Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The publication presents a new shooting technique with reduced pressure in venting system for manufacturing foundry cores using inorganic sand mixture with Cordis binder. Traditional technologies for producing casting cores using blowing methods, despite their undeniable advantages, including the ability to produce cores in series, also come with some disadvantages. The primary drawbacks of the process involve uneven compaction structure of the cores, with denser areas primarily located under the blow holes, and under-shooting defects, which often occur in regions away from the blow hole or in increased core cross-sectional areas. In an effort to improve core quality, a concept was developed that involves incorporating a reduced pressure in the core box venting system to support the basic overpressure process. The solutions proposed in the publication with a vacuum method of filling the cavities of multi-chamber core boxes solve a number of technical problems occurring in conventional blowing technologies. It eliminates difficulties associated with evacuating the sand from the chamber to the shooting head and into technological cavity and increases the uniform distribution and initial degree of compacting of grains in the cavity. The additive role of this “underpressure” support is to enhance corebox venting by eliminating 'air cushions' in crevices and structural elements that obstruct the flow of evacuated air. The publication presents the results of studies on core manufacturing using blowing methods conducted in three variants: classic overpressure, utilizing the core box filling phenomenon by reducing pressure, and an integrated approach combining both these methods.
Go to article

Bibliography

[1] Dańko, J. (1992). Process of production of moulds and cores by mean of blowing methods. Theory and tests. Series Dissertations and Monography. AGH Publishing House. (in Polish).

[2] Dańko, R. (2019). Blowing Processes and Machines in Core making technologies for Foundrie. Katowice-Gliwice: Archives of Foundry Engineering. (in Polish).

[3] Delimanová, P., Vasková, I., Bartošová, M. & Hrubovčáková, M. (2023). Influence the composition of the core mixture to the occurrence of veinings on castings of cores produced by cold-box-amine technology. Archives of Metallurgy and Materials. 68(3), 947-953. DOI: https://doi.org/10.24425/amm.2023.145458.

[4] Dańko, R., Dańko J. & Skrzyński, M. (2017). Assessment of the possibility of using reclaimed materials for making cores by the blowing method. Archives of Foundry Engineering. 17(1), 21-26. 10.1515/afe-2017-0004.

[5] Walker, M., Palczenski, S., Snider, D. & Williams, K. (2002). Modeling Sand Core Blowing: Simulation’s Next Challenge. Modern Casting. 92(4), 41-43. ISSN: 0026-7562.

[6] Dańko, J., Dańko, R., Burbelko, A. & Skrzyński M. (2012). Parameters of the two-phase sand-air stream in the blowing process. Archives of Foundry Engineering. 12(4), 25-30. DOI: 10.2478/v10266-012-0102-1.

[7] Fedoryszyn, A. Dańko, J., Dańko, R., Asłanowicz, M., Fulko, T. & Ościłowski. A. (2013). Characteristic of Core Manufacturing Process with Use of Sand, Bonded by Ecological Friendly Nonorganic Binders. Archives of Foundry Engineering. 13(3), 19-24. DOI: 10.2478/afe-2013-0052.

[8] Aksjonow, P.N. (1965). Selected issues in the theory of foundry machines. Katowice: „Śląsk” Publishing House. (in Polish)

[9] Budavári, I., Hudák, H., Fegyverneki, G. (2023). The role of acid hardener on the hardening characteristics, collapsibility performance, and benchlife of the warm-box sand cores. Archives of Foundry Engineering. 23(1), 68-74. DOI: 10.24425/afe.2023.144282.

[10] Czerwinski, F., Mir, M. & Kasprzak, W. (2015). Application of cores and binders in metal casting. International Journal of Cast Metal Research. 28(3), 129-139. https://doi.org/10.1179/1743133614Y.0000000140.

[11] Sivarupan, T., Balasubramani, N., Saxena, P., Nagarajan, D., El Mansori, M., Salonitis, K., Jolly, M. & Dargusch, M.S. (2021). A review on the progress and challenges of binder jet 3D printing of sand moulds for advanced casting. Additive Manufacturing. 40, 101889, 1-17. https://doi.org/10.1016/j.addma.2021.101889

[12] Cheng, Y., Li, Y., Yang, Y,Tang, K., Jhuang, F., Li, K. & Lu. C. (2022). Greyscale printing and characterization of the binder migration pattern during 3D sand mold printing. Additive Manufacturing. 56, 102929, 1-13. https://doi.org/10.1016/j.addma.2022.102929.

[13] Liu, H., Lei, T. & Peng, F. (2023). Compensated printing and characterization of the droplet on the binder migration pattern during casting sand mold 3D printing. Journal of Manufacturing Processes. 108, 114-125. https://doi.org/10.1016/j.jmapro.2023.10.073.

[14] HA Group (2024). Additive Manufacturing. Retrieved February 20, 2024, from https://www.ha-group.com/pl/en/products-and-services/products/additive-manufacturing/

[15] Dajczer, G. (2024). Integrated process of making casting cores by blowing method using reduced pressure of venting the core box. PhD dissertation. AGH Krakow.

[16] Dańko, R., Dańko, J. (2023). Processes and mechanized systems for manufacturing casting core. In Chapter IV of Foundry's Guide, volume 2. Polish Kraków: Foundrymen’s Association.
Go to article

Authors and Affiliations

M. Skrzyński
1
R. Dańko
1
ORCID: ORCID
G. Dajczer
2

  1. AGH University of Krakow, Poland
  2. KPR PRODLEW-KRAKÓW Spółka z o.o., Alfreda Dauna 78, 30-629 Krakow, Poland

This page uses 'cookies'. Learn more