Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 1
Wyników na stronie: 25 50 75
Sortuj wg:
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

A method for fabrication of a composite layer on the surface of a steel casting using coating containing TiC substrates was presented. The reaction of the synthesis of the ceramic phase was based on the SHS method (Self-propagating High-temperature Synthesis) and was triggered by the heat of molten steel. High hardness titanium carbide ceramic phases were obtained, which strengthened the base material improving its performance properties presented in this article. Microstructural examinations carried out by light microscopy (LM) on the in-situ produced composite layers showed that the layers were the products of reaction of the TiC synthesis – the phenomenon called “fragmentation” by the authors of study. The examinations carried out by scanning electron microscopy (SEM) have revealed the presence of spheroidal precipitated and free of impurities. The presence of titanium carbide was twofold increase in hardness in the area of the composite layer as compared to the base alloy which was carbon cast steel.
Przejdź do artykułu

Bibliografia

[1] Swain, B., Bhuyan, S., Behera, R., Mohapatra, S., Behera, A. (2020). Wear: a serious problem in industry. In Patnaik, A., Singh, T., & Kukshal, V. (Eds.), Tribology in Materials and Manufacturing-Wear, Friction and Lubrication (pp. 279-298). DOI: 10.5772/intechopen.94211.

[2] Nowotyńska, I., Kut, S. & Kogut, K. (2018). Laser hardening of tools with the use of the beam. Autobusy. 19(6), 636-639. DOI: 10.24136/atest.2018.147. (in Polish).

[3] Wołowiec-Korecka, E., Korecki, M., Klimek, L. (2022). Influence of flow and pressure of carburising mixture on low-pressure carburising process efficiency. Coatings. 12(3), 337, 1-7. https://doi.org/10.3390/coatings12030337.

[4] Jhao-Yo Guo, Yu-Lin Kuo, Hsien-Po Wang, (2021). A facile nitriding approach for improved impact wear of martensitic cold-work stell using H2/N2 mixture gas in an ac pulsed atmospheric plasma jet. Coatings. 11(9), 1119, 1-15. https://doi.org/10.3390/coatings11091119.

[5] Sedov, V., Martyanov, A., Altakhov, A. (2022). Effect of substrate holder design on stress and uniformity of large-area polycrystalline diamond films grown by microwave plasma-assisted CVD. Coatings. 10(10), 939, 1-10. DOI:10.3390/coatings10100939

[6] Bitay, E., Tóth, L., Kovacs, T.A., Nyikes, Z. & Gergely, A.L. (2021). Experimental study on the influence of TiN/AlTiN PVD layer on the surface characteristics of hot work toll steel. Applied Sciences. 11(19), 9309, 1-12. https://doi.org/10.3390/app11199309.

[7] Zhu, Yc., Wei, Zj., Rong, Sf., Wang, H. & Zou, C. (2016). Formation mechanism of bimetal composite layer between LCS and HCCI. China Foundry. 13, 396-401. https://doi.org/10.1007/s41230-016-5021-2.

[8] Szajnar, J. & Wróbel, T. (2015). Bimetallic casting: ferritic stainless steel – grey cast iron. Archives of Metallurgy and Materials. 60(3), 2361-2365. DOI: 10.1515/amm-2015-0385. ISSN 1733-3490.

[9] Wang, F., Xu, L., Wei, S. et al. (2021). Preparation and wear properties of high-vanadium alloy composite layer. Friction. 10, 1166-1179. https://doi.org/10.1007/s40544-021-0515-3.

[10] Ovcharenko, P.G., Leshchev, A.Y., Tarasov, V.V. et al. (2021). Effect of alloyed coating composition on composite casting surface layer properties. Metallurgist. 64, 1208-1213. https://doi.org/10.1007/s11015-021-01106-z

[11] Studnicki, A., Dulska, A. & Szajnar, J. (2017). Reinforcing cast iron with composite insert. Archives of Metallurgy and Materials. 62(1), 355-357, DOI: 10.1515/amm-2017-0054.

[12] Fraś, E., Olejnik, E., Janas, A. & Kolbus, A. (2009). FGMs generated method SHSM. Archives of Foundry Engineering 9(2), 123-128. ISSN (1897-3310).

[13] Olejnik, E., Janas, A., Kolbus, A. & Grabowska, B. (2011) Composite layer fabricated by in situ technique in iron castings. Composites (Kompozyty). 11(2), 120-124.

[14] Szymański, Ł., Olejnik, E., Tokarski, T., Kurtyka, P., Drożyński, D. & Żymankowska-Kumon S. (2018) Reactive casting coatings for obtaining in situ composite layers based on Fe alloys. 350, 346-358. https://doi.org/10.1016/j.surfcoat.2018.06.085.

[15] Szymański, Ł. (2020). Composite layers produced in situ in castings based on Fe alloys. PhD thesis. AGH, Kraków.

[16] Szymański, Ł., Sobczak, J.J., Peddeti. K. (2024). Production of metal matrix composite reinforced by TiC by reactive infiltration of cast iron into Ti + C preforms. Ceramic international. 50(10), 17452-17464. https://doi.org/10.1016/j.ceramint.2024.02.233.

[17] Szymański, Ł., Olejnik, E. & Sobczak, J.J. (2022). Dry sliding, slurry abrasion and cavitation erosion of composite layers reinforced by TiC fabricated in situ cast steel and gray cast iron. Elsevier. Journal of Materials Processing Technology. 308, 117688, 1-15. https://doi.org/10.1016/j.jmatprotec.2022.117688.

[18] Szymański, Ł., Olejnik, E., Sobczak, J.J. (2022). Improvement of TiC/Fe in situ composite layer formation on surface of Fe-based castings. Materials Letters. 309, 131399, 1-5. DOI: https://doi.org/10.1016/j.matlet.2021.131399.
Przejdź do artykułu

Autorzy i Afiliacje

J. Marosz
S. Sobula
1
ORCID: ORCID

  1. AGH University of Krakow, Poland

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji