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ANDRZEJ GONET*

OPTIMIZATION OF A DIRECTIONAL BOREHOLE TRAJECTORY AS THE CRITERION 
OF MINIMUM COST OF PERFORMANCE

OPTYMALIZACJA TRAJEKTORII OTWORU KIERUNKOWEGO DLA KRYTERIUM 
MINIMALIZACJI KOSZTU JEGO WYKONANIA

New drilling technical and technological solutions enhance the development of directional drilling, 
enabling better control of direction of drilling and real-time 3D information about the position of the 
bit in the borehole rendered by the control and measurement apparatuses. The 2D and 3D method of 
designing the trajectory of a borehole axis has been modified in this paper. In both cases the minimum 
cost of drilling of a borehole in an interval from the beginning of its deflecting (KOP) up to the ultimate 
destination point was assumed to be the optimization criterion. 

Another assumption says that the admissible dogleg will never be exceeded over the entire interval 
of the borehole axis. 

Commonly more and more boreholes are performed from one place or one drilling platform. Such 
drilling is aimed at, e.g. developing unconventional deposits of natural gas or improving the depletion 
factor by injecting water or CO2. In such cases the boreholes are located densely, which may result in their 
colliding. Hence, attention was drawn to the fact that in such cases inaccuracies of apparatuses measuring 
the angle of deflection of the borehole, azimuth, length of the borehole and formation of error ellipsoids 
around a given point should be accounted for. The assumed method of positioning the borehole axis is also 
important. For a considerable length of the borehole axis the calculations are simple but time-consuming, 
therefore specialist computer programs are recommended. The trajectories of directional boreholes should 
be designed taking into account the position of the neighboring boreholes and inaccuracy of measuring 
equipment, as in this way the level of risk of potential collisions of boreholes axes can be determined.

Keywords: directional boreholes, trajectories, cost of drilling, colliding borehole axes 

Wprowadzanie najnowszych rozwiązań technicznych i technologicznych do wiertnictwa sprzyja 
rozwojowi wierceń kierunkowych. Jest to możliwe dzięki szerokim możliwościom sterowania kierunkiem 
wiercenia i aparaturze kontrolno-pomiarowej mogącej w czasie rzeczywistym przekazywać informacje 
o położeniu świdra w przestrzeni trójwymiarowej. W artykule zmodyfikowano projektowanie w prze-
strzeni dwu i trójwymiarowej trajektorii osi otworu kierunkowego. Założono, że kryterium optymalizacji 
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w obu przypadkach jest minimum kosztu wykonania otworu w interwale od początku jego kierunkowania 
(KOP) aż do końcowego celu. 

Przyjęto także ograniczenie mówiące o tym, że na całym analizowanym interwale osi otworu nie 
zostanie przekroczona dopuszczalna krzywizna. 

W praktyce wiertniczej obserwuje się coraz to więcej otworów wykonywanych z jednego placu lub 
z jednej platformy wiertniczej. Przykładowo są to wiercenia mające na celu udostępniania złóż gazu nie-
konwencjonalnego lub poprawienie współczynnika sczerpania złóż poprzez zatłaczanie do nich wody lub 
CO2. W takich przypadkach zazwyczaj zwiększa się zagęszczenie otworów, co może w niekorzystnych 
przypadkach prowadzić do ich kolizji. Z tego powodu zwrócono uwagę, że w takich sytuacjach wskazane 
jest uwzględnienie niedokładności przyrządów mierzących kąt odchylenia osi otworu i jej azymut oraz 
długość otworu i tworzenie wokół danego punktu pomiarowego elipsoidy błędu. Tutaj istotna jest także 
przyjęta metodyka określania przestrzennego położenia osi otworu. Dla znacznej długości osi otworu 
obliczenia są proste lecz bardzo czasochłonne i dlatego warto skorzystać z programów komputerowych. 
Zatem zaleca się projektować trajektorie osi otworów kierunkowych z uwzględnieniem położenia są-
siednich otworów i niedokładności przyrządów pomiarowych, co umożliwia określenie poziomu ryzyka 
w zakresie potencjalnych kolizji osi otworów.

Słowa kluczowe: otwory kierunkowe, trajektorie, koszty wiercenia, kolizje osi otworów

Introduction

The development of modern directional drilling techniques also opens possibilities for 
directional drilling control, mainly the change of the angle of angle of deflection, azimuth and 
intensity of spatial deflection (Mitchell & Miska, 2011). They are more and more frequently used 
by, e.g. geologists who select a few points on one trajectory of a directional borehole axis. This 
usually results in a more complex trajectory and additional complications during realization of 
the borehole. 

