance of the K-

means algorithm did not give satisfactory results. It detected 

about 50 per cent of anomalies in the data, only where the 

temperature in the facility reached the outside temperature. 

When it fell by a few °C, e.g., due to open windows, the 

algorithm did not classify this as a fault. 

However, it is essential to note that for the One-class SVM 

and iForest algorithms, a definite disadvantage in building 

classification models based on these algorithms is the need for 

a percentage of anomalies present in the data. Without this, 

the performance of the algorithms was decidedly inferior to 

K-means - they classified only a few data samples for the 

damaged heater as abnormal. 
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Fig.19. Diagram showing the result of the One-class SVM algorithm 

 

5.2. Real-time operation. 

For real-time simulation, the alerting offered by Grafana has 

also been added to the data visualization. This is the process 

of monitoring and detecting anomalies or abnormal behaviour 

in systems and metrics and generating notifications or alerts 

when certain thresholds or conditions are exceeded. As for 

previous visualisations, Grafana was connected to a database, 

this time, PostgreSQL. Alerting was then configured, 

depending only on the values returned by the classification 

model. A value of 0 indicates no damage in the system, while 

1 indicates damage. Therefore, a condition was set so that for 

all values above 0, an alert about a detected anomaly is 

triggered. The fig.20 shows the real-time simulation run along 

with the response of the classification model. The system 

worked as expected - it correctly detected the anomaly at a 

time that agreed with the simulation run. 

 

 

Fig.20. Real-time simulation diagram 
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6. CONCLUSIONS 

Analysing the obtained results, the popular supervised learning 

algorithms remain reliable: the Trilllayered Neural Network 

and Support Vector Machine SVM (Quadrtatic SVM). 

However, two unsupervised learning algorithms—one-class 

SVM and iForest—achieved comparable results. 

The goal of supervised learning is to train a model to predict or 

classify data based on the labels provided in the training data. 

The model is trained by examples to assign input data to the 

appropriate categories accurately. Such learning algorithms 

require labeled training data that contains input-output (feature-

label) pairs. They find their uses in classification, regression and 

anomaly detection where there are clearly defined labels or 

predictive goals. The ability to evaluate is relatively easier than 

unsupervised learning algorithms because there are comparison 

labels. Measures such as accuracy, precision, sensitivity and 

confusion matrix are commonly used for evaluation [7,9,31]. 

Unsupervised learning aims to discover hidden patterns, 

structures, or relationships in data without using labels. There 

are no labels, and unsupervised algorithms try to group similar 

data or reduce the dimensionality of the data. Activities take 

place on unlabeled or unlabeled data. They are often used to 

group data, reduce dimensionality, detect anomalies and 

generate data structures. Assessing their effectiveness is more 

difficult because there are no comparative labels. Other 

evaluation methods must be used, such as internal measures 

[32]. 

The choice between supervised and unsupervised machine 

learning depends on the data's characteristics, the labels' 

availability, and the purpose of the analysis. In practice, these 

two methods can often be combined to obtain better results and 

a deeper understanding of the data. In this case, supervised 

algorithms work better when dealing with an object consisting 

of several rooms. They detect specific damage in a specific 

room, which will save time wasted on locating damage in the 

case of unsupervised algorithms. They are also much more 

accurate; they always detect an anomaly and, although at the 

beginning, the measurements delivered frequently were wrong 

about the type of damage, after providing more samples, they 

classified correctly. 

The advantage of unsupervised learning models is the 

classification time. In the case of this facility, where the data 

determines the temperature values in the rooms, it affects the 

thermal comfort of the inhabitants. Therefore, it is important to 

react as quickly as possible. This time is only disturbed by the 

lack of knowledge in which room the damage occurred. 

Unsupervised algorithms can discover hidden patterns in new 

data, which is impossible with supervised learning. However, 

due to the lack of labels, it is more difficult to understand why 

the model makes certain decisions [33]. 

An exciting aspect of the work was an attempt to directly 

communicate the Matlab Simulink program with the database, 

so that it was possible to control the temperature values in real 

time constantly. For this purpose, an OPC server was used to 

act as an intermediary in data transfer. The OPC server 

collected data from the Simulink process then processed it into 

specified data types and then sent it to a previously selected 

database communicated with the server. However, this method 

does not allow you to test all the algorithms discussed by 

everyone due to the lack of appropriate blocks in Simulink. The 

complexity of the simulated processes and the large number of 

labels in the training data also slowed down and blocked the 

system [15]. 

6.1. Possible development. 

The topics discussed in the above article provide ample 

opportunities for further development. First of all, application 

in a real environment. Selected fault detection algorithms can 

be tested in a real building automation environment. By 

carefully analysing test results, operating conditions, 

confounding factors and potential challenges in implementing 

algorithms can be considered. It is also possible to further 

combine the algorithms to increase their efficiency and 

integrate with existing systems, adapt to various devices and 

monitor performance in the long run. Further testing the 

algorithms on different devices, it will be possible to see how 

the algorithms behave in different conditions and 

environments. In the further development of this issue, it will 

be essential to conduct a cost-benefit analysis of the 

implementation of the developed fault detection algorithms 

and compare the estimated benefits with the implementation 

and maintenance costs to assess the effectiveness of the 

technology in practice. 
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