Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article assesses the production capacity of the Polish Power System, taking into account the military operations in Ukraine and the related resource crisis. An analysis was made of how the war in Ukraine will affect the validity of Poland’s energy policy adopted a year ago. The sensitivity of the Polish Energy System to the import of energy resources from Russia was assessed as well as the possibilities of filling the gap caused by the lack of these raw materials were described and measures were proposed. It shows how electricity prices in the EU countries developed in the last year and what the energy mix of these countries looked like. Alternative scenarios for the transformation of the domestic system were discussed, including the coal – renewable energy – nuclear energy scenario, with the minimization of gas as a fuel of the transition period.
Go to article

Authors and Affiliations

Antoni Tajduś
1
ORCID: ORCID
Stanisław Tokarski
2
ORCID: ORCID

  1. University of Science and Technology (AGH), Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Afeeder automation (FA) system is usually used by electricity utilities to improve power supply reliability. The FA system was realized by the coordinated control of feeder terminal units (FTUs) in the electrical power distribution network. Existing FA testing technologies can only test basic functions of FTUs, while the coordinated control function among several FTUs during the self-healing process cannot be tested and evaluated. In this paper, a novel cloud-based digital-physical testing method is proposed and discussed for coordinated control capacity test of the FTUs in the distribution network. The coordinated control principle of the FTUs in the local-reclosing FA system is introduced firstly and then, the scheme of the proposed cloud-based digital-physical FA testing method is proposed and discussed. The theoretical action sequences of the FTUs consisting of the FTU under test and the FTUs installed in the same feeder are analyzed and illustrated. The theoretical action sequences are compared with the test results obtained by the realized cloud-based simulation platform and the digital-physical hybrid communication interaction. The coordinated control capacity of the FTUs can be evaluated by the comparative result. Experimental verification shows that the FA function can be tested efficiently and accurately based on our proposed method in the power distribution system inspection.

Go to article

Authors and Affiliations

Guoyan Chen
Wenxiong Mo
Hongbin Wang
Jinrui Tang
Xinhao Bian

This page uses 'cookies'. Learn more