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Abstract
The article proposes and investigates a simple and accurate evaluation of the standard and expanded uncertainty
of the Laplace population median. With the number of observations n, the known probability distribution
describing the sample median for n-2 observations was used to approximate the uncertainty of the population
median. The proposed approximation was tested by comparison with exact results for n ≤ 10 and with the
Monte Carlo method. It has been shown that the standard and expanded (confidence level p = 0.90, 0.95,
and 0.99) uncertainties determined by the proposed approximation differ from values determined by MCM
by less than about 1%. Using the median instead of the mean value as the measurement result provides a
measurement uncertainty lower by about 25% when n ≥ 35, and over 29% when n ≥ 70.
Keywords: uncertainty of measurement, population, Laplace, median, distribution, approximation.

1. Introduction

1.1. General assumptions

The basic requirement of any measurement is to evaluate its uncertainty GUM [1]. The
essence of the definition given in [1] is that the uncertainty characterizes the dispersion of the
possible values of the measurand µ around the obtained result m. Therefore, in general, correct
determining the measurement uncertainty requires the probability density function (PDF) p(µ|m)
of the measurand value µ to be around the observed result m [1]. In this article, the evaluation of
the standard and expanded uncertainties will be presented when applied to the processing of n>10
independent observations drawn from a population with a Laplace distribution. Therefore, at the
beginning, the generally known formulas related to the Laplace distribution will be presented in
brief and then used in the next parts of the article.
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For a Laplace or double exponential (DE) population, the PDF of random variable x is given
by well-known function [2, 3]:

pp(x; µ, σ) =
1

2σ
e−
|x−µ |
σ (−∞ < x < ∞), (1)

where µ (∞ < µ < ∞) is the location-population median and σ (σ < ∞) are the scale-population
mean absolute deviation parameters. For this distribution, the expectation is equal to the popula-
tion median: E(x) = µ, and variance is var(x) = 2σ2. Of course, here σ does not mean the
population standard deviation.

The use of the Laplace distribution has a long history, and it is one of the best-studied
distributions in terms of its properties, including those related to parameter estimation, error
analysis, and measurement uncertainty. There are many publications in which the properties of this
distribution are presented very thoroughly in theoretical terms and a detailed analysis of various
aspects related to this distribution is given [1, 2]. The Laplace distribution is used to describe
various populations associated with the measurement of physical quantities when performing
tests on various objects and processes [2–6]. For example, when the measurand is a difference
of two independent exponentially distributed time intervals, the Laplace distribution is natural
approximation of the measured observations [3]. The Laplace distribution can be used to modeling
navigation errors and other processes related to measurements on the ground made from aircraft [2].
This distribution is also used when studying speech signals and signals distorted by impulse
noise and the strength of flows in some materials [3]. An overview of various applications of
the Laplace distribution for modeling various processes in various fields of physics, namely in
image and speech recognition, ocean engineering, hydrology astronomers, finance, and others
is presented in [4]. In such fields, the Laplace distribution can often provide a better model to
describe observations of this kind than the normal distribution with the common variance [4].
A comprehensive approach to describe various aspects of road surface/elevation by using Laplace
distribution is presented in [5].

In [6], it was found that uncertainties in many physical systems have impulsive properties
and are therefore poorly modeled by Gaussian distributions, while the Laplace distribution model
gives more adequate results. Obtained results showed that the introduction of such an estimator
demonstrates marked resilience to large, un-modeled spikes in the measurements.

Therefore, the use of the Laplace model to analyze the development of measurement observa-
tions has not only theoretical significance but also practical applications.

It is well known [2, 3] that for n independent observations xi (i = 1, . . . , n) drawn from
the Laplace population, the sample median m is the maximum likelihood estimator (MLE) of the
population median µ, and an estimator of the population mean absolute deviation σ is a sample
mean absolute deviation s [2, 3]:

m =


x(s)
(n−1)/2, n is odd,

x(s)
n/2 + x(s)

n/2+1

2
, n is even,

s =
1
n

n∑
i=1
|xi − m|, (2)

where x(s)i are the ordered observations.
There are a lot of publications [6–10] related to the parameter estimation of the Laplace

distribution by different methods, mainlyMLE (maximum likelihood estimator) andMME (method
of moment estimator). Namely, in [6] an estimator for a discrete-time scalar linear system with an
additional Laplace measurement and process noise is introduced, and simulation results of the
estimator are given. In [7], a new method of moment estimator was derived and the asymptotic
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normality of its distribution was presented, and this estimator was compared with the widely
used maximum likelihood estimator. In [8], the approximations for the variance of the sample
median only for small and moderate sample sizes and also exact formulas for the probability
density function and for the variance of the median are given. In [9], both theoretical analysis
(multivariate delta method) and a simulation study analyzed the effectiveness of the classical
method of moments for estimating the parameters of symmetric generalized Laplace distributions
in comparison with maximum likelihood estimation. To improve the efficiency, modifications to the
method of moments were proposed, by taking absolute moments, which improved the performance
of the method of moments. The results of research carried out to compare the accuracy of the
maximum likelihood estimator with the classical method of moment determination by statistical
simulations of quantities described by the Laplace distribution are presented in [10]. A comparison
of the accuracy of estimators includes determining the systematic error, theoretical and simulated
variances, as well as the mean square error and determining the coefficient of skewness, kurtosis,
and histogram analysis is given in [10].

However, these studies, like many others, concern the properties of estimators m and s as
random quantities at given values of µ and σ, and do not examine the properties µ and σ of
distribution parameters at given estimator values of m and s. In the theory of estimation, the
estimators m and s are the random quantities with appropriate PDFs: pm(m|µ, σ), ps(s |σ), which
depend on the population parameters µ, σ. The randomness of the m and s estimates can be
interpreted as their possible values obtained by processing the observations by repeatedly drawing
samples of size n from the population with the same location µ and scale σ parameters. It is
well known [2, 3] that PDF pm(m |µ, σ; k ) of the sample median m is based on the PDF of order
statistics [12] and depends on the n number of observations. For n odd (n = 2k + 1) and even
(n = 2k), k = 0, 1, 2, . . .) using normalized ratio u = (m − µ)/σ, these PDFs are [2]:

p1u(u; n) =
n![(

n−1
2

)
!
]2 e−

n+1
2 |u |(2−e−|u |)

n−1
2 , (3)

p2u(u; k) =
n!e−n |u |((

n
2
−1

)
!
)2

2n−1

[ n
2 −2∑
i=0

(−1)iCi
n
2 −12 n

2 −1−i

n
2
−1−i

(
e(

n
2 −1−i) |u |−1

)
+

1
n
+(−1)

n
2 −1 |u|

]
. (4)

If it is known exactly that the population has a Laplace distribution, then the question arises
of how effective the use of the median from the registered observations is compared to the use
of the mean value? Theoretically, for the Laplace distribution (1), the median med = X0.5 as
p = 50% of the quantile at the point xp have an asymptotic normal distribution and the variance
of median depends on the PDF [11]: var(xmed) = σ

2/n. In contrast, the theoretical variance of
the arithmetic mean value x of n observations taken from the population (1) is twice as large
var(x) = 2σ2/n. From the comparison of these two values, we can see that for a population with
the Laplace distribution, the median has a variance theoretically 2 times smaller compared to
the variance of the mean value. This means that to obtain the same standard deviation when
using the median as the result of measurement, 2 times fewer observations are required than when
using the mean value. Inversely, for the same number of observations, the use of the median
provides theoretically about

√
2 ≈ 1.41, or about 41% less standard deviation than if the mean

value is used. However, this concerns the quality of the estimator – the sample median. To compare
the measurement uncertainty when the result is the median with the uncertainty when the result is
the arithmetic mean, the dependence of the uncertainty on the number of observations should be
carefully examined.
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1.2. The standard and expanded uncertainties of a population median as a measurand

In praxis, after a given experiment, i.e., using a single sample that consists of n observations
x1, x2, . . . , xn, the specific numeric values of estimators m = me and s = se (4) are determined.
Therefore, after the measurement experiment the values me and se are known, i.e., not random.
From the point of view of uncertainty, it is obvious that the same values of the estimates me and se,
which were determined from a sample drawn from a population with parameters, say, µ1 and σ1,
can also be obtained from the same type population with slightly different parameters µ2 and σ2.
It means that sampling from the same type of population with slightly different parameters
µ and σ may result in the same estimate values me and se. Then a question arises: what values
µ, σ of population parameters may correspond to the estimates me, se obtained from the given
measurement experiment [12, 13]. For the correct answer to this question after carrying out
the measurement experiment, the population parameters µ, σ should be considered as random
variables. Then, for simplicity, we will use the usual estimate: me = m, se = s. Hence having
determined in a given experiment the numerical values of the sample median m and the absolute
median deviation s to correctly describe the random population median µ, it is necessary to have
its PDF pµ(µ|m, s; n). Only using this PDF, the values of standard and expanded uncertainties of
the population median can be determined fully correctly. Namely, the Type A standard uncertainty
uA(µ|s; n) of the population median is:

uA(µ|s; n) = sµ(µ|m, s; n) =

√√√√ ∞∫
−∞

(µ − m)2pµ(µ|m, s; n) dµ (5)

Due to the fact that the Laplace distribution (1) is described by a modulus function, deriving
the distribution pµ(µ|m, s; n) of the population median, especially for numbers of observations
from a few and more, is an extremely difficult task [13]. If in the case of a normal or uniform
population, there are general expressions for the PDF of the location parameter for an arbitrary n,
then for the Laplace population it is impossible, but it is possible to derive this distribution only
for a specific sample size. For example, in [13] the exact PDF pw(w) for the normalized ratio
w =

µ − m
s · n

and DF Fw(w) are derived for the number of observations n = 3, and n = 5. In [11],
the exact PDFs pτ(τ; n) for the normalized ratio:

τ =
µ − m

s
. (6)

of the population median were derived for the number of observations 2 ≤ n ≤ 10.
From (5) using (6), the exact value of standard uncertainty uA(µ) of population median can be

determined using the estimated absolute median deviation s (1):

uA(µ) = σµ = στ(n) · s, στ(n) =

√√√√ ∞∫
−∞

τ2pτ(τ; n)dτ, (7)

where στ(n) = στ = uA(τ) is the standard deviation of the normalized population median (6).
The exact values of the standard deviation στ of the normalized population median determined

by (7) are given in [14]. In [12], it was shown that in the case of two-parameter populations, with
the appropriate choice of estimators of location and scale parameters, the standard deviations
of these parameters decrease proportionally to the square root of n − 3 (∼ 1/

√
n − 3). It means
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that the standard uncertainty of the population median (and also the population absolute median
deviation) can be determined completely correctly only when n ≥ 4. Due to the dependency of
standard uncertainty proportional to ∼ 1/

√
n − 3, it is advisable to modify the στ(n) values by

a multiple of
√

n − 3, i.e., the modified value of standard uncertainty is:

