Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Metal fuel is a promising candidate for the pyro-processed nuclear fuel, but the problem of loss of nuclear material due to the high reactivity of metal fuel and melting crucible in the metal fuel casting process must be solved for loss control and waste reduction. In this study, fabrication test was conducted to develop a new material NdYO3 as a new crucible material to improve the degree of anti-reactivity. The NdYO3 compact was manufactured by the CIP (Cold isostatic pressing) method with changing fraction of Nd2O3 and Y2O3 powders. Sintering process was performed at 1550°C for 10 hours. The systematic trends of XRD patterns shows that phase transformations form cubic structure to monoclinic structures occurred with the addition of Y2O3. The rate of pore were discussed with change of fraction of Nd2O3 and Y2O3.
Go to article

Authors and Affiliations

Sang-Gyu Park
1
ORCID: ORCID
Ki-Hwan Kim
1
ORCID: ORCID
Jun Hwan Kim
1
ORCID: ORCID

  1. Korea Atomic Energy Research Institute, Next-Generation Fuel Technology Development Division, 989-111, Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

LaYO3 which has phase stability at high temperature is introduced as a promising candidate for reaction-preventing crucible materials with Uranium-Zirconium (U-Zr) melt containing rare-earth elements (RE). RE is composed of rare-earth elements such as Nd, Ce, Pr and La. The LaYO3 material was synthesized by a solid-state reaction method at elevated temperature according to a pseudo-phase diagram of LaYO3 and Y2O3. Green compacts blended with La2O3 and Y2O3 powder were made by the Cold Isostatic Pressing (CIP) method, with La2O3 and Y2O3 powders varying with molar ratios from 1.0 to 1:2. LaYO3 synthetics were fabricated at sintering temperatures ranging from 1450°C to 1600°C. LaYO3 pellets sintered at below 1550°C showed a highly dense orthorhombic phase with a perovskite structure, resulting in an enhancing reaction-resistant effect with RE.
Go to article

Authors and Affiliations

Ki-Hwan Ki
1
ORCID: ORCID
Yong-Wook Choe
2
Hoon Song
1
Sang-Gyu Park
1
ORCID: ORCID
Jun-Hwan Kim
1
ORCID: ORCID

  1. Korea Atomic Energy Research Institute, Next-Generation Fuel Technology Development Division, 989-111, Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea
  2. Korea At omic Energy Research Institute, Next-Generation Fuel Technology Development Division, 989-111, Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea; Yonsei University, Department of Materials Science and Engineering, Seoul, 03722, South Korea
Download PDF Download RIS Download Bibtex

Abstract

An alternative fabrication method for metallic fuel in Gen-IV reactor was introduced with vibration packing of nuclear fuel particles to facilitate remote fabrication in a hot cell and reduce the generation of long-lived radioactive wastes. Vibration packing experiments on metallic particulate fuel using a surrogate 316L stainless steel powder were done to investigate the packing density and the uniformity of the simulated fuel according to the filling method and the vibration condition. Metallic particulate fuel filled with a pre-mixed power over all particles had the highest packing fraction and the most uniform distribution among the filling methods. The vibration packing method showed that it could fabricate the metallic particulate fuel having uniform distribution of spherical fuel particles through the adjustment of the filling method of the metallic powder and the vibration condition of the metallic particulate fuel.
Go to article

Bibliography

[1] T. Abram, S. Ion, Energy Policy 36, 4323-4330 (2008).
[2] G eneration IV International Forum, A Technology Roadmap for Generation IV Nuclear Energy Systems, 2002.
[3] H.S. Lee, G.I. Park, I.J. Cho, Sci. Technol. Nucl. Install. 2013, 1-11 (2013).
[4] H. Lee, G.I. Park, E.H. Kim, Nucl. Eng. Technol. 43, (317-328) 2011.
[5] J.I. Jang, Nucl. Eng. Technol. 43, 161-170 (2007).
[6] J.H. Jang, H.S. Kang, Y.S. Lee, H.S. Lee, J.D. Kim, J. Radioanal. Nucl. Chem. 295, 1743-1751 (2013).
[7] C.E. Stevenson, The EBR-II Fuel Cycle Story, American Nuclear Society, La Grange Park, Ill, USA, 1987.
[8] H. Lee, G.I. Park, I.J. Cho, Sci. & Technol. Nucl. Install. 2013, 1-11 (2013).
[9] J.H. Kim, H. Song, H.T. Kim, K.H. Kim, C.B. Lee, R.S. Fielding, J. Radioanal. Nucl. Chem. 299, 103-109 (2014).
[10] M .A. Pouchon, G. Ledergerber, F. Ingold, K. Bakker, J. Nucl. Mater. 3, 275-312 (2012).
[11] G . Ledergerber, F. Ingold, R.W. Stratton et al., Nucl. Tech. 114, 194-203 (1996).
[12] G . Bart, F.B. Botta, C.W. Hoth, G. Ledergerber, R.E. Mason, R.W. Stratton, J. Nucl. Mater. 376, 47-59 (2008).
[13] K.H. Kim, D.B. Lee, C.K. Kim, I.H. Kuk, K.W. Paik, J. Nucl. Sci. & Tech. 34, 1127-1132 (1997).
[14] J.H. Kim, J.W. Lee, K.H. Kim, C.B. Lee, Sci. and Tech. Nucl. Istall. 2016, 1-7 (2016).
[15] K.H. Kim, S.J. Oh, S.K. Kim, C.T. Lee, C.B. Lee, Surf. Interface Anal. 44, 1515-1518 (2012).
[16] R . Herbig, K. Rudoph, B. Lindau, J. Nucl. Mater. 204, 93-101 (1993).
[17] K.L. Peddicord, R.W. Stratton, J.K. Thomas, Prog. Nucl. Energy 18, 265-299 (1986).
[18] G . Ledergerber, F. Ingold, R.W. Stratton, H.P. Alder, Nucl. Technol. 114, 194-204 (1996).
[19] A.S. Icenhour, D.F. Williams, Sphere-Pac Evaluation for Transmutation, ORNL/TM-2005/41, 2005.
[20] G .D. Del Cul, C.H. Mattus, A.S. Icenhour, L.K. Felker, Fuel Fabrication Development for the Surrogate Sphere-Pac Rodlet, ORNL/TM-2005/108, 2005.
[21] A.L. Lotts et al., Fast Breeder Reactor Oxide Fuels Development, ORNL-4901, 1973.
[22] Ch. Hellwig, K. Bakker, M. Nakamura, F. Ingold, L.A. Nordstro, Y. Kihara, Nucl. Sci. Eng. 153, 233-244 (2006).
[23] H.A.C.K. Hettiarachchi, W.K. Mampearachchi, Powder Technology 336, 150-160 (2018).
[24] J.G. Jeon et al., Korean J. Met. Mater. 54, 322-331 (2016).
Go to article

Authors and Affiliations

Ki-Hwan Kim
1
ORCID: ORCID
Seong-Jun Ha
1
Sang-Gyu Park
1
ORCID: ORCID
Seoung-Woo Kuk
1
Jeong-Yong Park
1

  1. Korea Atomic Energy Research Institute, Next-Generation Fuel Technology Development Division, 989-111, Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea

This page uses 'cookies'. Learn more