Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Real-time data processing systems utilize Digital Signal Processing (DSP) functions as the base modules. Most of the DSP functions involve the implementation of Fast Fourier Transform (FFT) to convert the signals from one domain to another domain. The major bottleneck of Decimation in frequency- Fast Fourier Transform (DIF-FFT) implementation lies in using a number of Multipliers. Distributed arithmetic (DA) is considered as one of the efficient techniques to implement DIF-FFT. In this approach, the multipliers are not used. The proposed technique exploits the very advantage of the look-up table by storing the Twiddle factors, thereby avoiding the multipliers required in the butterfly structure. DIF-FFT using Distributed Arithmetic (DIF-FFT DA) models, with different adders such as Ripple carry adder (RCA), Carry-lookahead adder (CLA), and Sklansky prefix graph adder, are proposed in this paper. The three proposed models are synthesized using Cadence 6.1 EDA tools with a 45nm CMOS technology. Compared to the traditional method, it is observed that the area is improved by 53.11%, 53.35%, and 50.15%, power is improved by 42.31%, 42.52%, and 40.39%, and delay is improved by 45.26%, 45.42%, 41.80%, respectively.
Go to article

Bibliography

[1] H. Kim and S. Lekcharoen, “A cooley-tukey modified algorithm in fast fourier transform,” The Korean Journal of Mathematics, vol. 19, no. 3, 2011.
[2] J. Watson, “Digital signal processing: Principles, devices and applications.” Institution of Electrical Engineers, 1990.
[3] B. Mohindroo, A. Paliwal, and K. Suneja, “Fpga based faster implementation of mac unit in residual number system,” in 2020 International Conference for Emerging Technology (INCET). IEEE, 2020, pp. 1–4.
[4] R. Gonzalez-Toral, P. Reviriego, J. A. Maestro, and Z. Gao, “A scheme to design concurrent error detection techniques for the fast fourier transform implemented in sram-based fpgas,” IEEE Transactions on Computers, vol. 67, no. 7, pp. 1039–1045, 2018.
[5] K. K. Parhi, VLSI digital signal processing systems: design and implementation. John Wiley & Sons, 2007.
[6] D. Deepak and R. D. Kiran, “Hardware implementation of discrete cosine transform,” 2002.
[7] R. Guo and L. S. DeBrunner, “A novel adaptive filter implementation scheme using distributed arithmetic,” in 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR). IEEE, 2011, pp. 160–164.
[8] S. Patel, “Design and implementation of 31-order fir low-pass filter using modified distributed arithmetic based on fpga,” International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 2, no. 10, pp. 650–656, 2013.
[9] S. Venkatachalam and S.-B. Ko, “Approximate sum-of-products designs based on distributed arithmetic,” IEEE Transactions on very large scale integration (VLSI) systems, vol. 26, no. 8, pp. 1604–1608, 2018.
[10] K. N. Bowlyn and N. M. Botros, “A novel distributed arithmetic multiplierless approach for computing complex inner products,” in Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA). The Steering Committee of The World Congress in Computer Science, Computer , 2015, p. 606.
[11] E. E. Swartzlander and C. E. Lemonds, Computer Arithmetic: Volume III. World Scientific, 2015.
[12] K. Vitoroulis and A. J. Al-Khalili, “Performance of parallel prefix adders implemented with fpga technology,” in 2007 IEEE Northeast Workshop on Circuits and Systems. IEEE, 2007, pp. 498–501.
[13] A. K. Y. Reddy and S. P. Kumar, “Performance analysis of 8-point fft using approximate radix-8 booth multiplier,” in 2018 3rd International Conference on Communication and Electronics Systems (ICCES). IEEE, 2018, pp. 42–45.
[14] A. Ajay and R. M. Lourde, “Vlsi implementation of an improved multiplier for fft computation in biomedical applications,” in 2015 IEEE Computer Society Annual Symposium on VLSI. IEEE, 2015, pp. 68–73.
[15] N. M. Sk et al., “Multi-mode parallel and folded vlsi architectures for 1d-fast fourier transform,” Integration, vol. 55, pp. 43–56, 2016.
Go to article

Authors and Affiliations

Kusma Kumari Cheepurupalli
1
Muntha Charan
1
Jammu Bhaskara Rao
1
Mahammad S. Noor
1

  1. Dept. of ECE, Gayatri Vidya Parishad College of Engineering, India
Download PDF Download RIS Download Bibtex

Abstract

Currently, one of the main challenges of civil engineering and science materials engineers is to develop a sustainable substitute for Ordinary Portland Cement. While the most promising solution is provided by the geopolymerisation technology, most of the studied geopolymers are based on natural raw materials (kaolin). The metakaolin is mainly preferred because of its rapid rate of dissolution in the activator solution, easy control of the Si/Al ratio, and white color. However, its high cost prevents it from being widely used in geopolymer composites or other materials that can become an industrial alternative for Ordinary Portland Cement. Several studies have shown that geopolymers with good performance can also be obtained from secondary raw materials (industrial wastes such as coal ash or slag). This explains why countries with rapidly developing economies are so interested in this technology. These countries have significant amounts of industrial waste and lack a well-developed recycling infrastructure. Therefore, the use of these by-products for geopolymers manufacturing could solve a waste problem while simultaneously lowering virgin raw material consumption. This study evaluates the effect of replacing different amounts of coal ash with sand on the microstructure of sintered geopolymers. Accordingly, scanning electron microscopy and energy dispersive X-ray analysis were involved to highlight the morphological particularities of room-cured and sintered geopolymers.
Go to article

Authors and Affiliations

D.D. Burduhos-Nergis
1
ORCID: ORCID
P. Vizureanu
1 2
ORCID: ORCID
D.C. Achitei
1
ORCID: ORCID
A.V. Sandu
1 3
ORCID: ORCID
D.P. Burduhos-Nergis
1
ORCID: ORCID
M.M.A.B. Abdullah
4 5
ORCID: ORCID

  1. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, D. Mangeron 41, 700050 Iasi, Romania
  2. Technical Sciences Academy of Romania, Dacia Blvd 26, 030167 Bucharest, Romania
  3. Romanian Inventors Forum, St. P. Movila 3, 700089 Iasi, Romania
  4. Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
  5. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Arau 02600, Perlis, Malaysia

This page uses 'cookies'. Learn more