σuA,mod(n) = στ(n) ·
√

n − 3. (8)

This modification ensures the stabilization of its value when n changes. Therefore, using the
σuA,mod(n) standard uncertainty of population median can be determined by:

uA(µ) = σuA,mod(n) ·
s

√
n − 3

. (9)

For the confidence level p, the expanded uncertainty Up,τ(τ; n) of the normalized population
median is a solution of the nonlinear equation:

Up,τ(τ; n) = solve
{
Fτ[Up,τ(τ; n)] =

p + 1
2

}
, (10)

where Fτ(τ; n) is the distribution function of the normalized population median. Thus, the expanded
uncertainty of the population median is:

Up,µ(µ) = Up,τ(τ; n) · s = kUp(p; n) · uA(µ), (11)

where the coverage factor kUp(p; n) is:

kUp(p; n) =
Up,µ(µ)

uA(µ)
=

Up,τ(τ; n)
στ(n)

. (12)

1.3. Problems with deriving exact PDF for the population median

As was shown in [13,14], for observation numbers over 5, the expressions for the PDF pτ(τ; n)
of the normalized median population become increasingly complex. In this regard, [6] stated:
“The derivation of the exact distributions becomes quite tedious as n increases”. For example, the
expression for the PDF of the median population for n = 10 observations takes up a whole page
written in small symbols [14]. Thus, even if we have PDF expressions for n > 10, due to their
enormous complexity, the practical use of such formulas to determine the standard and expanded
uncertainties is also extremely difficult. To solve the problem related to the large sample size,
various approximations and asymptotic PDFs and DFs have been proposed and studied [13,15,17],
which are mainly used to determine confidence intervals of the population median when estimates
(2) are experimentally determined.

Namely, in [13], a few approximated methods, used to determine confidence intervals of the
population median and median absolute deviation, are studied. Only for n = 3 and 5, the exact
PDFs of the normalized quantity

Wn =
θ̂ − θ

n · σ̂

(using the notation θ̂ = median(xi) of the estimated median and

σ̂ =
1
n

n∑
i=1
|xi − θ̂ |
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is the absolute median deviation) are given in [13]. Also, asymptotic and approximate distributions
are investigated in [13]. It was stated that “asymptotic distributions are not adequate approximations
for moderate sample sizes”. To improve the asymptotic distribution Wn, the approximation based
on the ratio of two independent normal variables (the so-called Normal/Normal approximation)
is investigated in [13]. Another approximation, the so-called Median/χ2 approximation in the
form of the ratio of the median to an independent chi-square variable, based on the fact that the
exact density of the sample median can be determined analytically and since a chi-square (χ2)
approximation for σ̂ is better than a normal approximation, is investigated in [13]. It was shown
that last approximation gives better results in comparison with the so-called Normal/Normal
approximation. A few numerical examples for n = 3, 5, 9, 15 and 33 related to determining of the
cumulative probability P[n

3
2 Wn =

√
n · τ < z] for the some given values of z are also presented

in [13]. The results presented and given in the Appendix showed that such approximations are
asymptotically correct but they do not always provide sufficient accuracy.

In [15], the conditional confidence intervals were constructed using appropriate so-called
ancillary statistics. For the arbitrary sample size, to determine the approximate value of confidential
intervals, the MCM can be used. In [16] the construction of the confidence intervals for DE
distribution based on simulated data is studied. The results are compared with the Student
confidence intervals. The results obtained are illustrated in the example of n = 10 observations.
Unfortunately, it seems that some numerical values in this example should be corrected. It should
also be noted here that a large number of publications [17–21] concern the interval estimation
related to the censored samples.

The following research aims to propose a simple and accurate method for approximate
determination of the standard and expanded uncertainty of measurement, which results in the
median of sample being taken from the Laplace population, and also to investigate the accuracy
of the proposed method using a Monte Carlo method. In addition, the goal is also to prove the
effectiveness of the median compared to the arithmetic mean value in terms of measurement
uncertainty.

2. Proposed approximation of PDFs of population median by PDFs of sample median for
n − 2 sample size for the uncertainty evaluation

From the general properties of estimators [11], it follows that as the number of observations
increases (n→∞), the PDF pm(m|µ, σ; n) of the parameter estimator m at known values of the
population parameters µ and σ the PDF pµ(µ|m, s; n) of the population parameter µ at a known
value of the estimators m and s become increasingly close. For example, it is well known that for
a normal population N(µ, σ), the PDF of the normalized arithmetic mean value x : u = (x − µ)/σ
with known µ and σ is also normal, while the distribution of the normalized ratio t = (µ − x)/s
of µ with known values of the estimators x and s = stdev(x) is the Student’s t-distribution. But
when the number of observations increases (n→∞), the Stude’nt’s distribution becomes closer
and closer to normal distribution. Besides, when the sample medianm (2) is the result of the
measurement, then the number degrees of freedom is d = −n − 1, while, as already shown in [12],
in the analysis of variance of the median of the population the number n−3 = −d−2 occurs, i.e., is
smaller by 2. These facts can be used to formulate a hypothesis of approximating the PDF pτ(τ; n)
of the normalized ratio τ (7) of the population median µ by the distributions pu(m; n − 2) (3), (4)
of the normalized ratio u = (m − µ)/σ of the median estimator m for a number of observations
n − 2, i.e., smaller by 2. This hypothesis can be easily verified, since the exact expressions for the
probability distributions pτ(τ; n) of the normalized median τ (9) at numbers of n = 2, . . . , 10 are
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known [14] and also based on the sample median distributions pu(m; n) (4), (5). Namely, Fig. 1
shows pairs of population normalized median PDFs pτ(τ; n) [14] for n = 5, . . . , 10 and sample
normalized median PDFs pu(u; n − 2) for n − 2 = 3, . . . , 8. From these data, one can see a very
good convergence of these PDFs, even practically indistinguishable.

Fig. 1. PDFs of the normalized population median pτ (τ; n) for n = 5, . . . , 10 (solid red) and the normalized sample
median pu (τ; n − 2) (dot blue) for n = 3, . . . , 8 accordingly: n = 5 (a); n = 6 (b); n = 7 (c), n = 8 (d), n = 9 (e),

n = 10 (f).

More informative are the differences between pu(τ; n − 2) and pτ(τ; n) PDFs ∆p(τ; n) =
pu(τ; n − 2) − pτ(τ; n). For odd n ≥ 5, the difference between these PDFs is less than 0.002, while
for even n, although it is slightly larger but still very small. Due to the closeness of the PDFs, the
closeness of the standard deviations of the exact στ(n) and approximated σu(n − 2) determined by
distributions (5) and (6) is expected. The standard deviations of the normalized sample median
can be determined by (5) and (6). Namely, for odd n:

σ1u(n) =
√
var1u(n) =

√√√√√√√√ n!((
n − 1

2

)
!
)2

2 n−9
2

[ n−1
2∑

i=0

(−1)iCi
n−1

2

2i(n + 1 + 2i)3

]
, (13)

and for the even n:

σ2u(n) =

√√√√√√√√ (n)!((
n
2
−1

)
!
)2

2n−3n3

[ n
2 −2∑
i=0

[ (−1)iCi
n
2 −1 ·((n+1+i)2+ 3

4 n2)

2i− n
2 −2(n+2+2i)3

]
+

1+(−1) n2 −1 ·3
n

]
. (14)

The exact στ(n) [14] and approximate σu(n) values (13), (14) of standard deviations of the
sample medians for n = 4, . . . , 10 are given in Table 1. The analysis shows that the standard
deviation of the sample median determined for n − 2 observations very well approximates the
standard deviation of the population median for n observations. The relative differences

δσ(n) =
(
σu(n − 2)
στ(n)

− 1
)
· 100%

between these standard deviations are given in Table 1. This table shows that when the number
of observations is n ≥ 6, the differences between standard approximated and exact standard
deviations of the normalized median and also relative differences between the σuA,mod(n) (8),
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σu,mod(n − 2) = σu(n − 2) ·
√

n − 3 are less than 1% (0.56%), i.e., they are negligibly small.
Therefore, the standard deviation of the normalized population median can be approximated as:

uA(τ) = στ(n) ≈ σu(n − 2); σu,mod(n − 2) = σu(n − 2) ·
√

n − 3, (15)

Table 1. Exact στ (n) [14] and approximate σu (n − 2) (15) values of the standard deviation of the normalized population
median and also exact σuA,mod(n) and approximated σu,mod(n − 2) modified values and relative differences (in %)

between them (n = 4, . . . , 10).

n 4 5 6 7 8 9 10
Exact, στ (n) 1.0548 0.8299 0.6518 0.5952 0.5113 0.4845 0.4326
Approx., σu (n − 2) 1 0.7993 0.6482 0.5926 0.5108 0.4854 0.4328
Exact, σuA,mod(n) 1.0548 1.174 1.129 1.191 1.143 1.187 1.145
Approx., σu,mod(n − 2) 1 1.130 1.123 1.185 1.142 1.189 1.145
δσ (n), % 5.48 3.82 0.56 0.44 0.10 −0.20 −0.05

Similarly, the difference ∆F(τ; n) = Fu(τ; n − 2) − Fτ(τ; n) between the distribution functions
Fu(τ; n − 2) and Fτ(τ; n) is very small. Namely, for odd n ≥ 5 the differences ∆F(τ; n) are less
than 2 · 10−3, (i.e., less than 0.2% of DF maximal value 1) and for even n ≥ 6 the differences
∆F(τ; n) are less than 10−2 (i.e., less than 1%). When n =8 and 10 these differences are less than
5 · 10−3 (i.e., less than 0.5%).

For accuracy comparison purposes for the n = 4, . . . , 10 in Table 2, the exact Up,τ(τ; n) [14]
and approximated Up,u(u; n − 2) values of expanded uncertainties

Up,u(u; n − 2) = solve
{
Fu[Up,u(u; n − 2)] =

p + 1
2

}
, (16)

Table 2. Exact Up,τ (τ; n) [14], approximate Up,u (u; n − 2) expanded uncertainties and exact kUp (p; n), approxi-
mated kUp,u (p; n − 2) values of coverage factors and also relative difference δUp (n) between exact and approximate

uncertainties.

n 4 5 6 7 8 9 10

p = 0.90

ExactUp,τ (τ; n) 1.5024 1.3144 1.0367 0.9702 0.8287 0.7948 0.7060
Approx.Up,u (u, n − 2) 1.6359 1.3067 1.0608 0.9715 0.8368 0.7971 0.7097
Exact kUp (p; n) 1.4244 1.5839 1.5904 1.6300 1.6209 1.6407 1.6321
Approx. kUp,u (p; n − 2) 1.6359 1.6348 1.6366 1.6394 1.6382 1.6420 1.6399

p = 0.95

ExactUp,τ (τ; n) 2.0000 1.6841 1.3226 1.2237 1.0421 0.9945 0.8811
Approx.Up,u (u, n − 2) 2.0565 1.6681 1.3267 1.2267 1.0428 0.9994 0.8817
Exact kUp (p, n) 1.8961 2.0294 2.0252 2.0558 2.0382 2.0529 2.0369
Approx. kUp,u (p; n − 2) 2.0565 2.0870 2.0468 2.0700 2.0415 2.0588 2.0373

p = 0.99

ExactUp,τ (τ; n) 3.4456 2.6121 2.0252 1.8030 1.5343 1.4364 1.2728
Approx.Up,u (u, n − 2) 2.9951 2.4913 1.916 1.7978 1.4959 1.4464 1.2573
Exact kUp (p, n) 3.2667 3.1477 3.1071 3.0290 3.0009 2.9650 2.9423
Approx. kUp,u (p; n − 2) 2.9951 3.1169 2.9559 3.0338 2.9287 2.9797 2.9050

δUp (n),%
p = 0.90 8.9 −0.58 2.33 0.13 0.97 0.28 0.52
p = 0.95 2.8 −0.95 0.31 0.24 0.07 0.49 0.07
p = 0.99 −13 −4.62 −5.4 −0.28 −2.5 0.7 −1.22
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and exact kUp(p; n) (12) and approximated kUp,u(p, n − 2),

kUp,u(p; n − 2) =
Up,u(u; n − 2)
σu(n − 2)

(17)

values of coverage factors are presented. The relative approximation errors

δUp(n) =
(
Up,u(u; n − 2)

Up,τ(τ; n)
− 1

)
· 100%

of these expanded uncertainties are also given in Table 2.
From data presented in Table 2, it can be seen that when n ≥ 7 and p = 0.90, 0.95 the

approximated value of expanded uncertainty differs from the exact value by less than 1%, and for
p = 0.99 is less than 2,5%. It is generally accepted [1] that the uncertainty is represented by no
more than two significant figures, which corresponds to approximately 5% accuracy. Therefore,
from the point of view of standard and expanded uncertainty, the accuracy of the proposed
approximation meets the requirements, i.e., it is sufficient.

It follows from the results above that the basic parameters i.e. standard uncertainty and
expanded uncertainty (confidence interval) of the population median can be determined with
sufficient precision in a very simple way based on the estimation from sample of n size value of
the absolute median deviation s and uses of the values of the corresponding coefficients relating to
the standard and expanded uncertainties for the normalized sample median for n − 2 (Fig. 2).

Fig. 2. Algorithm of uncertainty evaluation for the Laplace population median.

3. Investigation with a Monte Carlo method

The effectiveness of the proposed approximation of probability distribution of the population
median and the parameters determined on its basis, mainly the standard and expanded uncertainties,
was tested for the sample size n = 11, . . . , 70, using the MCM [22].

3.1. Description of the investigation algorithm

The number of simulations was M = 105. During the tests the normalized DE population
probability distribution is used: DE(µ0, σ0) = DE(0, 1), i.e., the value of the population median is
taken as µ0 = 0 and the value of population median absolute deviation is σ0 = 1.

For n = 11, . . . , 60 the M ( j = 1, . . . , M) random samples with i = 1, . . . , n values xj,i were
generated by the formula:

xj,i =

{
µ0 + σ0 · ln(2 · zj,i), if zj,i ≤ 0.5,
µ0 − σ0 · ln(2 · (1 − zj,i)), if 0.5 < zj,i < 1,

zj,i = rnd(1); i = 1, . . . , n; j = 1, . . . , M .

(18)
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For each number of observations n, there were determined:

1) the sample median mj (2) and arithmetic mean x j and also sample median absolute deviation
sj (2) and sample standard deviation Sj;(x):

sj =
1
n

n∑
i=1
|xj,i − mj |, Sj;(x) =

√√
1
n

n∑
i=1
(xj,i − x j); (19)

2) the mean τ and standard deviation sMC(n) of this estimate:

τ =
1
M

M∑
j=1

τj ; τj =
µ0 − mj

sj
= −

mj

sj
; sMC(n) =

√√√
1

M − 1

M∑
j=1
(τj − τ)2; (20)

3) the modified value of normalized standard uncertainty (8):

σuA,mod,MC(n) = sMC(n) ·
√

n − 3; (21)

4) the standard uncertainties when the measurement result is sample median m and mean x:

uA(µ,m) = σuA,mod,MC(n) ·
s

√
n − 3

, uA(µ, x) =
S(x)
√

n − 3
; (22)

5) the estimates of expanded uncertainty of normalized values of ratio (5) for the confidence
levels p =0.90, 0.95 and 0.99:

Up,MC(τ) =
Up,R −Up,L

2
; (23)

where Up,L = τ
(s)

[M ·
p
2 ]
, Up,R = τ

(s)

M−[M ·
p
2 ]
, - are the left and right estimate values of expanded

uncertainties determined by sorted values τ(s)j ;
6) the estimates of expanded uncertainty of population median, when the measurement result

is sample median and sample arithmetic mean:

Up,MC(µ,m) = Up,MC(τ) · sMC(n), Up,MC(µ, x) = tp(n − 1) ·
√

n
n − 1

· S(x); (24)

7) the value of the coverage factor:

kUp,MC(n) =
Up,MC(τm)

sMC(n)
; (25)

8) the relative (in %) differences between σu(n − 2) (15) and σuA,mod,MC(n) (21) and also
between kUp,u(n − 2) (17) and kUp,MC(n) (25):

δuA(n) =
(
σu,mod(n − 2)
σuA,mod,MC(n)

− 1) · 100%, δUp(n) =
(

kUp,u(n − 2)
kUp,MC(n)

− 1
)
· 100%. (26)
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3.2. Results of the Monte Carlo investigation for n = 11, . . . , 70

The values of modified standard deviation σu,mod(n − 2) (15) determined by approximation
and σuA,mod,MC(n) (25) determined by MCM are shown in Fig. 3a and given in Table 3. The
relative differences δuA(n) between σu,mod(n − 2) and σuA,mod,MC(n) are shown in Fig. 3b.

Fig. 3. Dependences of modified normalized standard deviations σu,mod(n − 2) and σuA,mod,MC (n) from the number of
observations (a) relative differences (in %) between the modified values of standard deviations σu,mod(n − 2) determined

by approximation and (b) σuA,mod,MC (n) determined by MCM.

From data presented in Table 3 and shown in Fig. 3b, it can be seen that differences between
approximated values and determined by MCM do not exceed 1%. So, it can be concluded that
when the number of observations increased n > 10, from the point of view of evaluation of
standard uncertainty the proposed approximation also ensures sufficient accuracy.

Table 3. The values of modified standard deviations σu,mod(n − 2) and σuA,mod,MC (n).

n 11 12 13 14 15 16 17 18 19 20

σu,mod(n − 2) 1.183 1.143 1.176 1.14 1.168 1.136 1.161 1.132 1.155 1.129

σuA,mod,MC (n) 1.176 1.138 1.165 1.135 1.164 1.135 1.156 1.128 1.144 1.126

n 21 22 23 24 25 26 27 28 29 30

σu,mod(n − 2) 1.149 1.125 1.144 1.122 1.139 1.119 1.135 1.116 1.131 1.113

σuA,mod,MC (n) 1.140 1.122 1.140 1.117 1.139 1.117 1.13 1.111 1.124 1.112

n 31 32 33 34 35 36 37 38 39 40

σu,mod(n − 2) 1.127 1.111 1.124 1.108 1.121 1.106 1.118 1.104 1.115 1.102

σuA,mod,MC (n) 1.128 1.111 1.124 1.106 1.117 1.108 1.117 1.102 1.117 1.102

n 41 42 43 44 45 46 47 48 49 50

σu,mod(n − 2) 1.113 1.100 1.111 1.098 1.108 1.097 1.106 1.095 1.104 1.094

σuA,mod,MC (n) 1.109 1.102 1.108 1.100 1.107 1.095 1.103 1.096 1.104 1.093

n 51 52 53 54 55 56 57 58 59 60

σu,mod(n − 2) 1.103 1.092 1.101 1.091 1.099 1.090 1.098 1.088 1.096 1.087

σuA,mod,MC (n) 1.104 1.097 1.097 1.09 1.093 1.09 1.101 1.083 1.094 1.086

n 61 62 63 64 65 66 67 68 69 70

σu,mod(n − 2) 1.095 1.086 1.093 1.085 1.092 1.084 1.090 1.083 1.089 1.081

σuA,mod,MC (n) 1.099 1.085 1.095 1.086 1.091 1.087 1.089 1.083 1.089 1.081

The values of the coverage factors kUp,u(p; n − 2) determined by approximation and kUp,MC(p; n)
determined by MCM for confidence levels p = 0.90, 0.95 and 0.99 when n = 11, . . . , 70 are given
in Table 4 and shown in Fig. 4a. To evaluate the accuracy, the relative deviations (in %) between
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coverage factors kUp,u(p; n − 2) determined by approximation and kUp,MC(p; n) determined by
MCM, which are calculated by (26), are presented in Fig. 4b.

The results obtained by MCM show that the proposed method for determining both the
standard and the expanded uncertainties of the population median is very accurate. Namely, the
relative deviations of the coefficients, calculated according to approximate dependences, from the
coefficients determined by MCM do not exceed about ±1% (Fig. 4b). From the point of view of
uncertainty of measurement, this is a very high accuracy of its evaluation [1].

Fig. 4. Dependences of coverage factors kUp,u (p; n − 2) determined by approximation and kUp,MC (p; n) determined
by MCM (a) relative differences between values of the coverage factors kUp,u (p; n − 2) determined by approximation

and kUp,MC (p; n) determined by MCM, (b) for confidence levels: 0.90, 0.95 and 0.99.

Table 4. The values of coverage factors kUp,u (p; n − 2) determined by approximation and kUp,MC (p; n) by MCM.

p = 0.90 p = 0.95 p = 0.99
n kUp,MC (p; n) kUp,u (p; n − 2) kUp,MC (p; n) kUp,u (p; n − 2) kUp,MC (p; n) kUp,u (p; n − 2)
11 1.649 1.644 2.048 2.051 2.923 2.941
12 1.643 1.641 2.030 2.034 2.893 2.885
13 1.654 1.645 2.040 2.044 2.882 2.912
14 1.646 1.642 2.028 2.031 2.870 2.867
15 1.650 1.645 2.043 2.039 2.862 2.889
16 1.642 1.643 2.030 2.028 2.858 2.853
17 1.654 1.646 2.043 2.035 2.848 2.870
18 1.646 1.644 2.027 2.025 2.859 2.840
19 1.651 1.646 2.027 2.031 2.828 2.854
20 1.644 1.644 2.023 2.023 2.830 2.829
21 1.649 1.646 2.025 2.028 2.822 2.841
22 1.653 1.645 2.016 2.021 2.804 2.819
23 1.648 1.647 2.023 2.025 2.806 2.829
24 1.648 1.645 2.017 2.019 2.805 2.810
25 1.645 1.647 2.024 2.023 2.823 2.819
26 1.653 1.645 2.018 2.017 2.793 2.802
27 1.643 1.647 2.019 2.021 2.823 2.810
28 1.644 1.646 2.015 2.016 2.793 2.795
29 1.653 1.647 2.021 2.019 2.779 2.802
30 1.645 1.646 2.009 2.014 2.802 2.788
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Tabke 4. [cont.]

