Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the current study, investigations are made to control the MB truck cabin interior noise by reducing noise in the transmission path. The main sources of cabin noise include the engine, exhaust system, air inlet system, driveline system, and tyres (especially at higher speeds). Furthermore, vibrations of the body and interior parts of the truck may significantly impact the overall in-cabin sound level. Noise is transmitted into the cabin via air (airborne noise) and cabin structure (structure-borne noise). In the noise treatment phase, noise transmission paths are considered. A viscoelastic layer damping material is used to reduce the vibration amplitude of the cabin back wall. The overall loss factor and vibration amplitude reduction ratio for the structure treated is calculated. Computational results are then compared with the values obtained by the experimental modal analysis results. Choosing the suitable material and thickness can significantly reduce the vibration amplitude. A sound barrier, silicon adhesive, and foam are also utilised for noise control in the transmission path. The effectiveness of the mentioned acoustic materials on cabin noise reduction is evaluated experimentally. The experimental SPL values are reported in the frequency range of 20 Hz–20 kHz based on a 1/3 octave filter. The experimental results show that using acoustics materials reduces the overall in-cabin sound level for a wide range of frequencies.
Go to article

Authors and Affiliations

Nader Mohammadi
1

  1. Department of Mechanical Engineering, Islamic Azad University, Parand Branch, Tehran, Iran
Download PDF Download RIS Download Bibtex

Abstract

Nozzle type and herbicide application timing can affect herbicide efficacy. Prickly sida ( Sida spinosa) and barnyardgrass ( Echinochloa crus-galli) are problematic weeds in eastern Mississippi cotton production and have reduced yield in recent years. Field studies were conducted at two locations – Brooksville, MS (2018, 2019) and Starkville, MS (2019) to understand the nozzle type and herbicide application timing effects on prickly sida and barnyardgrass control in cotton. Studies also compared applications made by an eight-nozzle tractor-mounted sprayer with a four-nozzle backpack sprayer. Herbicide applications were made at four timings: preemergence (PRE), early-postemergence (EPOST), mid-postemergence (MPOST), and late-postemergence (LPOST) corresponding to the preemergence (immediately after planting), two-to-three leaf, four-to-six leaf, and early-bloom stages, respectively. Treatments were made at 140 l · ha−1 applied at each growth stage, with nozzle type and sprayer as variables by each timing. Results showed no differences in treatments applied with backpack and tractor-mounted sprayers. Control of barnyardgrass was significantly affected by nozzle type, but control of prickly sida was not significantly influenced by nozzle type. In all three site-years, plots receiving a MPOST only herbicide application resulted in less weed control than areas receiving a two-pass POST herbicide program. Cotton yield was significantly affected by the herbicide program at one site-year, but was not significantly affected by the herbicide program except where cotton injury exceeded 15%. A two- or three-pass herbicide program was most effective in controlling prickly sida and barnyardgrass in Mississippi cotton.
Go to article

Authors and Affiliations

J. Connor Ferguson
1 2
ORCID: ORCID
Justin S. Calhoun
3 2
Kayla L. Broster
2
Luke H. Merritt
4 2
Zachary R. Treadway
5 2
Michael T. Wesley Jr.
6 2
Nicholas Fleitz
7

  1. Weed Science and Technical Agronomy, Sesaco Corporation, Yukon, Oklahoma, United States
  2. Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, United States
  3. Plant Science and Technology, University of Missouri, Portageville, Missouri, United States
  4. Orr Agricultural Research & Demonstration Center, University of Illinois, Baylis, Illions, United States
  5. Plant and Soil Sciences, Oklahoma State University, Ardmore, Oklahoma, United States
  6. Agronomy, Bayer Crop Science, Jerseyville, Illions, United States
  7. Application Agronomist, Pentair-Hypro, New Brighton, Minnesota, United States
Download PDF Download RIS Download Bibtex

