Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 1
Wyników na stronie: 25 50 75
Sortuj wg:
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The article discusses the growing importance of decarbonization of production systems in the foundry industry as a response to climate challenges and increasing requirements for sustainable development. The process of reducing greenhouse gas emissions in foundry production is caused by a number of reasons. Decarbonization of the foundry industry refers to actions aimed at reducing greenhouse gas emissions, especially carbon dioxide (CO2). Reducing carbon dioxide emissions is increasingly being considered as a key element of the strategy of both small and large foundries around the world. Foundry is one of the industries that generates significant amounts of carbon dioxide emissions due to the energy consumption in the process of melting and forming metals. There is virtually no manufacturing industry that does not use elements cast from iron, steel or non-ferrous metals, ranging from elements made of aluminum to zinc. The article presents various decarbonization strategies available to foundries, such as: the use of renewable energy, the use of more efficient melting technologies, or the implementation of low-energy technologies throughout the production process. Application examples from different parts of the world illustrate how these strategies are already being put into practice, as well as the potential obstacles and challenges to full decarbonization.
Przejdź do artykułu

Bibliografia

[1] Skoczkowski, T., Verdolini, E, Bielecki, S., Kochański, M, Korczak, K. & Węglarz, A. (2020). Technology innovation system analysis of decarbonisation options in the EU steel industry. Energy. 212, 118688, 1-21. DOI:10.1016/j.energy.2020.118688.

[2] Sundaramoorthy, S., Kamath, D., Nimbalkar, S., Price, C., Wenning, T. & Cresko, J. (2023). Energy efficiency as a foundational technology pillar for industrial decarbonization. Sustainability. 15(12), 9487, 1-24. DOI: 10.3390/su15129487.

[3] The European Union Climate Package. (2023). Retrieved November 03, 2023, from: https://eur-lex.europa.eu/PL/legal-ontent/summary/greenhouse-gas-emission-allowance-trading-system.html.

[4] The Directive on the greenhouse gas emission allowance trading system and the Energy Efficiency Directive. (2023) Retrieved November 03, 2023, from https://eur-lex.europa.eu/PL/legal-ontent/summary/energy-efficiency.html.

[5] The European Foundry Association. (2023). Retrieved October 23, 2023, from: https://www.caef.eu/statistics/.

[6] Statista. (2023). Retrieved November 03, 2023 from: https://www.statista.com/statistics/237526/casting-production-worldwide-by-country/.

[7] Martin, A. (2019). Deployment of Deep Decarbonization Technologies: proceedings of a Workshop, National Academies of Sciences, Engineering, and Medicine. The National Academies Press: Washington, DC, USA, ISBN 978-0-309-67063-0.

[8] De Pee, A.; Pinner, D.; Roelofsen, O.; Somers, K.; Speelman, E., Witteveen, M. (2023). How Industry Can Move toward a Low-Carbon Future. Retrieved November 03, 2023 from: https://www.mckinsey.com/capabilities/sustainability/our-insights/how-industry-canmove-toward-a-low-carbon-future.

[9] Anke, C.P., Hobbie, H., Misconel, S, & Möst, D. (2020). Coal phase-outs and carbon prices: Interactions between EU emission trading and national carbon mitigation policies, Energy Policy. 144, 111647, 1-11. DOI:10.1016/j.enpol.2020.111647.

[10] Auer, H., Crespo del Granado, P., et al. (2020). Development and modelling of different decarbonization scenarios of the European energy system until 2050 as a contribution to achieving the ambitious 1.5oC climate target-establishment of open source/data modelling in the European H2020 project open ENTRANCE. Elektrotechnik und Informationstechnik. 137(7), 346-358. DOI: 10.1007/s00502-020-00832-7.

[11] Child, M., Kemfert, C., Bogdanov, D. & Breyer, C. (2019). Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe. Renewable energy. 139, 80-101. DOI: 10.1016/j.renene.2019.02.077.

[12] Lockwood, T. (2017). A comparative review of next-generation carbon capture technologies for coal-fired power plant. Energy Procedia. 114, 2658-2670. DOI: 10.1016/j.egypro.2017.03.1850

[13] Luo, X., Wang, J., Dooner, M., Clarke, J. (2014). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy. 137, 511-536. DOI: 10.1016/j.apenergy.2014.09.081.

[14] Waupaca Foundry. (2023). Retrieved October 23, 2023 from: https://waupacafoundry.com/blog/waupaca-foundry-accepts-better-climate-challenge.

[15] Decarbonization-Audi. (2023). Retrieved October 23, 2023 from: https://www.audi.com/en/sustainablility/environment-resources/decarbonization.html

[16] American Foundry Society. (2023). Retrieved November 03, 2023 from: https://afsinc.s3.amazonaws.com/Documents/FIRST/recyclingbrochure_lr.pdf

[17] Major-Gabryś, K., Dobosz S.M., Drożyński D. & Jakubski J. (2015). The compositions: biodegradable material - typical resin, as moulding sands’ binders. Archives of Foundry Engineering. 15(1), 35-40. DOI: 10.1515/afe-2015-0008.

[18] METALCASTING - Foundries and circular economy. (2023). Retrieved November 03, 2023 from: https://www.assofond.it/en/foundries-and-circular-economy.
Przejdź do artykułu

Autorzy i Afiliacje

C. Kolmasiak
1

  1. Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Production Management, Poland

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji