Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Steel prismatic elements of equal flanges double-tee section subject to major axis bending and compression, unrestrained in the out-of-plane direction between the supports, are vulnerable to buckling modes associated with minor axis flexural and torsional deformations. When end bending moments are acting alone on the quasi-straight member, the sensitivity to lateral-torsional buckling (LTB) is very much dependent upon the ratio of section minor axis to major axis moments of inertia, and additionally visibly dependent upon the major axis moment gradient ratio. In the case of major axis bending with the presence of a compressive axial force, even of rather small value in relation to the section squash resistance, there is a drastic reduction of structural elements in their realistic lengths to maintain a tendency to fail in the out-of-plane mode, governed by the large twist rotation. Increasing the load effects ratio of dimensionless axial force to dimensionless maximum major axis bending moment, the buckling mode goes away from that of lateral-torsional one, starting to become that closer to the minor axis flexural buckling (FBZ) mode. Different aspects of the flexural-torsional buckling (FTB) resistance of the typical rolled H-section beam-column with regard to the General Method (GM) formulation, developed by the authors elsewhere and based on the parametric finite element analysis, are dealt with in this paper. Investigations are concerned with different member slender ratio, different moment gradient ratios and different load effects ratio. Final conclusions are related to practical applications of the proposed format of General Method in relation to the effect of large displacements on the FTB resistance reduction factor described through the dimensionless measure of action effects and the FTB relative slenderness ratio of quasi-straight beam-columns.
Przejdź do artykułu

Autorzy i Afiliacje

Marian Antoni Giżejowski
1
Radosław Bronisław Szczerba
2
Zbigniew Stachura
2
Marcin Daniel Gajewski
2

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw

Abstrakt

The article considers the step and impulse response of second-order linear systems with a positive zero. A particular parameterization of the system equations is proposed which enables good assessment of the influence of its parameters on transients. Expressions missing in the literature are derived for step response parameters such as the values of undershoot, overshoot, time of inverse response, rise time and settling time, as well as of impulse response. Based on them, a precise time-domain approach to design feedforward, feedback and mixed feedback– feedforward control structures for nonminimum phase objects is presented that considers both setpoint tracking and disturbance rejection.
Przejdź do artykułu

Autorzy i Afiliacje

Marian J. Blachuta
1
ORCID: ORCID
Robert Bieda
2
ORCID: ORCID
Rafał Grygiel
1
ORCID: ORCID

  1. Department of Automatic Control and Robotics, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice
  2. :Department of Automatic Control and Robotics, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji