Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 4
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Health status of Polish goat population in regard to the viral diseases remained mostly unknown. In order to determine serological status of Polish goats for selected emerging ruminant viruses, 365 serum samples collected between 2017 and 2019 in 36 districts within 10 of Polish provinces, were tested. No antibodies specific to Peste de Petite Ruminants Virus (PPRSV) and capripoxviruses (CaPV) were found in any of the tested animals. Only single individual (0.27%) was seropositive to Blutongue Virus (BTV). Antibodies directed to Schmallenberg Virus (SBV) were detected in 46 goats which represented 12.6% of the tested population. No association between seropositivity to SBV and year of sampling, province of origin, gender and age was found. In conclusion, among studied viral pathogens, currently only SBV seemed to be important for epidemiological status of Polish goats.
Przejdź do artykułu

Autorzy i Afiliacje

M. Larska
1
W. Socha
1
J. Rola
1

  1. Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland

Abstrakt

Three low molecular weight compounds bearing carbazole units (1,6-di{3-[2-(4-methylphenyl)vinyl]carbazol-9-yl}hexane and 9,9'-di{6-[3-(2-(4-methylphenyl)vinyl)-9-carbazol-9-yl]hexyl}-[3,3']bicarbazole) and phenoxazine structure (10-butyl-3,7-diphenylphenoxazine) were tested as hole-transporting materials in perovskite solar cells. Two of them were successfully applied as hole transporting layers in electroluminescent light emitted diodes. The examined compounds were high-thermally stable with decomposition temperature found at the range of 280–419 °C. Additionally, DSC measurement revealed that they can be converted into amorphous materials. The compounds possess adequate ionization potentials, to perovskite energy levels, being in the range of 5.15–5.36  eV. The significant increase in power conversion efficiency from 1.60% in the case of a device without hole-transporting layer, to 5.31% for device with 1,6-di{3-[2-(4-methylphenyl)vinyl]carbazol-9- yl}hexane was observed.

Przejdź do artykułu

Autorzy i Afiliacje

K. Gawlińska-Nęcek
Zbigniew Starowicz
ORCID: ORCID
D. Tavgeniene
G. Krucaite
S. Grigalevicius
Ewa Schab-Balcerzak
ORCID: ORCID
M. Lipiński

Abstrakt

Already published data for the optical band gap (Eg) of thin films and nanostructured copper zinc tin sulphide (CZTS) have been reviewed and combined. The vacuum (physical) and non-vacuum (chemical) processes are focused in the study for band gap comparison. The results are accumulated for thin films and nanostructured in different tables. It is inferred from the re- view that the nanostructured material has plenty of worth by engineering the band gap for capturing the maximum photons from solar spectrum.

Przejdź do artykułu

Autorzy i Afiliacje

N. Ali
R. Ahmed
A. Bakhtiar-Ul-Haq Shaari
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This research investigates the microstructural evolution and mechanical properties of LM25 (Al-Si-Mg) alloy and Cr-modified LM25-Cr (Al-Si-Mg-Cr) alloy. Microstructural analysis reveals distinctive ε-Si phase morphologies, with Cr addition refining dendritic structures and reducing secondary dendrite arm spacing in the as-cast condition. Cr modification results in smaller-sized grains and a modified ε-Si phase, enhancing nucleation sites and reducing ε-Si size. Microhardness studies demonstrate significant increases in hardness for both alloys after solutionising and aging treatments. Cr-enriched alloy exhibits superior hardness due to solid solution strengthening, and prolonged aging further influences ε-Si particle size and distribution. The concurrent rise in microhardness, attributed to refined dendritic structures and unique ε-Si morphology, underscores the crucial role of Cr modification in tailoring the mechanical properties of aluminium alloys for specific applications.
Przejdź do artykułu

Bibliografia

[1] Gustafsson, G., Thorvaldsson, T. & Dunlop, G. L. (1986). The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys. Metallurgical Transactions A. 17(1), 45-52. https://doi.org/10.1007/bf02644441.

[2] Liang, C., Zhao, J. F., Chang, J. & Wang, H. P. (2020). Microstructure evolution and nano-hardness modulation of rapidly solidified Ti–Al–Nb alloy. Journal of Alloys and Compounds. 836, 155538, 1-11. https://doi.org/10.1016/j.jallcom.2020.155538.

[3] Tsepeleva, A., Novák, P., Vlášek, J. & Simoniakin, A. (2023). Use of rapid solidification in processing of aluminum alloys with reduced deep-sea nodules. Journal of Alloys and Compounds. 968, 171790, 1-9. https://doi.org/10.1016/j.jallcom.2023.171790.

[4] Ahmad, R. (2018). The effect of chromium addition on fluidity, microstructure and mechanical properties of aluminium LM6 cast alloy. International Journal of Material Science and Research. 1(1), 32-35. https://doi.org/10.18689/ijmsr-1000105.

[5] Zhang, G.-H., Zhang, J.-X., Li, B.-C. & Cai, W. (2011). Characterization of tensile fracture in heavily alloyed Al-Si piston alloy. Progress in Natural Science: Materials International. 21(5), 380-385. https://doi.org/10.1016/s1002-0071(12)60073-2.

[6] Barnes, S.J. & Lades, K. (2002). The evolution of aluminium based piston alloys for direct injection diesel engines. SAE Technical Paper Series.

[7] Cole, G.S. & Sherman, A.M. (1995). Light weight materials for automotive applications. Materials Characterization. 35(1), 3-9. https://doi.org/10.1016/1044-5803(95)00063-1.

[8] Strobel, K., Easton, M.A., Sweet, L., Couper, M.J., & Nie, J.-F. (2011). Relating quench sensitivity to microstructure in 6000 series aluminium alloys. Materials Transactions. 52(5), 914-919. https://doi.org/10.2320/matertrans.l-mz201111.

[9] Yang, Y., Zhong, S.-Y., Chen, Z., Wang, M., Ma, N. & Wang, H. (2015). Effect of Cr content and heat-treatment on the high temperature strength of eutectic Al–Si alloys. Journal of Alloys and Compounds. 647, 63-69. https://doi.org/10.1016/j.jallcom.2015.05.167.

[10] Lodgaard, L. & Ryum, N. (2000). Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Materials Science & Engineering. A. 283(1-2), 144-152. https://doi.org/10.1016/s0921-5093(00)00734-6.

[11] Tocci, M., Pola, A., Angella, G., Donnini, R. & Vecchia, G. M.L. (2019). Dispersion hardening of an AlSi3Mg alloy with Cr and Mn addition. Materials Today: Proceedings. 10, 319-326. https://doi.org/10.1016/j.matpr.2018.10.412.

[12] Kim, H.Y., Han, S.W. & Lee, H.M. (2006). The influence of Mn and Cr on the tensile properties of A356–0.20Fe alloy. Materials Letters. 60(15), 1880-1883. https://doi.org/10.1016/j.matlet.2005.12.042.

[13] Fu, Y., Wang, G.G., Hu, A., Li, Y., Thacker, K.B., Weiler, J.P. & Hu, H. (2022). Formation, characteristics and control of sludge in Al-containing magnesium alloys: An overview. Journal of Magnesium and Alloys. 10(3), 599-613. https://doi.org/10.1016/j.jma.2021.11.031.

[14] Yamamoto, K., Takahashi, M., Kamikubo, Y., Sugiura, Y., Iwasawa, S., Nakata, T. & Kamado, S. (2020). Influence of process conditions on microstructures and mechanical properties of T5-treated 357 aluminum alloys. Journal of Alloys and Compounds. 834, 155133, 1-13. https://doi.org/10.1016/j.jallcom.2020.155133.

[15] Callegari, B., Lima, T.N. & Coelho, R.S. (2023). The influence of alloying elements on the microstructure and properties of Al-Si-based casting alloys: A review. Metals, 13(7), 1174, 1-36. https://doi.org/10.3390/met13071174.

[16] Silva, M.S., Barbosa, C., Acselrad, O. et al. (2004). Effect of chemical composition variation on microstructure and mechanical properties of a 6060 aluminum alloy. Journal of Materials Engineering and Performance. 13, 129-134. https://doi.org/10.1361/10599490418307.

[17] Xiao, L., Yu, H., Qin, Y., Liu, G., Peng, Z., Tu, X., Su, H., Xiao, Y., Zhong, Q., Wang, S., Cai, Z. & Zhao, X. (2023). Microstructure and mechanical properties of cast Al-Si-Cu-Mg-Ni-Cr alloys: Effects of time and temperature on two-stage solution treatment and ageing. Materials. 16(7), 2675, 1-16. https://doi.org/10.3390/ma16072675.

[18] Li, Y., Yang, Y., Wu, Y., Wei, Z. & Liu, X. (2011). Supportive strengthening role of Cr-rich phase on Al–Si multicomponent piston alloy at elevated temperature. Materials Science & Engineering. A. 528(13-14), 4427-4430. https://doi.org/10.1016/j.msea.2011.02.047.

[19] Tocci, M., Donnini, R., Angella, G. & Pola, A. (2017). Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy. Materials Characterization. 123, 75-82. https://doi.org/10.1016/j.matchar.2016.11.022.

[20] Engler, O. & Miller-Jupp, S. (2016). Control of second-phase particles in the Al-Mg-Mn alloy AA 5083. Journal of Alloys and Compounds. 689, 998-1010. https://doi.org/10.1016/j.jallcom.2016.08.070.

[21] Liu, F.-Z., Qin, J., Li, Z., Yu, C.-B., Zhu, X., Nagaumi, H. & Zhang, B. (2021). Precipitation of dispersoids in Al–Mg–Si alloys with Cu addition. Journal of Materials Research and Technology. 14, 3134-3139. https://doi.org/10.1016/j.jmrt.2021.08.123.

[22] Cui, J., Chen, J., Li, Y. & Luo, T. (2023). Enhancing the strength and toughness of A356.2-0.15Fe aluminum alloy by trace Mn and Mg Co-addition. Metals. 13(8), 1451, 1-12. https://doi.org/10.3390/met13081451.

[23] Zhan, H. & Hu, B. (2018). Analyzing the microstructural evolution and hardening response of an Al-Si-Mg casting alloy with Cr addition. Materials Characterization. 142, 602-612. https://doi.org/10.1016/j.matchar.2018.06.026.

[24] Tocci, M., Donnini, R., Angella, G. et al. (2019). Tensile Properties of a Cast Al-Si-Mg Alloy with Reduced Si Content and Cr Addition at High Temperature. Journal of Materials Engineering and Performance. 28, 7097-7108. https://doi.org/10.1007/s11665-019-04438-9.

[25] Kumar, A., Sharma, G., Sasikumar, C., Shamim, S. & Singh, H. (2015). Effect of Cr on grain refinement and mechanical properties of Al-Si-Mg alloys. Applied Mechanics and Materials. 789-790, 95-99. https://doi.org/10.4028/www.scientific.net/amm.789-790.95.

[26] Möller, H., Stumpf, W.E. & Pistorius, P.C. (2010). Influence of elevated Fe, Ni and Cr levels on tensile properties of SSM-HPDC Al-Si-Mg alloy F357. Transactions of the Nonferrous Metals Society of China. 20, 842-846. https://doi.org/10.1016/s1003-6326(10)60592-4.

[27] Raj, A.N. & Sellamuthu, R. (2016). Determination of hardness, mechanical and wear properties of cast Al–Mg–Si alloy with varying Ni addition. ARPN Journaol of Engineering and Applied Science. 11(9), 5946-5952.

Przejdź do artykułu

Autorzy i Afiliacje

V.V. Ramalingam
1
K.V. Shankar
2
B. Shankar
2
R. Abhinandan
3
A. Dineshkumar
3
P.A. Adhithyan
3
K. Velusamy
3
A. Kapilan
3
N. Sudheer
3

  1. Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, 64112, India
  2. Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India; Centre for Flexible Electronics and Advanced Marerials, Amrita Vishwa Vidyapeetham, Amritapuri, India
  3. Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji