Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The cyanobacteria bloom is one of typical manifestations of eutrophication, yet the effects of heavy metals entering water on cyanobacteria bloom remain unclear. In the present study, the effects of copper and zinc ions on the growth of Microcystic aeruginosa (M. aeruginosa) and the production of microcystins (MCs) were investigated. The results showed that a Cu2+ concentration of 0.02 mg/L stimulated the growth of M. aeruginosa, while growth inhibition occurred at a Cu2+ concentration of 0.1 mg/L. The maximum value of MC-LR (167.74 μg/L) occurred at a Cu2+ concentration of 0.02 mg/L. In contrast, a Zn2+ concentration of 0.1 mg/L stimulated the growth of M. aeruginosa, whereas growth inhibition was observed at a Zn2+ concentration of 0.5 mg/L. The maximum MC-LR value of 130 μg/L appeared under control conditions. Moreover, the production of MC-LR increased as the growth of M. aeruginosa was inhibited with a Cu2+ concentration of 0.1 mg/L, whereas the production of MC-LR decreased as the growth of M. aeruginosa was stimulated with a Zn2+ concentration of 0.1 mg/L, compared to their respective controls.
Go to article

Bibliography

  1. Admiraal, W., Tubbing, G.M.J. & Breebaart, L. (1995). Effects of phytoplankton on metal partitioning in the Lower River Rhine, Water Research, 29, 3, pp. 941-946. DOI:10.1016/0043-1354(94)00204-K.
  2. Ao, D., Lei, Z., Dzakpasu, M. & Chen, R. (2019). Role of divalent metals Cu2+ and Zn2+ in microcystis aeruginosa proliferation and production of toxic microcystins, Toxicon, 170, pp. 51-59. DOI:10.1016/j.toxicon.2019.09.012.
  3. Bishop, W.M., Willis, B.E. & Horton, C.T. (2015). Affinity and efficacy of copper following an algicide exposure: application of the critical burden concept for Lyngbya Wollei Control in Lay Lake, AL, Environmental Management, 55, pp. 983-990. DOI:10.1007/s00267-014-0433-5.
  4. Brookes, J. D. & Carey, C.C. (2011). Resilience to blooms, Science, 334, 6052, pp. 46-47. DOI:10.1126/science.1207349.
  5. Bouron, A., Kiselyov, K. & Oberwinkler, J. (2015). Permeation, regulation and control of expression of TRP channels by trace metal ions, Pflügers Archiv- European Journal of Physiology, 467, pp. 1143-1164. DOI:10.1007/s00424-014-1590-3.
  6. Bucak, T., Trolle, D., Tavşanoğlu, Ü.N., Çakıroğlu, A. İ., Özen, A., Jeppesen, E. & Beklioğlu, M. (2018). Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest turkish freshwater lake: Lake Beyşehir, Science of the Total Environment, 621, pp. 802-816. DOI:10.1016/j.scitotenv.2017.11.258.
  7. Cavet, J.S., Borrelly, G.P.M. & Robinson, N.J. (2003). Zn, Cu and Co in Cyanobacteria: selective control of metal availability, FEMS Microbiology Reviews, 27, (2-3), pp. 165-181. DOI:10.1016/S0168-6445(03)00050-0.
  8. Chakraborty, P., Babu, P.V.R., Acharyya, T. & Bandyopadhyay, B. (2010). Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: an investigation with pigment analysis by HPLC, Chemosphere, 80, 5, pp. 548-553. DOI:10.1016/j.chemosphere.2010.04.039.
  9. Chen, Y., Yin, J., Wei, J. & Zhang, X. (2020) FurA-Dependent Microcystin Synthesis under Copper Stress in Microcystis aeruginosa, Microorganisms, 8, 832. DOI:10.3390/microorganisms806083.
  10. Dai, R., Wang, P., Jia, P., Zhang, Y., Chu, X. & Wang, Y. (2016). A review on factors affecting microcystins production by algae in aquatic environments, World Journal of Microbiology and Biotechnology, 32, 51. DOI:10.1007/s11274-015-2003-2.
  11. Drobac, D., Tokodi, N., Simeunović, J., Baltić, V., Stanić, D. & Svirčev, Z. (2013). Human exposure to cyanotoxins and their effects on health, Archives of Industrial Hygiene and Toxicology, 64, 2, pp. 119-130, DOI:10.2478/10004-1254-64-2013-2320.
  12. Du, C., Li, G., Xia, R., Li, C., Zhu, Q., Li, X., Li, J., Zhao, C., Tian, Z. & Zhang, L. (2022). New insights into cyanobacterial blooms and the response of associated microbial communities in freshwater ecosystems, Environmental Pollution, 309, 119781, DOI:10.1016/j.envpol.2022.119781.
  13. Facey, J.A., Apte, S.C. & Mitrovic, S.M. (2019). A review of the effect of trace metals on freshwater cyanobacterial growth and toxin production, Toxins, 11, 11, 643, DOI:10.3390/toxins11110643.
  14. Gangi, D., Plastani, M.S., Laprida, C. Lami, A., Dubois, N., Bordet, F., Gogorza, C., Frau, D. & Pinto, P.D.T. (2020). Recent cyanobacteria abundance in a large sub-tropical reservoir inferred from analysis of sediment cores. Journal of Paleolimnology, 63, pp. 195-209. DOI:10.1007/s10933-020-00110-8.
