Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The knowledge of performance characteristics of turbine stage groups is still insufficient, particularly in the general case of changes of operating conditions. This situation is caused mainly by the scarcity of experimental data available. In such case, the opportunity to obtain the required data, using mathematical modelling and numerical simulation of the operation of stage groups under off-design conditions instead of physical experiment, seems to be attractive. The application of this idea for impulse type turbine stage groups was presented in [I], [2]. Here we discuss similar results but obtained for reaction type turbine stage groups, that is: - mathematical model for computer simulation of operation of reaction type turbine stage group, under variable regime (based on Ainley's and Mathieson's method with some improvements); - simulation results for a number of stage groups designed according to former BBC and traditional concepts; - more general properties of these groups (in relation to flow capacity and efficiency) obtained from the analysis of simulation data; - comparison of observed properties of impulse and reaction typy turbine stage groups.
Go to article

Authors and Affiliations

Andrzej Miller
Janusz Lewandowski
Zofia Trzcińska
Kamal Ahmad Abed
Download PDF Download RIS Download Bibtex

Abstract

Vehicle emissions and performance fueled with waste cooking oil biodiesel is the main topic of this research. Biodiesel was produced through transesterification with physical and chemical characteristics comparable to diesel. B20 is a methyl ester of 20% blended with diesel. A diesel vehicle was modified and equipped with all measuring instruments needed to perform all experiments. The variable speed and load tests were conducted on the vehicle to measure the performance and emissions at different loads (0–30 kW) and different speeds (0–33 km/h). The vehicle speed was the maximum attained for each gear with a constant fuel flow rate without external fuel control at a steady state. At a vehicle speed of 33 km/h, the greatest increases in fuel consumption and exhaust gas temperature for biodiesel B20 were 17 and 6%, respectively, as related to pure diesel. At a vehicle speed of 33 km/h, B20 reduced the distance traveled, carbon monoxide and hydrocarbon concentrations compared to diesel by 22, 9 and 10%, respectively. At a vehicle speed of 33 km/h, the increases in nitrogen oxides and oxygen concentrations of B20 were 4 and 3% higher, respectively, than crude diesel over the whole tested load range. The biggest increases in distance, fuel consumption, and exhaust gas temperature for B20 over diesel were 13, 3, and 2%, respectively, at a vehicle load of 30 kW. The B20 blend decreased CO and hydrocarbon emissions related to diesel by 17 and 32%, respectively, at a vehicle load of 30 kW. The increases in nitrogen oxides and oxygen concentrations of B20 across the whole load range were 11 and 3% higher than pure diesel at a vehicle load of 30 kW, respectively. Biodiesel blend B20 is suggested for application in vehicles providing that the vehicle is moderately loaded.
Go to article

Authors and Affiliations

Said M.A. Ibrahim
1
ORCID: ORCID
Kamal A. Abed
2
ORCID: ORCID
M.S. Gad
3
ORCID: ORCID
Hassan M.M. Mustafa
2
ORCID: ORCID

  1. Mechanical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
  2. Mechanical Engineering Department, Engineering and Renewable Energy Research Institute, National Research Centre, Giza, Egypt
  3. Mechanical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum, Egypt

This page uses 'cookies'. Learn more