Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Aluminum alloys are widely used in the industry thanks to its many advantages such as light weight and high strength. The use of this material in the market is increasing day by day with the developing technology. Due to the high energy inputs in the primary production, the use of secondary ingots by recycling from scrap material are more advantageous. However, the liquid metal quality is quite important in the use of secondary aluminum. It is believed that the quality of recycled aluminum is low, for this purpose, many liquid metal cleaning methods and test methods are used in the industry to assess the melt cleanliness level. In this study, it is aimed to examine the liquid metal quality in castings with varying temperature using K mold. A206 alloy was used, and the test parameters were selected as: (i) at 725 °C, 750 °C and 775 °C casting temperatures, (ii) different hydrogen levels. The hydrogen level was adjusted as low, medium and high with degassing, as-cast, and upgassing of the melt, respectively. The liquid metal quality of the cast samples was examined by the K mold technique. When the results were examined, it was determined that metal K values and the number of inclusions were high at the as-cast and up-gas liquid with increasing casting temperatures. It has been understood that the K mold technique is a practical method for the determination of liquid metal quality, if there is no reduced pressure test machine available at the foundry floor.
Go to article

Authors and Affiliations

A. Tigli
1 2
ORCID: ORCID
M. Tokatli
3
E. Uslu
3
ORCID: ORCID
M. Colak
3
D. Dispinar
1 4
ORCID: ORCID

  1. Istanbul Technical University, Turkey
  2. Sinop University, Turkey
  3. Bayburt University, Turkey
  4. Foseco, Netherlands
Download PDF Download RIS Download Bibtex

Abstract

Material suppliers typically recommend different additive amounts and applications for foundry practices. Therefore, even in the production of the same standard materials, different results may be obtained from various production processes on different foundry floors. In this study, the liquid metal prepared with the addition of different proportions of a FeSi-based inoculation, which is most commonly used in foundries in the production of a cast iron material with EN-GJL-250 lamellar graphite cast iron, was cast into sand molds prepared with a model designed to provide different solidification times. In this way, the optimization of the inoculation amounts on the casting structure for different solidification times was investigated. In addition, hardness values were determined depending on solidification time in varying amounts of inoculation additions. SolidCast casting simulation software was used to determine the casting model geometry and solidification time. In the scope of the study, sand casting, modeling, microstructure analysis, image analysis, microstructure analysis, and hardness tests techniques were used. When the results are examined, the required amount of inoculation for the optimal structure is optimized for the application procedure depending on the casting module and the solidification time.
Go to article

Authors and Affiliations

M. Çolak
1
ORCID: ORCID
E. Uslu
1
ORCID: ORCID
Ç. Teke
1
ORCID: ORCID
F. Şafak
2
Ö. Erol
2
Y. Erol
2
Y. Çoban
2 3
M. Yavuz

  1. Bayburt University, Turkey
  2. Konya Technical University, Turkey
  3. Yavuzsan A.Ş., Turkey

This page uses 'cookies'. Learn more