Recently an intense development of shale gas development and exploitation has been 
observed in the World. One of the most important components influencing the profitability of 
this type of production is the cost of performing numerous boreholes and their fracturing. By 
drilling a few or a dozen of boreholes in one site considerably reduces the cost of preparation of 
the area and considerably reduces the environmental impact of drilling operations. This solution, 
however, elongates the summaric length of drilling, and brings about a risk of collision between 
the neighboring boreholes. Therefore the design of borehole trajectories should be based on the 
criterion of optimized cost of drilling, and in view of technical limitations of drilling process, 
assumed depth of initial dogleg (KOP), target point and axes of neighboring boreholes. 

Methods of designing the trajectory of directional borehole axis 
A number of methods of designing the trajectory of a directional borehole axis exist in the 

World (Mitchell & Miska, 2011). They arbitrarily assume a definite type of trajectory, e.g. „J” or 
„S” type (Gonet, 1987). Other methods account for strength parameters of the string (Miska S. 
& Miska W., 2006), e.g. criterion of minimum dogleg curvature. However, more attention is 
paid to the cost of drilling as it significantly affects the economic aspect of the undertaking, and 
influences further decisions on, e.g. where or not to prospect and develop shale gas fields.

In this situation the author proposes a method of designing a directional borehole trajectory 
based on the criterion of the cost of drilling, casing and sealing the casing (Gonet, 1987). It also 
addresses the state of the directional drilling techniques and technologies, i.e. also indicates the 
most economic borehole profile.



903

Objective function Fc was written as:

 1

m

c j j

j

F K l

�

� � ��
 
minimum (1)

where:
 Kj — cost of drilling rocks, casing and sealing 1 m long casing in the j-th 
uniform price layer in the planned borehole,
 lj — length of borehole axis in the j-th uniform price layer,
 m — number of uniform price layers.

Under the notion of „uniform price layer“ we understand layers, for which the total cost of 
drilling, casing and sealing the casing per 1 meter is the same or almost the same.

Therefore, to fully prepare the data, the uniform price layers should be determined in a di-
rectional profile of the borehole interval placed on a vertical plane crossing the initial point of 
deflection (KOP) and target point in its azimuth.

The boundaries between specific layers are connected with:
− depth at which the borehole has been cased,
− depth of sealing the casing,
− change of borehole diameter,
− change of drilling method (rotary, with downhole motor, drill or bit),
− change of macroscopically homogeneous rocks (Miska, 1979; Wojtanowicz, 1975).

Each layer is ascribed a unit cost of drilling, casing and sealing. The dip of layers is also 
specified individually for each layer (Gonet, 1981). If the layers are parallel, then the directions 
of their dip are equal (Fig. 1) and the calculations are shorter than for non-parallel layers. In the 
latter case the optimum profile is determined by the successive approximation method taking 
into account the spatial location of layers.

For the sake of generalization, the first vertical section of the borehole has not been con-
sidered. Therefore, analyses will start for the profile of the directional borehole axis from the 
point where the first interval with increased angle of deflection is drilled with the deflecting 
tool (Matanović, 2007; Mitchell & Miska, 2011; Pinka et al., 2007) to the final point of the 
directional borehole.

Two orthogonal Cartesian coordinates systems with a common point in the origin of the 
system (beginning of deflection of the borehole from vertical) have been presented in fig. 1. 

OX axis of the first coordinates system is vertical and downwardly oriented, whereas OY 
axis is horizontal. Ox axis of the other coordinates system is perpendicular to the boundary of 
the first and the second layer. This signifies that the other coordinates system was rotated by 
the directional dip of layers δ. The coordinates of the bottom of the directional borehole P2 cor-
responding to the depth of deflected borehole Ho (vertically) and to deflection Ap (horizontally) 
in the other coordinates system should be calculated from the formulae:

 H = Hocosδ + Apsinδ (2)

 A = Hosinδ + Apcosδ (3)
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The coordinates of specific boundaries of layers measured in vertical hj in the other coor-
dinates system can be determined from the equation:

 xj = hj cosδ (i = 1, 2, …, m) (4)