  15. Han, C., Machala, L., Medrik, I., Prucek, R., Kralchevska, R.P. & Dionysiou, D.D. (2017). Degradation of the cyanotoxin microcystin-lr using iron-based photocatalysts under visible light illumination, Environmental Science and Pollution Research, 24, pp. 19435-19443. DOI:10.1007/s11356-017-9566-4.
  16. Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H. & Visser, P. M. (2018). Cyanobacterial blooms, Nature Reviews Microbiology, 16, pp. 471-483. DOI:10.1038/s41579-018-0040-1
  17. Kormas, K.A.r., Gkelis, S., Vardaka, E. & Moustaka-Gouni, M. (2011). Morphological and molecular analysis of bloom-forming cyanobacteria in two eutrophic, shallow mediterranean lakes, Limnologica, 41, 3, pp. 167-173. DOI:10.1016/j.limno.2010.10.003.
  18. Krishnan, A., Koski, G. & Mou, X. (2020). Characterization of microcystin-induced apoptosis in HepG2 hepatoma cells, Toxicon, 173, pp. 20-26. DOI:10.1016/j.toxicon.2019.11.003.
  19. Martínez-Ruiz, E.B. & Martínez-Jerónimo, F. (2016). How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis Aeruginosa exposed to nickel stress, Ecotoxicology and Environmental Safety, 133, pp. 36-46. DOI:10.1016/j.ecoenv.2016.06.040.
  20. Newell, S. E., Davis, T. W., Johengen, T. H., Gossiaux, D., Burtner, A., Palladino D. & McCarthy M. J. (2019). Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie, Harmful Algae, 81, pp. 86-93. DOI:10.1016/j.hal.2018.11.003.
  21. Oberemm, A., Becker, J., Codd, G.A. & Steinberg, C. (1999). Effects of cyanobacterial toxins and aqueous crude extracts of cyanobacteria on the development of fish and amphibians, Environmental Toxicology, 14, 1, pp. 77-88. DOI:10.1002/(SICI)1522-7278(199902)14:1%3C77::AID-TOX11%3E3.0.CO;2-F
  22. Paerl, H.W. & Otten, T.G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls, Microbial Ecology, 65, pp. 995-1010. DOI:10.1007/s00248-012-0159-y.
  23. Paerl, H.W, Xu, H., McCarthy, M.J., Zhu, G., Qin, B., Li, Y. & Gardner, W.S. (2011). Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy, Water Research, 45, 5, pp. 1973-1983. DOI:10.1016/j.watres.2010.09.018.
  24. Polyak, Y., Zaytseva, T. & Medvedeva, N. (2013). Response of toxic cyanobacterium microcystis aeruginosa to environmental pollution, Water, Air, & Soil Pollution, 224, 4, 1494. DOI:10.1007/s11270-013-1494-4.
  25. Sevilla, E., Martin-Luna, B., Vela, L., Bes, M.T., Fillat, M.F. & Peleato, M.L. (2008). Iron availability affects McyD expression and microcystin-LR synthesis in Microcystis Aeruginosa PCC7806: iron starvation triggers microcystin synthesis, Environmental Microbiology, 10,10, pp. 2476-2483. DOI: 10.1111/j.1462-2920.2008.01663.x.
  26. Shen, F., Wang, L., Zhou, Q. & Huang. X., (2018). Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins, Aquatic Toxicology 196, pp. 9-16. DOI:10.1016/j.aquatox.2018.01.007.
  27. Svircev, Z., Drobac, D., Tokodi, N., Mijovic, B., Codd, G.A. & Meriluoto, J. (2017). Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Archives of Toxicology, 91 (2), pp. 621-650. DOI:10.1007/s00204-016-1921-6.
  28. Tsai, K. P. (2015). Effects of two copper compounds on Microcystis aeruginosa cell density, membrane integrity, and microcystin release. Ecotoxicology and Environmental Safety, 120, pp. 428-435. DOI:10.1016/j.ecoenv.2015.06.024.
  29. Xu, H., McCarthy, M.J., Paerl, H.W., Brookes, J.D., Zhu, G., Hall, N.S., Qin, B., Zhang, Y., Zhu, M., Hampel, J. J., Newell, S.E. & Gardner, W.S. (2021). Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: implications for nutrient management, Limnology and Oceanography, 66, 4, pp. 1492-1509. DOI:10.1002/lno.11700.
  30. Zhou, H., Chen, X., Liu, X., Xuan, Y. & Hu, T. (2019). Effects and control of metal nutrients and species on Microcystis aeruginosa growth and bloom, Water Environment Research, 91, pp. 21-31. DOI:10.2175/106143017X15131012188303.
  31. Zhou, S., Shao, Y., Gao, N., Deng, Y., Qiao, J., Ou, H. & Deng, J. (2013). Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis Aeruginosa, Science of the Total Environment, 463-464, pp. 111-119. DOI:10.1016/j.scitotenv.2013.05.064.
  32. Zhou, T., Wang, J., Zheng, H., Wu, X., Wang, Y., Liu, M., Xiang, S., Cao, L., Ruan, R. & Liu, Y. (2018). characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina Platensis, Bioresource Technology, 269, pp. 285-291. DOI:10.1016/j.biortech.2018.08.131.
Go to article

Authors and Affiliations

Benjun Zhou
1
Weihao Xing
1

  1. School of Resources and Environmental Engineering, Hefei University of Technology, China

This page uses 'cookies'. Learn more