Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

As an alloying element in steel, manganese can considerably enhance the mechanical properties of structural steel. However, the Mn volatilisation loss in vacuum melting is severe because of the high saturated vapour pressure, resulting in an unstable Mn yield and Mn content fluctuation. Therefore, a systematic study of the volatilisation behaviour of Mn in vacuum melting is required to obtain a suitable Mn control process to achieve precise control of Mn composition, thereby providing a theoretical basis for industrial melting of high-Mn steel. In order to explore the Mn volatilization behavior, the volatilization thermodynamics and volatilisation rate of Mn, as well as the influence factors are discussed in this study. The results shows that Mn is extremely volatilised into the vapour phase under vacuum, the equilibrium partial pressure is closely related to Mn content and temperature. With an increase in the Mn content, a higher C content has a more obvious inhibitory effect on the equilibrium partial pressure of Mn. The maximum theoretical volatilisation rate of Mn shows a linear upward trend with an increase in Mn content. However, a higher C content has a more obvious effect on the reduction of the maximum theoretical volatilisation rate with the increase of Mn content. This study provides an improved understanding of Mn volatilisation behaviour as well as a theoretical foundation for consistent Mn yield control during the vacuum melting process of high-Mn steel.
Go to article

Bibliography

[1] Hu, B., Luo, H.W., Yang, F. & Dong, H. (2017). Recent progress in medium-Mn steels made with new designing strategies, a review. Journal of Materials Science & Technology. 33(12), 1457-1464. DOI:10.1016/j.jmst.2017.06.017.

[2] Frommeyer, G. & Brüx, U. (2006). Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight triplex steels. Steel Research International. 77(9-10), 627-633. DOI:10.1002/srin.200606440.

[3] Du, B., Li, Q.C., Zheng, C.Q., Wang, S.Z., Gao, C. & Chen, L.L. (2023). Application of lightweight structure in automobile bumper beam: a review. Materials. 16(3), 967, 1-25. DOI:10.3390/ma16030967.

[4] Frommeyer, G., Brux, U. & Neumann, P. (2003). Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ International. 43(3), 438-446. DOI:10.2355/isijinternational.43.438.

[5] Kalandyk, B. & Zapała, R. (2013). Effect of high-manganese cast steel strain hardening on the abrasion wear resistance in a mixture of SiC and water. Archives of Foundry Engineering. 13(4), 63-66. DOI:10.2478/afe-2013-0083.

[6] Jia, Q.X., Chen, L., Xing, Z.B., Wang, H.Y., Jin, M., Chen, X., Choi, H. & Han, H. (2022). Tailoring hetero-grained austenite via acyclic thermomechanical process for achieving ultrahigh strength-ductility in medium-Mn steel. Scripta Materialia. 217, 114767, 1-6. DOI:10.1016/j.scriptamat.2022.114767.

[7] Singh, S. & Nanda, T. (2014). A review: production of third generation advance high strength steels. International Journal for Scientific Research & Development. 2(9), 388-392. DOI:10.13140/RG.2.2.28003.66083.

[8] Nanda, T., Singh, V., Singh, V., Chakraborty, A. & Sharma, S. (2019). Third generation of advanced high-strength steels: processing routes and properties. SAGE Publications. 233(2), 209-238. DOI:10.1177/1464420716664198.

[9] Grässel, O., Frommeyer, G., Derder, C. & Hofmann, H. (1997). Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels. Le Journal de Physique IV. 7(C5), 383-388. DOI:10.1051/jp4:1997560.

[10] Grässel, O., Krüger, L., Frommeyer, G. & Meyer, L.W. (2000). High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development-properties-application. International Journal of Plasticity. 16(10-11), 1391-1409. DOI:10.1016/S0749-6419(00)00015-2.

[11] Dumay, A., Chateau, J.P., Allain, S., Migot, S. & Bouaziz, O. (2008). Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel. Materials Science & Engineering A. 483-484, 184-187. DOI:10.1016/j.msea.2006.12.170.

[12] Lee, J.H., Sohn, S.S., Hong, S.M., Suh, B.C., Kim, S.K. Lee, B.J., Kim, N.J. & Lee, S.H. (2014). Effects of Mn addition on tensile and charpy impact properties in austenitic Fe-Mn-C-Al-based steels for cryogenic applications. Metallurgical & Materials Transactions A. 45(12), 5419-5430. DOI:10.1007/s11661-014-2513-9.

[13] Sohn, S.S., Hong, S.H., Lee, J.H., Suh, B.C., Kim, S.K., Lee, B.J., Kim, N.J. & Lee, S.H. (2015). Effects of Mn and Al contents on cryogenic-temperature tensile and charpy impact properties in four austenitic high-Mn steels. Acta Materialia. 100, 39-52. DOI:10.1016/j.actamat.2015.08.027.

[14] Zagrebelnyy, D. & Krane, M.J. (2009). Segregation development in multiple melt vacuum arc remelting. Metallurgical and Materials Transactions B. 40, 281-288. DOI:10.1007/s11663-008-9163-5.

[15] Shi, Z.Y., Wang, H., Gao, Y.H., Wang, Y.T., Yu, F., Xu, H.F., Zhang, X.D., Shang, C. & Cao, W.Q. (2022). Improve fatigue and mechanical properties of high carbon bearing steel by a new double vacuum melting route. Fatigue & Fracture of Engineering Materials and Structures, 45(7), 1995-2009. DOI:10.1111/ffe.13716.

[16] Chu, J.H., Bao, Y.P., Li, X., Wang, M. & Gao, F. (2021). Kinetic study of Mn vacuum evaporation from Mn steel melts. Separation and Purification Technology. 255, 117698, 1-9. DOI:10.1016/j.seppur.2020.117698.

[17] Klapczynski, V., Courtois, M., Meillour, R., Bertrand, E., Maux, D.L., Carin, M., Pierre, T., Masson, P.L. & Paillard, P. (2022). Temperature and time dependence of manganese evaporation in liquid steels. multiphysics modelling and experimental confrontation. Scripta Materialia. 221, 114944, 1-6. DOI:10.1016/j.scriptamat.2022.114944.

[18] Chu, J.H. & Bao, Y.P. (2020). Volatilization behavior of manganese from molten steel with different alloying methods in vacuum. Metals. 10(10), 1348, 1-10. DOI:10.3390/met10101348.

[19] Dai, Y.N. & Yang, B. (2000). Vacuum Metallurgy of Nonferrous Metal Materials.(1st ed.). Beijing: Metallurgical Industry Press.

[20] Liang, Y.J. & Che, Y.C. (1993). Data Book on Thermodynamics of Inorganic Matter. Shenyang: Northeastern University Press.

[21] Wagner, C. (1973). The activity coefficient of oxygen and other nonmetallic elements in binary liquid alloys as a function of alloy composition. Acta Metallurgica. 21(9), 1297-1303. DOI:10.1016/0001-6160(73)90171-5.

[22] Chen, J.X. (2010). Common Charts and Databook for Steelmaking. (2nd ed.). Beijing: Metallurgical Industry Press.

[23] Huang, X.H. (2001). Theory of Iron and Steel Metallurgy. (3rd ed.). Beijing: Metallurgical Industry Press.

[24] Dai, Y.N., Xia, D.K. & Chen, Y. (1994). Evaporation of metals in vacuum. Journal of Kunming Institute of Technology. 19(6), 26-32. (in Chinese)

[25] Krapivsky, P.L., Redner, S. & Ben-Naim, E. (2010). A Kinetic View of Statistical Physics. Cambridge: Cambridge University Press.

[26] Safarian, J. & Engh, T.A. (2013). Vacuum evaporation of pure metals. Metallurgical and Materials Transactions A. 44(2), 747-753. DOI:10.1007/s11661-012-1464-2.

Go to article

Authors and Affiliations

Jialiu Lei
1
Yongjun Fu
1
Li Xiong
2

  1. Hubei Polytechnic University, China
  2. Hubei Guoan Special Steel Inspection and Testing Co., Ltd.

This page uses 'cookies'. Learn more