Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Solar collectors are used increasingly in single-family housing. Their popularity depends on many factors, including the price-to-productivity ratio, which in turn results from the development of solar collector technology as well as entire systems. This development consists of many aspects, including those related to the modernization of control systems and measuring of solar collector systems. Currently used systems offer, among others, the ability to determine the approximate solar heat gains using the sensors necessary for normal control of the sensor system. The paper analyzes, on the example of one facility, how such installations work in Polish conditions. An installation consisting of 3 solar collectors has been selected for analysis, supporting the preparation of hot utility water for a single-family residential building. The detailed analysis concerned days with high heat gains compared to the average heat demand for hot water preparation in the building. The temperature verification method (TVM) of the calculated solar heat gains by the solar system controller has been proposed. Then, differences in measurements according to two methods (controller and TVM) have been presented at various characteristic moments of the installation’s operation (start- -up, stop) and during continuous operation. It has been shown that during the day gains measured by the controller can be 15% lower than gains measured by the TVM method. The check has been carried out at a daily sunlight value higher than 4.8 kWh/m2 measured on a horizontal plane. The ratio of heat energy supplied to the domestic hot water storage tank to the measured insolation has been 34%. The sum of annual solar heat gains measured by the controller and TVM differed by 5.2%.
Go to article

Authors and Affiliations

Piotr Olczak
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Electromobility and electric cars are the words that began to gain significance in the social discourse in Poland especially intensively since 2017. Then, along with the announcement of the „Plan for the Development of the Electromobility Market in Poland”, government declarations appeared regarding one million electric cars that are to be used on Polish roads by 2025. It is already known today that such a result in Poland is impossible to achieve in the assumed time. According to the report of the Polish Alternative Fuels Association-PSPA (Polish EV Outlook 2020), in the event of introducing subsidies for the purchase of cars or subsidies, such as the possibility of 100% VAT deduction by buyers of such vehicles, the number of electric cars in Poland in 2025 could be over 280 thousand pcs. Without such government support, the Polish electric car park will be twice smaller. High prices of electric cars are one of the key barriers limiting Poles in making decisions related to the purchase of a vehicle. The aim of this article is to analyse the current state of the social environment in relation to the topic of ecological, electric cars. To what extent is it beneficial for the potential car owner to change from a traditional (petrol or diesel) car to an electric car due to purely financial benefits and other aspects? The article consists of an overview – presenting aspects related to the socio-economic benefits of buying an electric car. It also contains specific calculations regarding the profitability of using such a car in Polish conditions.
Go to article

Authors and Affiliations

Krystian Majchrzak
1
Piotr Olczak
2
ORCID: ORCID
Dominika Matuszewska
3
ORCID: ORCID
Magdalena Wdowin
2
ORCID: ORCID

  1. Foundation Instaway Institute, Warszawa, Poland
  2. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  3. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The analysis and assessment of the development of solar energy were carried out and it was noted that the production of solar electricity in the world has increased by more than 15% over the last year. In 2020 there are more than 37 countries with a total photovoltaic capacity of more than one GW, and the share of solar energy in total world electricity production was 8.15%. In the regional context, the largest production of electricity by solar energy sources is in Asia (at the expense of India and China) and North America (USA). The study assesses the main factors in the development of solar energy from the standpoint of environmental friendliness and stability of the electricity supply. The problem of the utilization of solar station equipment in the EU and the US is considered. According to the IPCC, IEA, Solar Power Europe, forecasting the development of solar energy in the world is considered. It is proved that the main factor in assessing the economic efficiency of solar energy production is a regional feature due to natural and climatic conditions (intensity of solar radiation). The use of solar generation is auxiliary for the operation of modern electrical networks as long as the efficiency of photovoltaic cells increases by at least 60–65%. Marginal costs of solar energy are minimal in those countries where active state support is provided. The competitiveness of solar energy is relatively low. However, from the standpoint of replacing energy fuel at a cost of USD 10 per 1 Gcal of solar energy saves 10–20 million tons of conventional fuel. Industrial production of solar electricity at modern solar power plants forms a price at the level of USD 250–450 for 1 MWh.
Go to article

Bibliography

Alawaji, S.H. 2001. Evaluation of solar energy research and its applications in Saudi Arabia – 20 years of experience. Renew. Sustain. Energy Rev. 5, pp. 59–77, DOI: 10.1016/S1364-0321(00)00006-X.
Alster et al. 2021 – Alster, G., Brown, S. and Broadbent, H. 2021. Monthly European insights – ember. Ember-climate.org. [Online] https://www.ember-climate.org [Accessed: 2021-02-05].
BNEF 2021. BNEF Pioneers 2021. [Online] https://about.bnef.com [Accessed: 2021-05-11].
Ciuła et al. 2019 – Ciuła, J., Gaska, K., Siedlarz, D. and Koval, V. 2019. Management of sewage sludge energy use with the application of bi-functional bioreactor as an element of pure production in industry. E3S Web Conf. 123, 1016, DOI: 10.1051/e3sconf/201912301016.
David et al. 2020 – David, T.M., Silva Rocha Rizol, P.M., Guerreiro Machado, M.A. and Buccieri, G.P. 2020. Future research tendencies for solar energy management using a bibliometric analysis, 2000–2019. Heliyon 6, e04452, DOI: 10.1016/j.heliyon.2020.e04452.
ELECTRICITY 2021. ELECTRICITY. [Online] https://www.eia.gov [Accessed: 2021-05-11].
EU Market Outlook... 2020. EU Market Outlook for Solar Power, 2020–2024. [Online] https://www.solar-powereurope.org/category/reports [Accessed: 2021-05-11].
European... 2020. European Pattern Recognition Project. [Online] https://europeanpatternrecognition.eu [Accessed: 2021-05-11].
Gielen et al. 2019 – Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N. and Gorini, R. 2019. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 24, 38–50, DOI: 10.1016/j.esr.2019.01.006.
Haddad et al. 2019 – Haddad, M., Nicod, J., Mainassara, Y.B., Rabehasaina, L., Al Masry, Z. and Péra, M. 2019. Wind and solar forecasting for renewable energy system using SARIMA-based model. [In:] International Conference on Time Series and Forecasting, Gran Canaria.
Hák et al. 2019 – Hák, T., Janoušková, S. and Moldan, B. 2016. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 60, pp. 565–573, DOI: 10.1016/j.ecolind.2015.08.003.
Hayes, J. 2012. A study on the effects of solar power. Fayetteville: University of Arkansas.
Household... 2021. Household electricity prices worldwide in September 2020, by select country. [Online] https://www.statista.com [Accessed: 2021-05-11].
Hutsaliuk et al. 2020 – Hutsaliuk, O., Koval, V., Tsimoshynska, O., Koval, M. and Skyba, H. 2020. Risk Management of Forming Enterprises Integration Corporate Strategy. TEM J. 9, pp. 1514–1523, DOI: 10.18421/TEM94-26.
IRENA 2020a. Renewable Capacity Statistics 2020. [Online] https://www.irena.org/-/media/Files/IRENA/ Agency/Publication/2020/Jun/IRENA_Power_Generation_Costs_2019.pdf [Accessed: 2021-05-11].
IRENA 2020b. Renewable Power Generation Costs in 2019. [Online] https://irena.org/publications/2020/ Mar/Renewable-Capacity-Statistics-2020 [Accessed: 2021-05-11].
Kaczmarzewski et al. 2019 – Kaczmarzewski, S., Olczak, P. and Halbina, A. 2019. Issues of photovoltaic installation size choice for a hard coal mine. E3S Web of Conferences, DOI: 10.1051/e3s-conf/201912301014.
Kaliappan et al. 2019 – Kaliappan, K., Sankar, M., Karthikeyan, B., Vineeth, B. and Raju, V.C. 2019. Analysis of solar energy technology in leading countries. International Journal of Power Electronics and Drive Systems 10(4), 1995.
Koval et al. 2019a – Koval, V., Sribna, Y. and Gaska, K. 2019a. Energy Cooperation Ukraine–Poland to Strengthen Energy Security. E3S Web Conf. 132, 1009, DOI: 10.1051/e3sconf/201913201009.
Koval et al. 2019b – Koval, V., Sribna, Y., Mykolenko, O. and Vdovenko, N. 2019b. Environmenta concept of energy security solutions of local communities based on energy logistics. 19th Internation- al Multidisciplinary Scientific GeoConference SGEM 2019, International Multidisciplinary Scientific GeoConference-SGEM. STEF92 Technology, 51 Alexander Malinov blvd, Sofia, 1712, Bulgaria, pp. 283–290, DOI: 10.5593/sgem2019/5.3/S21.036.
Kumar, M. 2020. Social, economic, and environmental impacts of renewable energy resources. [In:] Okedu, K.E. (ed.), Wind Solar Hybrid Renewable Energy System. IntechOpen, DOI: 10.8772/intero-pen77440.
Lewis, N.S. 2016. Research opportunities to advance solar energy utilization. Science 351(6271), pp. 62– –71, DOI: 10.1126/science.aad1920.
Majchrzak et al. 2021 – Majchrzak, K., Olczak, P., Matuszewska, D. and Wdowin, M. 2021. Economic and environmental assessment of the use of electric cars in Poland. Energy Policy Journal 24, pp. 153–168.
Mikhno et al. 2021 – Mikhno, I., Koval, V., Shvets, G., Garmatiuk, O. and Tamosiuniene, R. 2021. Green Economy in Sustainable Development and Improvement of Resource Efficiency. Cent. Eur. Bus. Rev. 10, pp. 99–113, DOI: 10.18267/j.cebr.252.
Mirowski, T. and Sornek, K. 2015. Potential of prosumer power engineering in Poland by example of micro PV installation in private construction. Energy Policy Journal 18, pp. 73–84.
Mulatu, M.A. 2017. Energy cooperation in communication of energy harvesting tags. AEU – Int. J. Electron. Commun. 71, pp. 145–151, DOI: 10.1016/j.aeue.2016.10.016.
Najmabadi, S. 2021. Texans blindsided by massive electric bills await details of Gov. Greg Abbott’s promised relief. Texas Trib. [Online] https://www.sanmarcosrecord.com [Accessed: 2021-05- -11].
Ohta, H. 2020. The Analysis of Japan’s Energy and Climate Policy from the Aspect of Anticipatory Governance. Energies 13(19), DOI: 10.3390/en13195153.
Olczak et al. 2021 – Olczak, P., Olek, M., Matuszewska, D., Dyczko, A. and Mania, T. 2021. Monofacial and Bifacial Micro PV Installation as Element of Energy Transition – The Case of Poland. Energies 14(2), DOI: 10.3390/en14020499.
Owusu, P.A. and Asumadu-Sarkodie, S. 2016. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3, 1167990, DOI: 10.1080/23311916.2016.1167990.
Pattanaik et al. 2020 – Pattanaik, D., Mishra, S., Khuntia, G.P., Dash, R. and Swain, S.C. 2020. An innovative learning approach for solar power forecasting using genetic algorithm and artificial neural network. Open Eng. 10, pp. 630–641, DOI: 10.1515/eng–2020-0073.
Ravirajan, P. 2017. Solar energy for sustainable development in developing countries. Ceylon Journal of Science 46(2), DOI: 10.4038/cjs.v46i2.7424.
Renewable energy 2021. [Online] https://ec.europa.eu/energy/topics/renewable-energy_enWWW [Accessed: 2021-05-11].
Shahsavari, A. and Akbari, M. 2018. Potential of solar energy in developing countries for reducing energy- related emissions. Renewable and Sustainable Energy Reviews 90, pp. 275–291, DOI: 10.1016/j.rser.2018.03.065
Solar... 2021. Solar Industry Research Data. [Online] https://www.seia.org [Accessed: 2021-02-21].
Spillias et al. 2020 – Spillias, S., Kareiva, P., Ruckelshaus, M. and McDonald-Madden, E. 2020. Renewable energy targets may undermine their sustainability. Nat. Clim. Chang. 10, pp. 974–976. DOI: 10.1038/s41558-020-00939-x.
Sustainability... 2019. Sustainability Leadership Standard for Photovoltaic Modules and Photovoltaic Inverters, 2019. Michigan. The IPCC’s reports 2021. Intergov. Panel Clim. Chang. [Online] https://www.ipcc.ch/about/preparingreports [Accessed: 2021-02-21].
Total installed... 2020. Total installed power capacity by fuel and technology 2019–2025, main case. Int. Energy Agency. [Online] https://www.iea.org/ [Accessed: 2021-02-21].
Transforming... 2015. Transforming Our World: An Agenda for Sustainable Development until 2030. United Nation. [Online] https://sustainabledevelopment.un.org [Accessed: 2021-02-21].
Tsimoshynska et al. 2021 – Tsimoshynska, O., Koval, M., Kryshtal, H., Filipishyna, L., Arsawan, W.E. and Koval, V. 2021. Investing in road construction infrastructure projects under public-private partnership in the form of concession. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu, pp. 184–192, DOI: 10.33271/nvngu/2021-2/184.
Utility-Scale 2021. First Sol. [Online] https://www.firstsolar.com [Accessed: 2021-02-21].
Verkhovna Rada of Ukraine 2020. About modification of some laws of Ukraine concerning improvement. Kyiv.
Viebahn et al. 2011 – Viebahn, P., Lechon, Y. and Trieb, F. 2011. The potential role of concentrated solar power (CSP) in Africa and Europe – A dynamic assessment of technology development, cost development and life cycle inventories until 2050. Energy Policy 39, pp. 4420–4430, 4421.
Wan et al. 2015 – Wan, C., Zhao, J., Song, Y., Xu, Z., Lin, J. and Hu, Z. 2015. Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst. 1, pp. 38–46, DOI: 10.17775/CSEEJPES.2015.00046.
Wang et al. 2017 – Wang, Y., Luo, G. and Kang, H. 2017. Successes and Failures of China’s Golden-Sun Program, in: Proceedings of the 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017). Atlantis Press, pp. 585–606, DOI: 10.2991/iceesd-17.2017.109.
Wang et al. 2019 – Wang, Q., Chang, P., Bai, R., Liu, W., Dai, J. and Tang, Y. 2019. Mitigation strategy for duck curve in high photovoltaic penetration power system using concentrating solar power station. Energies 12(18), DOI: 10.3390/en12183521.
Weckend et al. 2016 – Weckend, S., Wade, A. and Garvin, H. 2016. End-of-life management: Solar Photovoltaic Panels. International Renewable Energy Agency.
Wróblewski et al. 2021 – Wróblewski, P., Drożdż, W., Lewicki, W. and Miązek, P. 2021. Methodology for Assessing the Impact of Aperiodic Phenomena on the Energy Balance of Propulsion Engines in Vehicle Electromobility Systems for Given Areas. Energies 14(8), DOI: 10.3390/en14082314.
Żelazna et al. 2020 – Żelazna, A., Gołębiowska, J., Zdyb, A. and Pawłowski, A. 2020. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 13(15), DOI: 10.3390/en13153978.
Go to article

Authors and Affiliations

Yevheniia Sribna
1
ORCID: ORCID
Viktor Koval
2
ORCID: ORCID
Piotr Olczak
3
ORCID: ORCID
Dmytro Bizonych
4
Dominika Matuszewska
5
ORCID: ORCID
Oleksandr Shtyrov
6

  1. National University of Water Management and Environmental Engineering, Rivne, Ukraine
  2. National Academy of Sciences of Ukraine, Kyiv, Ukraine
  3. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  4. Etalontechservice LLC, Kharkiv, Ukraine
  5. AGH University of Science and Technology, Kraków, Poland
  6. Petro Mohyla Black Sea National University, Mykolaiv
Download PDF Download RIS Download Bibtex

Abstract

In less than a decade, the photovoltaic sector has transformed into a global business. The dynamics of its development vary depending on the country. According to estimates, the value of the photovoltaic micro-installations market in Poland at the end of 2019 exceeded PLN 2.8 billion. In the first half of 2020, the PV sector recorded dynamic growth with a total capacity of the micro-installations of 2.5 GWp. Government subsidies were among the factors contributing to the expansion of the PV sector. In Poland, there are many financial ways to intensify the construction of new renewable energy source installations, among others: feed-in tariff, grants, and loans. An example of photovoltaic grant support in Poland is the “Mój Prąd” [My Electricity] program created in 2019 with a budget of PLN 1.1 billion. The interest in the “My Electricity” program in individual provinces may vary, depending on socio-economic factors, technological and environmental resources, and the level of innovation. The research motivation of this article is a comparison of provinces in Poland according to selected energy, environmental, innovation, and socio-economic indicators and to show how these factors affect individual interest in the “My Electricity” photovoltaic development program in provinces. The highest correlation is for the total installation power under the “My Electricity” program and Gross Domestic Product and Human Developed Index. The highest correlation coefficient from RIS indicators and photovoltaic data programs was achieved for “R&D expenditure in the business sector”. The population was closely correlated with the total installation power and the grant value of the “My Electricity” program.
Go to article

Authors and Affiliations

Justyna Cader
1 2
ORCID: ORCID
Piotr Olczak
1
ORCID: ORCID
Renata Koneczna
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Faculty of Geology, University of Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the idea of combining a photovoltaic system with a heating film system to heat residential buildings. The analysis was performed for a newly built single-family house in Warsaw or its vicinity. The authors have selected the size of the photovoltaic installation, calculated the costs incurred by the user for the installation of a hybrid system, which were additionally compared to the cost of installing a gas installation (gas boiler) used for heating the building. The calculations were made for a single-family house with a usable area of 120 m2, the demand for utility energy for heating purposes in the newly built house was in the range of 10–50 kWh/m2/year. Based on the adopted parameters, the authors evaluated the economic efficiency of both investments (solutions) determining their net present values (NPV). The analysis takes the energy needed only for heating purposes into account.
NPV for a heating system with a gas boiler with an investment outlay EUR 8,000 for buildings purchased for utility energy in the amount of 20 kWh/m2/year and the price for natural gas EUR 0.04 /kWh will be EUR –10,500 (for 15 years, discount rate r = 3%). For the same thermal needs (energy required) of the building, NPV for heating films + photovoltaic (HF + PV) will amount to – EUR 8,100. Comparing the variants will get a EUR 2,400 higher NPV for HF + PV. With a utility energy demand for heating purpose of 50 kWh/m2/year and gas heating installation investment cost of EUR 7,000, the NPV for both variants will be equal for natural gas price = EUR 0.035/kWh.
Go to article