Abstract

In the present study, we used next-generation sequencing to investigate the impacts of two commercially available prescription diet regimens on the fecal microbiomes of eleven client-owned healthy pet dogs. We tested an anallergenic diet on 6 dogs and a low-fat diet on 5 dogs. Before starting the study, each dog was fed a different commercial diet over 5 weeks. After collecting pre-diet fecal samples, the anallergenic or low-fat diet was administered for 5 weeks. We then collected fecal samples and compared the pre- and post-diet fecal microbiomes. In the dogs on the anallergenic diet, we found significantly decreased proportions of Bacteroides, Ruminococcaceae, and Fusobacteriaceae, belonging to the phyla Bacteroidetes, Firmicutes, and Fusobacteria, respectively. The proportion of the genus Streptococcus belonging to the phylum Firmicutes was significantly increased upon administering the anallergenic diet. In the dogs on the low-fat diet, although the phyla Actinobacteria and Bacteroidetes tended to increase (p=0.116) and decrease (p=0.147) relative to the pre-diet levels, respectively, there were no significant differences in the proportions of any phylum between the pre- and post-diet fecal microbiomes. The anallergenic diet induced a significantly lower diversity index value than that found in the pre-diet period. Principal coordinate analysis based on unweighted UniFrac distance matrices revealed separation between the pre- and post-diet microbiomes in the dogs on the anallergenic diet. These results suggest that, even in pet dogs kept indoors in different living environments, unification of the diet induces apparent changes in the fecal microbiome.
Go to article

Bibliography

Allen-Vercoe E, Strauss J, Chadee K (2011) Fusobacterium nucleatum: an emerging gut pathogen? Gut Microbes. 2: 294-298.
AlShawaqfeh MK, Wajid B, Minamoto Y, Markel M, Lidbury JA, Steiner JM, Serpedin E, Suchodolski JS (2017) A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol Ecol 93: 10.
Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda, S Saito, T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500: 232-236.
Beloshapka AN, Dowd SE, Suchodolski JS, Steiner JM, Duclos L, Swanson KS (2013) Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. FEMS Microbiol Ecol 84: 532-541.
Cassmann E, White R, Atherly T, Wang C, Sun Y, Khoda S, Mosher C, Ackermann M, Jergens A (2016) Alterations of the ileal and colonic mucosal microbiota in canine chronic enteropathies. PLoS One 11: e0147321.
Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen- -Vercoe E, Moore RA, Holt RA (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22: 299-306.
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559-563.
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107: 14691-14696.
Forster GM, Stockman J, Noyes N, Heuberger AL, Broeckling CD, Bantle CM, Ryan EP (2018) A comparative study of serum biochemistry, metabolome and microbiome parameters of clinically healthy, normal weight, overweight, and obese companion dogs. Top Companion Anim Med 33: 126-135.
Hang I, Rinttila T, Zentek J, Kettunen A, Alaja S, Apajalahti J, Harmoinen J, de Vos WM, Spillmann T (2012) Effect of high contents of dietary animal-derived protein or carbohydrates on canine fecal microbiota. BMC Vet Res 8: 90.
Herstad KM, Gajardo K, Bakke AM, Moe L, Ludvigsen J, Rudi K, Rud I, Sekelja M, Skancke E (2017) A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet Res 13: 147.
Ide K, Shinohara M, Yamagishi S, Endo A, Nishifuji K, Tochio T (2020) Kestose supplementation exerts bifidogenic effect within fecal microbiota and increases fecal butyrate concentration in dogs. J Vet Med Sci 82: 1-8.
Igarashi H, Ohno K, Horigome A, Fujiwara-Igarashi A, Kanemoto H, Fukushima K, Odamaki T, Tsujimoto H (2016) Fecal dysbiosis in miniature dachshunds with inflammatory colorectal polyps. Res Vet Sci 105: 41-46.
Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, Ogura Y, Hayashi T, Yokota A (2011) Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141: 1773-1781.
Kerr KR, Forster G, Dowd SE, Ryan EP, Swanson KS (2013) Effects of dietary cooked navy bean on the fecal microbiome of healthy companion dogs. PLoS One 8: e74998.
Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S, Birren BW, Huttenhower C, Garrett WS, Meyerson M (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22: 292-298.
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102: 11070-11075.
Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022-1023.
Manchester AC, Webb CB, Blake AB, Sarwar F, Lidbury JA, Steiner JM, Suchodolski JS (2019) Long-term impact of tylosin on fecal microbiota and fecal bile acids of healthy dogs. J Vet Intern Med 33: 2605-2617.
Mori A, Goto A, Kibe R, Oda H, Kataoka Y, Sako T (2019) Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. J Vet Med Sci 81: 1783-1790.
Ohkusa T, Sato N, Ogihara T, Morita K, Ogawa M, Okayasu I (2002) Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol 17: 849-853.
O’Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E, Vipperla K, Naidoo V, Mtshali L, Tims S, Puylaert PG, DeLany J, Krasinskas A, Benefiel AC, Kaseb HO, Newton K, Nicholson JK, de Vos WM, Gaskins HR, Zoetendal EG (2015) Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 6: 6342.
Prince BT, Mandel MJ, Nadeau K, Singh AM (2015) Gut microbiome and the development of food allergy and allergic disease. Pediatr Clin North Am 62: 1479-1492.
Simpson JM, Martineau B, Jones WE, Ballam JM, Mackie RI (2002) Characterization of fecal bacterial populations in canines: effects of age, breed and dietary fiber. Microb Ecol 44: 186-197.
Suchodolski JS, Dowd SE, Wilke V, Steiner JM, Jergens AE (2012a) 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease. PLoS One 7: e39333.
Suchodolski JS, Markel ME, Garcia-Mazcorro JF, Unterer S, Heilmann RM, Dowd SE, Kachroo P, Ivanov I, Minamoto Y, Dillman EM, Steiner JM, Cook AK, Toresson L (2012b) The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS One 7: e51907.
Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, Jelinek J, Yamano HO, Sugai T, An B, Shureiqi I, Toyota M, Kondo Y, Estécio MR, Issa JP (2014) Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 74: 1311-1318.
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457: 480-484.
White RF, Steele L, O’Callaghan JP, Sullivan K, Binns JH, Golomb BA, Bloom FE, Bunker JA, Crawford F, Graves JC, Hardie A, Klimas N, Knox M, Meggs WJ, Melling J, Philbert MA, Grashow R (2016) Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex 74: 449-475.
Vázquez-Baeza Y, Hyde ER, Suchodolski JS, Knight R (2016) Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat Microbiol 1: 16177.
Yokota A, Fukiya S, Islam KB, Ooka T, Ogura Y, Hayashi T, Hagio M, Ishizuka S (2012). Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes 3: 455-459

Go to article

Authors and Affiliations

E. Onozawa
1
A. Goto
1
H. Oda
1
S. Seki
1
T. Sako
1
A. Mori
1

  1. School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
Download PDF Download RIS Download Bibtex

Abstract

Gas-liquid two-phase flow in minichannels has been the subject of increased research interest in the past few years. Evaluation, however, of today's state of the art regarding hydrodynamics of flow in minichannels shows significant differences between existing test results. In the literature there is no clear information regarding: defining the boundary between minichannels and conventional channels, labelling of flow patterns. The review of literature on the hydrodynamics of gas-liquid flow in minichannels shows that, despite the fact that many research works have been published, the problem of determining the effect of diameter of the minichannel on the hydrodynamics of the flow is still at an early stage. Therefore, the paper presents the results of research concerning determination of flow regime map for the vertical upward flow in minichannels. The research is based on a comprehensive analysis of the literature data and on the research that has been carried out. Such approach to the mentioned above problems concerning key issues of the two-phase flow in minichannels allowed to determine ranges of occurrence of flow structures with a relatively high accuracy.

Go to article

Authors and Affiliations

Monika Wengel
Barbara Miłaszewicz
Roman Ulbrich
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the authors consider the influence of axial load on the stability of shells of revolution subjected to external pressure. Shells of different geometry are investigated with emphasis to barrelled shells. The variable quantities are length L and meridional radius of curvature R1 of a shell. The constant parameters are: thickness of the shell h, mass ms and reference radius r0. The material of shells is steel. Numerical calculations were performed in the ABAQUS system. All the shells considered in this paper were subjected to axial compression to determine the force corresponding to the loss of stability in such conditions. A part of this force is then used to preload shell before the buckling analysis in the conditions of external pressure is started. The buckling shapes for shells of different geometry are presented with and without the influence of axial load. The ability of controlling the buckling strength and shape is discussed.

Go to article

Authors and Affiliations

Paweł Jasion
Krzysztof Magnucki

This page uses 'cookies'. Learn more