p = 0.90 p = 0.95 p = 0.99
n kUp,MC (p; n) kUp,u (p; n − 2) kUp,MC (p; n) kUp,u (p; n − 2) kUp,MC (p; n) kUp,u (p; n − 2)
31 1.656 1.647 2.018 2.017 2.781 2.795
32 1.652 1.646 2.009 2.013 2.761 2.782
33 1.645 1.647 2.008 2.016 2.796 2.788
34 1.644 1.646 2.010 2.012 2.761 2.777
35 1.647 1.647 2.015 2.014 2.777 2.782
36 1.647 1.646 2.016 2.011 2.792 2.772
37 1.647 1.647 2.010 2.013 2.785 2.777
38 1.646 1.646 2.000 2.009 2.762 2.767
39 1.652 1.647 2.004 2.012 2.758 2.771
40 1.644 1.647 2.005 2.008 2.771 2.763
41 1.643 1.647 2.011 2.010 2.795 2.767
42 1.651 1.647 2.010 2.008 2.767 2.758
43 1.650 1.647 2.010 2.009 2.745 2.762
44 1.640 1.647 2.003 2.007 2.780 2.755
45 1.650 1.647 2.008 2.008 2.751 2.758
46 1.653 1.647 2.010 2.006 2.749 2.751
47 1.649 1.647 2.017 2.007 2.756 2.754
48 1.652 1.647 2.014 2.005 2.7539 2.747
49 1.650 1.647 2.007 2.006 2.754 2.751
50 1.647 1.647 2.002 2.004 2.737 2.741
51 1.648 1.647 2.015 2.006 2.746 2.747
52 1.650 1.647 2.005 2.004 2.746 2.741
53 1.646 1.647 2.015 2.005 2.764 2.744
54 1.649 1.647 2.006 2.003 2.733 2.739
55 1.648 1.647 2.006 2.004 2.735 2.741
56 1.653 1.647 2.010 2.002 2.751 2.736
57 1.647 1.647 2.006 2.003 2.731 2.738
58 1.650 1.647 2.009 2.002 2.720 2.733
59 1.651 1.647 1.996 2.003 2.728 2.736
60 1.647 1.647 2.001 2.001 2.735 2.731
61 1.654 1.647 2.003 2.002 2.717 2.733
62 1.652 1.647 2.006 2.001 2.739 2.728
63 1.646 1.647 1.999 2.001 2.738 2.730
64 1.657 1.647 2.000 2.000 2.710 2.726
65 1.647 1.647 2.000 2.001 2.723 2.728
66 1.658 1.647 2.002 1.999 2.727 2.724
67 1.663 1.647 1.997 2.000 2.733 2.726
68 1.650 1.647 2.002 1.999 2.719 2.722
69 1.650 1.647 2.000 2.000 2.704 2.725
70 1.643 1.647 1.996 1.999 2.725 2.720
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As was mentioned above, the normalized sample median has an asymptotically normal
distribution. Due to this, for the large n as approximated values of coverage factor kUp(n), which
determine the expanded uncertainty, the corresponding percentiles of Student t-distribution [1] can
be used. For example, when n = 70 (number degrees of freedom d = 70 − 1 = 69) for p = 0.90,
0.95 and 0.99 coverage factors from t-distribution are: 1.667, 1.995, 2.678. After comparing the
values of coefficients kUp,u(n − 2): 1.647 (1.2%), 1.999 (0.2%) and 2.720 (1.5%) in the last line
in Table 4 for n = 70. It can be seen that approximated values of kUp,u(n − 2) are much closer to
limit values, the differences are less than 1.5%, i.e., they are negligible.

3.3. Comparison of the uncertainties evaluated by proposed and standard procedure
according to GUM [1]

In the case of the Laplace population (1), the parameter µ is both the median and the expected
value of the population. Therefore, in accordance with the standard procedure [1], the mean value
x̄ can be assumed as the estimator of µ, i.e., as the best measurement result. Thus, using standard
uncertainty uA(µ|x.) (26), it is possible to answer the question: how does uncertainty uA(µ|x)
differ from the uncertainty uA(µ|m) (m = med) when the measurement result is the sample median.
Or in other words, how much will be the measurement uncertainty lower if the median is be used
as the result instead of the mean value ? The relative deviations of these uncertainties, expressed
in percentages, can be used to answer this question:

RuA(µ, n) =
(

uA(µ, x)
uA(µ,m)

− 1
)
· 100%. (27)

These deviations present increasing standard uncertainty of measurement with multiple
observations obtained from the Laplace population when the arithmetic mean instead of the
sample median is used as the measurement result. The deviations RuA(µ, n) (27), depending on
the number of observations, are shown in Fig. 5.

Fig. 5. Increase in standard measurement uncertainties when the arithmetic mean value is used instead of the sample
median as the measurement result.

This figure shows that when n ≥ 12, using the sample median as the measurement result
reduces the standard uncertainty by more than 15% compared to using the result as the arithmetic
mean, and when n ≈≥ 35, using the sample median provides a reduction in the standard uncertainty
by more than 25%. To obtain the same level of uncertainty when the mean value is used as the
measurement result, the number of observations would be approximately 55 instead of 35 when
determining the median. With an increase in the number of observations, the effectiveness of the
median increases but this increase is very slow, namely at n = 70 its value is about 29%. But here,
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the same level of uncertainty when using the mean value as the measurement result, the number of
observations would be approximately 116 instead of 70 when determining the median. Only with
very large numbers of observations (theoretically at n→∞) can it reach its maximum value of
about 41%. Similar results are obtained when determining the expanded uncertainty.

4. Conclusions

The article proposes and investigates simple and accurate approximations for the evaluation
of the standard and expanded uncertainties of the population median based on the processing of
a random sample of size n ≥ 11 drawn from a Laplace-distributed population.

The approximation of the distribution of the population median is based on well-known
and studied distributions of the sample median for the number of observations n − 2. For the
practical application of the obtained results, appropriate values of the coefficients necessary
for the evaluation of the standard and expanded uncertainties for the number of observations
n = 11, . . . , 70 were determined and given in the corresponding tables. For a large number of
observations (n > 70, → ∞), the approximate values of the coverage factor from Student’s
t-distribution can be used to calculate the expanded uncertainty.

The algorithm of the uncertainty evaluation is very simple and consists of four steps:
1. determining the sample median m by (2);
2. determining the sample absolute median mean deviation s by (2);
3. determining the standard uncertainty uA(µ) by (7) and (15) or bymodified standard deviations

σu,mod(n − 2) from Table 3;
4. for a given confidence level p, determining the expanded uncertainty Up(µ) by (11) and

(16) or by coverage factor kUp,u(p; n − 2) (17) from Table 4 and standard uncertainty.
The accuracy of the proposed method was tested by comparing the results of approximate

values of standard and expanded uncertainties with the results obtained using the exact population
median distributions for n ≤ 10, and by the Monte Carlo simulation, with the number of trials
M = 105 for a number of observations n = 11, . . . , 70.

Based on comparisons with exact results (n ≤ 10), it has been shown that:
(i) when n ≥ 5 the differences between approximated and exact standard deviations of the

normalized median are less than 1%, i.e., negligibly small;
(ii) when n ≥ 7 and p = 0.90 and 0.95, the approximated value of expanded uncertainty differs

from the exact value by less than 1%, and for p = 0.99 difference does not exceed ≈ 2.5%.
The results obtained by Monte Carlo simulation (n = 11, . . . , 70) have shown that the proposed

approximated method for determining both standard and expanded uncertainty of the population
median is very accurate. Namely, relative deviations of the standard deviation and expanded
uncertainties (p = 0.90, 0.95, 0,99), determined according to proposed approximate dependences,
from the values determined by the Monte Carlo simulation do not exceed about 1%. From the point
of view of uncertainty of measurement, this is a very high accuracy of uncertainty evaluation [1].

Using the arithmeticmean as themeasurement result, i.e., the estimate of the Laplace population
location parameter, instead of the sample median, will generally result in an increased uncertainty
of up to about 25–40%, or would require an increase in the number of observations about 1.5–2
times to obtain the same uncertainty.

A comparison of the obtained results with the results given in literature sources has shown that
the proposed approximation is more accurate (please see also the Appendix) and is easier to use.
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5. Appendix

The efficiency of the proposed approximation is also checked by comparison with the data
given in [13] namely related to the determination of cumulative probability

P
[
n

3
2 Wn =

√
n · τ < z

]
(z =
√

n · τ).

In Table 5 the relative errors δappr (in %) between approximated [13] and exact values or
determined by MCM values are given also. Analysis of data presented in Table 5 shows that
the proposed approximation in comparison with the approximation given in [13] is much more
accurate, especially for large values of |z | .

Table 5. Comparison of exact and approximate cumulative probabilities P given in [13] and determined by proposed
method for selected sample sizes.

n z Exact MCM
Approximated

Median/χ2
[13]

δappr,%
Norm./Norm.

[13]
δappr, % Proposed, (n − 2) δappr, %

n = 5
−4.072 0.0194 0.0197 0.034 75.3 0.025 28.9 0.0186 −4.1
−2.429 0.0766 0.0766 0.087 13.6 0.050 −34.7 0.0758 −1.0
−1.565 0.1552 0.1545 0.155 −0.1 0.100 −3.4 0.1544 −0.5

n = 9

-3.691 0.0107 0.0108 0.020 1.5 0.010 −49.2 0.0110 2.8
−2.589 0.0396 0.0394 0.050 26.3 0.025 −36.9 0.0400 1.0
−1.967 0.0795 0.0791 0.087 9.4 0.050 −37.1 0.0797 0.25
−1.418 0.1416 0.1409 0.143 1.0 0.100 −29.4 0.1417 0.07

n = 15

−2.913 0.0170 0.024 41.2 0.010 −41.2 0.0176 3.5
−2.273 0.0413 0.049 18.6 0.025 −39.5 0.0425 2.9
−1.817 0.0752 0.081 7.7 0.050 −33.5 0.0765 1.7
−1.359 0.1323 0.134 1.3 0.100 −24.4 0.1329 0.45

n = 33

-2.544 0.0184 0.022 19.6 0.010 −45.7 0.0189 2.7
−2.085 0.0391 0.043 10 0.025 −36.1 0.0400 2.3
-1.717 0.0689 0.073 6 0.050 −27.4 0.0701 1.7
−1.315 0.1213 0.124 67.2 0.100 −17.6 0.1229 1.3
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