Bibliography

Chwieduk, D. 2009. Recommendation on modelling of solar energy incident on a building envelope. Renewable Energy 34(3), pp. 736–741.
Columbus Energy 2021. Photovoltaic. [Online] https://columbusenergy.pl/ [Accessed: 2021-02-15].
COM(2020) 562 final. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Stepping up Europe’s 2030 climate ambition. Investing in a climate-neutral future for the benefit of our people. [Online] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0562 [Accssessed: 2021- -05-14].
Gas boilers 2021. [Online] https://kotly.pl/kotly/ [Accessed: 2021-02-16].
Journal of Laws 2015, item 376. Ordinance of the Minister of Infrastructure and Development of February 27, 2015 On the methodology for determining the energy performance of a building or part of a building and energy performance certificates (Dz.U. 2015, poz. 376, Rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 27 lutego 2015 r. W sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej). Warszawa (in Polish).
JRC European Comission 2017. Photovoltaic Geographical Information System (PVGIS).
Koval et al. 2019a – Koval, V., Sribna, Y. and Gaska, K. 2019. Energy Cooperation Ukraine-Poland to Strengthen Energy Security. E3S Web of Conferences 132, DOI: 10.1051/e3sconf/201913201009.
Koval et al. 2019b – Koval, V., Sribna, Y., Mykolenko, O. and Vdovenko, N. 2019. Environmentalconcept of energy security solutions of local communities based on energy logistics. 19th International Multidisciplinary Scientific GeoConference SGEM 2019, 19(5.3), pp. 283–290, DOI: 10.5593/sgem2019/5.3/S21.036. Kryzia, D. and Pepłowska, M. 2019. The impact of measures aimed at reducing low-stack emission in Poland on the energy efficiency and household emission of pollutants. Polityka Energetyczna – Energy Policy Journal 22(2), pp. 121–132, DOI: 10.33223/epj/109912.
Kryzia et al. 2020 – Kryzia, D., Kopacz, M. and Kryzia, K. 2020. The Valuation of the Operational Flexibility of the Energy Investment Project Based on a Gas-Fired Power Plant. Energies 13(7), DOI: 10.3390/en13071567.
Matuszewska et al. 2017 – Matuszewska, D., Kuta, M. and Górski, J. 2017. Cogeneration – Development and prospect in Polish energy sector. E3S Web of Conferences 14, 01021, DOI: 10.1051/e3sconf/ 20171401021.
Ministry of Climate 2020. Ministry of Climate and Environment 2020. Poland’s energy policy until 2040 (Polityka energetyczna Polski do 2040 r.). [Online] https://www.gov.pl/web/klimat/minister- kurtyka-polityka-energetyczna-polski-do-2040-r-udziela-odpowiedzi-na-najwazniejsze-wyzwania- stojace-przed-polska-energetyka-w-najblizszych-dziesiecioleciach [Accessed: 2021-01-21] (in Polish).
Ministry of Development 2019. Typical Reference Year (Typowy rok referencyjny). [Online] https://archiwum.miir.gov.pl/strony/zadania/budownictwo/charakterystyka-energetyczna-budynkow/dane-do-obliczen-energetycznych-budynkow-1/ [Accessed: 2020-08-10] (in Polish).
Mirowski, T. and Sornek, K. 2015. Potential of prosumer power engineering in Poland by example of micro PV installation in private construction (Potencjał energetyki prosumenckiej w Polsce na przykładzie mikroinstalacji fotowoltaicznych w budownictwie indywidualnym). Polityka Energetyczna – Energy Policy Journal 18(2), pp. 73–84 (in Polish).
Natural Gas Price 2021. [Online] http://www.cena-pradu.pl/gaz.html [Accessed: 2021-02-15].
Shmygol et al. 2020 – Shmygol, N., Schiavone, F., Trokhymets, O., Pawliszczy, D., Koval, V., Zavgorodniy, R. and Vorfolomeiev, A. 2020. Model for assessing and implementing resource-efficient strategy of industry. CEUR Workshop Proceedings, 2713.
Szurlej et al. 2014 – Szurlej, A., Kamiński, J., Janusz, P., Iwicki, K. and Mirowski, T. 2014. Gas-fired power generation in Poland and energy security (Rozwój energetyki gazowej w Polsce a bezpieczeństwo energetyczne). Rynek Energii 6, pp. 33–38 (in Polish).
Tytko, R. 2019. Heating the building by foil and electrical matts (Ogrzewanie budynku za pomocą folii i mat elektrycznych). Aura 8, pp. 18–21 (in Polish).
Żelazna et al. 2020 – Żelazna, A., Gołębiowska, J., Zdyb, A. and Pawłowski, A. 2020. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 13(15), 3978, DOI: 10.3390/en13153978.
Go to article

Authors and Affiliations

Krystian Majchrzak
1 2
Monika Pepłowska
3
ORCID: ORCID
Piotr Olczak
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Instaway Institute, Warszawa, Poland
  3. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland

This page uses 'cookies'. Learn more