 The trajectory of borehole axis described by function y = y (x), which should link points 
P1(0,0) and S0 (H, A) and realize the objective function (1), is unknown. The analysis of various 
trajectories was followed by an assumption that it was a third order polynomial with unknowns 
a, b, c, d:

 y = ax3 + bx2 + cx + d (5)

Fig. 1. Scheme of trajectory of a directional borehole
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Two factors were determined from the condition that curve (5) crosses the beginning of 
deflection P1 and end of directional borehole S0:

 3 2
0

A b c
d a

HH H
� � � � �  (6)

After substituting them to equation (5) the final equation of borehole axis trajectory (5) 
takes the form:
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The length lj of directional borehole trajectory between two neighboring boundaries xj and 
xj –1 required for the objective function (1) is determined from the equation:
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At small values of the angle of deflection of borehole axis, the equation for the length of the 
trajectory between neighboring points can be simplified. Assuming that |y' | < 1 (angle of deflection 

of borehole axis) ,
4 4
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 and developing the integrand (8) into Maclaurin series and 

accounting for first two elements of the developed function, we get equation (8) in the form:
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After calculating the first derivative of function (7) and substituting it to equation (9) we 
have:
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where:

 1:
r r r
j j jx x x �� � �  r =1, 2, 3, 4, 5 (11)

For angles of deflection of borehole axis not belonging to ,
4 4

� �� 
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 it is recom-

mended that the first derivative of function (7) were substituted to integral (8) and calculated. An 
alternative simplified solution lies in assuming coordinates of an indirect point at the trajectories 
and determining the trajectory on a shortened interval with its final angle of deflection. Then, the 
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coordinates system should be rotated by the previously determined angle of deflection of borehole 
axis and the procedure of defining the trajectory repeated once or twice, depending on the target. 

To begin drilling of the first dogleg interval is technically limited therefore a specific drilling 
method is selected for the planned stage of realization. It can be assumed that the initial angle of 
deflection of borehole axis α is known. After accounting for the directional dip of layers δ and 
initial angle of borehole deflection α for the assumed function (7) there was defined coefficient c, 
which was equal to the first derivative at the origin of the coordinates system (Fig. 1), and which 
has been written in the form:

 y' (0) = c = tg(α – δ) (12)

For technological reasons the objective function should have additional limitations on keeping 
admissible values by doglegs kd over the entire length of the planned borehole profile (Lubinski, 
1961, 1987). The curvature k of the plot in 2D is frequently described with the formula:

 ( )
3

2 2

"

1 '

y
k

y

�

�
 (13)

Having assumed that (|y' | < 1), the equation (13) can be simplified:

 k = |y" | (14)

After calculating the second derivative of function (5) we have an equation for the curvature 
of borehole axis in the form:

 k = |6ax + 2b| (15)

The curvature of the analyzed plot should meet the following dependence:

 |6ax + 2b| ≤ kd (16)

For x ∈ [0, H ] the local maximum of borehole axis occurs at the end of the interval. Thus, the 
following limitations were obtained from inequality (16) and coordinates of points P1 and S0:

 |2b| – kd ≤ 0 (17)

 2
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d

A c
b k

HH
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For determining the extremum of function (1), the Lagrange function F1 was written in the form:
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where: λ1, λ2, λ3, λ4 Lagrange multipliers.
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For finding a conditional minimum from the objective function (19), the following deriva-
tives were calculated from (19) after accounting for (10) and (11):
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where:
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It follows from the necessary condition for the extremum that the first partial derivatives 
should be equal to zero; then we get a system of five equations:

 bu1 + u2 + 2λ1 – 2λ2 – 4λ3 + 4λ4 = 0 (27)

 λ1(2b – kd) = 0 (28)

 λ2(–2b – kd) = 0 (29)
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By solving a system of equations (27) – (31) we determine b, λ1, λ2, λ3, λ4. Then the coef-
ficient a is calculated from equation (6) and we obtain the equation of curve (5) which realizes 
the objective function (1). This result is obtained for a profile in 2D.

Sometimes a spatial change of the azimuth of borehole axis is observed in the drilling prac-
tice. Therefore the further part of the paper is additionally devoted to the intensity of deflection of 
borehole axis in 3D. Then the specific parameters of the profile are determined from the bottom 
of the borehole to the beginning of the dogleg. With the given step, the function (4) is calculated 
for coordinated of Si (xi, yi, zi). Then two coordinates of points in the first coordinates system are 
defined with the following formulae:

 Xi = xi cosδ – yi sinδ (32)

 Yi = xi sinδ + yi cosδ (33)

The growing lengths of the borehole trajectory li in 2D between two successive points at 
small distances should be treated as a diagonal of a rectangular triangle. They can be calculated 
from the formula:

 ( ) ( )
2 2

1 1i i i i il X X Y Y� �� � � �  (34)

Otherwise, depending on the required accuracy, they should be calculated from equation (8) 
or (9). In 3D (OZ axis in fig. 1) the azimuth of the directional borehole axis is changed. From the 
practical point of view, the assumed change of the azimuth should preferably be ∆β per 10 borehole 
meters and the third coordinate z i at the section li should be determined from the formula:

 zi = –0,1 · li · tg∆β (35)

Thus, the actual length Li of borehole axis in 3D between two successive neighboring points 
is treated as a diagonal of cubicoid and its value is approximately:

 
2 2

i i iL l z� �  (36)

The third coordinate of point Si of profile in the coordinates system XYZ equals to:

 Zi = zi – 1 + zi (37)

The following parameters of a directional borehole axis can be defined for selected coor-
dinates:

− angle of deflection of borehole axis: 

 αi = arctg(3axi
2 + 2bxi + c) + δ (38)

− azimuth of borehoole axis: 

 βi = βi – 1 – 0,1∆βLi (39)
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− curvature of borehole axis:
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It should be emphasized that by using equation (39) successively, one should reach point P1 
(Fig. 1), where the initial azimuth is determined, and following which the first dogleg interval 
should be drilled.

Anticollision analysis of boreholes

Commonly more and more boreholes are being performed from one site or one drilling plat-
form, which may result in their colliding. To avoid this it is advisable to determine the trajectory 
of the borehole axis and the zone in which the borehole axes will be present. This is a result of 
measurements of the angle of deflection, azimuth and length of the borehole, given with a defi-
nite level of uncertainty. It should be assumed for those three variables that every measurement 
point of the borehole axis location in 3D may be present in the so-called error ellipsoid (Fig. 1), 
the parameters of which depend on the accuracy of the applied measurement equipment. The 
analysis should also encompass new methodics of spatial positioning of borehole axes (Landmark, 
2008). The method of minimum curvature and average angles is most commonly used. Finally, 
a spatial zone should be formed around each axis, with the borehole inside. Having a few bore-
holes already performed in a given area and a new one ahead, it is recommended to determine 
the zone of potential borehole axis location around each of them. Then the so-called separation 
coefficient should be determined This is a quotient of a distance of centers of ellipsoids located 
on the borehole axes at the checked depth and the sum of distances resulting from the error of 
measurement of existing and planned location of borehole axis projected on a horizontal plane 
cutting borehole axes at the closest measurement points. If the obtained separation coefficient is 
less than zero, the collision of boreholes is possible in practice. To lower the risk of collision of 
the neighboring boreholes it is recommended that the borehole trajectories were re-designed using 
changed parameters so that a suitable separation coefficient is obtained. It should be emphasized 
that the higher is its value the lower is the risk of collision. It is also purposeful to regularly moni-
tor the actual position the drilled borehole and check it out with the assumed trajectory.

The entire procedure was described, e.g. in (Gonet et al., 2012). It should be mentioned that 
those calculations are time-consuming therefore the use of computer programs should be con-
sidered, e.g. package Compass Landmark by Halliburton, 2008. Such an approach to designing 
directional borehole axes allows for defining the level of risk of collision of borehole axes and 
checking it in when new boreholes are performed.
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Conclusions

1. Systematically developing directional drilling finds newer and newer applications, which 
mainly stems from the new advances in the borehole drilling technique and technology.

2. Majority of directional boreholes are designed in 2D, and specific type of borehole trajec-
tory, e.g. „J” or „S’ type are assumed arbitrarily.

3. The presented method of designing directional boreholes is applicable to designing 
directional borehole axes in 2D and 3D. The objective function was assumed in the form of 
a minimum cost of performing the borehole and limiting factor related with the admissible 
curvature of the dogleg.

4. When a few boreholes are drilled from one place, which is the case on drilling platforms 
and planned shale gas drilling it is recommended that the trajectory of the borehole is determined 
and also zone of potential position of borehole axes is identified according to the accuracy level 
represented by equipment used for measuring the angle of deflection of the dogleg, azimuths and 
length. Thanks to this the real risk of boreholes collision can be minimized.

Performed within the research program NCBiR in AGH-UST FDO&G No. 11.11.190.555
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