Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the present study, we address an important and increasingly relevant topic in mining safety and efficiency, namely the stability of open-pit bench slopes subjected to daily heavy truck cyclic loading. Specifically, we focus on the stability of Zhahanur open-pit slope (Inner Mongolia region, China) and investigate the potential role of daily heavy truck cyclic loading in bench slope instability. To this end, we incorporate a stress corrosion model into the particle flow code to develop a time-dependent deformation model of the rock. With the established model, we quantitatively analyse the effect of heavy truck cyclic loading on the bench slope stability. Our results support the hypothesis that daily heavy truck loading can cause gradual downward deformation of a rock mass, leading to slope instability. To validate our numerical modelling results, we compare and analyse them with in situ monitoring data. Our study demonstrates the significant impact of daily heavy vehicles on bench slope stability in open-pit mines and provides a practical tool for assessing the long-term stability of open-pit bench slopes and optimising mining operations.
Go to article

Authors and Affiliations

Lichun Zhao
1
Zhiguo Li
2
Yongjie Liu
3
Yongchao Xu
4
P.L.P. Wasantha
5
Xiaobin Zheng
2
Tao Xu
2

  1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China & Jarud Banner Zhahanur Coal Industry Co. Ltd, Jarud Banner 029100, China
  2. School of Resources and Civil Engineering, Northeastern University, Shenya ng 110819, China
  3. Coal Mine Center, SPIC Inner Mongolia Energy Co. Ltd., Inner Mongolia, China
  4. Jarud Banner Zhahanur Coal Industry Co. Ltd, Jarud Banner 029100, China
  5. College of Sport, Health and Engineering, Victoria University Melbourne, VIC 3011, Australia

This page uses 'cookies'. Learn more