Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The utilization of readily accessible natural fibres in lightweight foamed concrete (LWFC), which is already a widely used building material, can have a substantial positive impact on the environment. Therefore, the mechanical characteristics might be increased by using a correct mix proportion of fibre-reinforced LWFC. Innovative LWFC-agave fibre (AF) composites were created in this experiment. In order to get the best mechanical qualities, this investigation set out to establish the correct weight fraction of AF to be added to LWFC. Two LWFC densities of 750 and 1500 kg/m3 were produced with the addition of several weight fractions of AF, precisely 0.0%, 1.5%, 3.0%, 4.5%, 6.0%, and 7.5%, were used. To establish the mechanical characteristics of LWFCAF composites, flexural tests, tensile strength tests, axial compression tests, and ultrasonic pulse velocity tests were carried out. Test results revealed that the combination of LWFC together with a weight fraction of 4.5% of AF exhibited superior mechanical properties. Beyond 4.5% of AF’s weight fraction, the mechanical properties started to deteriorate. This study gives insight and crucial data on the mechanical characteristics of LWFC-AF composites therefore it will enable future researchers to explore other properties of LWFC reinforced with AF.
Go to article

Authors and Affiliations

Md Azree Othuman Mydin
1
ORCID: ORCID
M.M. Al Bakri Abdullah
2
ORCID: ORCID
R. Omar
3
ORCID: ORCID
A. Dulaimi
4
ORCID: ORCID
W.M. Wan Ibrahim
5
ORCID: ORCID
B. Jeż
6
ORCID: ORCID
M. Nabiałek
7
ORCID: ORCID

  1. Universiti Sains Malaysia, School of Housing, Building and Planning, 11800, Penang, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis 01000 Perlis, Malaysia
  3. Universiti Tun Hussein Onn Malaysia (UTHM), Faculty of Technology Management and Business, Department of Construction Management, Parit Raja, Batu Pahat, Johor 86400, Malaysia
  4. University of Warith Al-Anbiyaa, College of Engineering, Karbala, 56001, Iraq; Liverpool John Moores University, School of Civil Engineering and Built Environment,Liverpool L3 2ET, UK
  5. Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis 01000 Perlis, Malaysia
  6. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 19c Armii Krajowej Av., 42-200 Czestochowa , Poland
  7. Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Dramatic population and economic growth result in increasing demand for concrete infrastructure, which leads to an increment of freshwater demand and a reduction of freshwater resources. However, freshwater is a finite resource, which means that freshwater will be used up someday in the future when freshwater demand keeps increasing while freshwater resources are limited. Therefore, replacing freshwater with seawater in concrete blending seems potentially beneficial for maintaining the freshwater resources as well as advantageous alternatives to the construction work near the sea. There have been few experimental research on the effect of blending water salt content on the mechanical and physical characteristics of concrete, particularly high-strength concrete. Therefore, a research study on the influence of salt concentration of blending water on the physical and mechanical properties of high-strength concrete is necessary. This study covered the blending water salinity, which varied from 17.5 g/L to 52.5 g/L and was determined on the physical and mechanical properties, including workability, density, compressive strength, and flexural strength. The test results indicate that the use of sea salt in blending water had a slight negative influence on both the workability and the density of high strength concrete. It also indicates that the use of sea salt in blending water had a positive influence on both the compressive strength and the flexural strength of high-strength concrete in an earlystage.
Go to article

Authors and Affiliations

R.A. Razak
1 2
ORCID: ORCID
K. Yen Ng
2
ORCID: ORCID
M.M. Al Bakri Abdullah
1 3
ORCID: ORCID
Z. Yahya
1 2
ORCID: ORCID
R. Mohamed
1
ORCID: ORCID
K. Muthusamy
4
ORCID: ORCID
W.A.W. Jusoh
5
ORCID: ORCID
M. Nabiałek
6
ORCID: ORCID
B. Jeż
7
ORCID: ORCID

  1. Universiti Malaysia Perlis, Geopolymer and Green Technology, Center of Excellence (CEGeoGTech), Kangar, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Perlis, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology Perlis, Malaysia
  4. Malaysia Pahang, Faculty of Civil Engineering Technology, Universiti Pahang Malaysia
  5. Universiti Tun Hussein Onn, Faculty of Engineering Technology, Pagoh, Johor, Malaysia
  6. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
  7. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 19c Armii Krajowej Av., 42-200 Czestochowa, Poland

This page uses 'cookies'. Learn more