Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The structure of the low-voltage distribution network often changes. The change of topology will affect fault detection, fault location, line loss calculation, etc. It leads to fault detection error, inaccurate positioning and abnormal line loss calculation. This paper presents a new method to automatically identify the topology of a low-voltage power grid by using the injection current signal. When the disturbance current signal is injected into the low-voltage line, the current upstream of the injection point will change, and the current downstream of the injection point will not be affected. It is proved theoretically by using the superposition principle. With this method, the disturbance current signal can be injected into the line in turn, and the topology can be identified by observing the change of the current in line. The correctness of the method is proved by Matlab simulation and laboratory verification.
Go to article

Bibliography

[1] Short T.A., Electric Power Distribution Handbook, Second Edition, Crc Press (2014).
[2] Bingyin X., Tianyou L. et al., Smart Distribution Grid and Distribution Automation, Automation of Electric Power Systems, vol. 33, no. 17, pp. 38–41 (2009).
[3] Jiang J., Liu L., Resonance mechanisms of a single line-to-ground fault on ungrounded systems, Archives of Electrical Engineering, vol. 69, no. 2, pp. 455–466 (2020).
[4] Grotas S., Yakoby Y., Gera I. et al., Power Systems Topology and State Estimation by Graph Blind Source Separation, IEEE Transactions on Signal Processing, vol. 67, no. (8), pp. 2036–2051 (2019).
[5] Tianyu L., Research on Fault Analysis and Topology Identification Based on Power Line Communication, Master Thesis, Control Engineering, China University of Geosciences (Beijing) (2019).
[6] Xiangyu K., YutingW., Xiaoxiao Y. et al., Optimal configuration of PMU based on customized genetic algorithm and considering observability of multiple topologies of distribution network, Electric Power Automation Equipment, vol. 40, no. 1, pp. 66–72 (2020).
[7] Chao Y., The Development and Manufacture of a Multi-Function Equipment for Low Voltage Area Identifed, Master Thesis, Electrical Engineering, China Dalian University of Technology (2014).
[8] Ya L., Rusen F., Wei J. et al., Research on the intelligent transformer area recognition method based on BP neural network, Electrical Measurement & Instrumentation, vol. 54, no. 3, pp. 25–30 (2017).
[9] Dong-Feng Y., Su-Quan Z. et al., A Novel Method for Power Grid Topology Identification Based on Incidence Matrix Simplification, East China Electric Power, vol. 42, no. 11, pp. 2254–2259 (2014).
[10] Jing M., Yuyu Z. et al., Power Network Topological Analysis Based on Incidence Matrix Notation Method and Loop Matrix, Automation of Electric Power Systems, vol. 38, no. 12, pp. 74–80 (2014).
[11] Zeyang T., Kunpeng Z., Kan C. et al., Substation Area Topology Verification Method Based on Distribution Network Operation Data, High Voltage Engineering, vol. 44, no. 4, pp. 1059–1068 (2018).
[12] Zongzong L., Xuezhong F., Qing W. et al., Station area recognition of distribution network based on electricity information acquisition system, Electrical Measurement and Instrumentation, vol. 56, no. 24, pp. 109–114 (2019).
[13] Jing M., Yuyu Z., Wei M. et al., Power Network Topological Analysis Based on Incidence Matrix Notation Method and Loop Matrix, Automation of Electric Power Systems, vol. 38, no. 12, pp. 74–80 (2014).
[14] Zonghui W., Yu C., Bingyin X. et al., Logical Node Based Topology Identification of Distributed Feeder Automation, Automation of Electric Power Systems, vol. 44, no. 12, pp. 124–130.
[15] Zengping W., Jinfang Z., Yagang Z., A novel substation configuration identification algorithm based on the set of breaker-path functions, Proceedings of the CSEE, vol. 33, no. 1, pp. 137–145 (2013).


Go to article

Authors and Affiliations

Haotian Ge
1
Bingyin Xu
1
Wengang Chen
1
Xinhui Zhang
1
Yongjian Bi
1

  1. Shandong University of Technology, China
Download PDF Download RIS Download Bibtex

Abstract

The activity of territorial self-government shaped institutionally during the development process is characterized by a significant scope of care for the financial situation, which determines the efficiency of its functioning. The general availability of public services is a condition for the assessment of the activities of municipalities (powiats, voivodeships). Institutional economy as a real one, takes into account an integrated point of view. The aim of the study is to present the territorial differentiation of the eff ectiveness of communes’ activities in the context of institutional economics and to present the possibility of using a synthetic measure in this process. The synthetic measure of development fluctuated within the limits of 0.30 – Wąchock (Starachowice poviat, urban-rural commune) to 0.41 – Ostrowiec Św. (Ostrowiecki poviat, urban commune) in 2009, 0.32 – Łączna (Skarżysko poviat, rural commune) to 0.40 – Starachowice (Starachowice poviat, municipal commune) in 2015. The results of the analysis confirm the existence of small differences in the assessment of development communes of the Kamienna Basin. This approach allows the assessment of municipalities using one size and allows you to organize the analyzed objects in terms of the considered phenomenon.

Go to article

Authors and Affiliations

Paweł Dziekański

This page uses 'cookies'. Learn more