Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 8
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The friction and wear properties of 201HT aluminum alloys and the corresponding competitive coupons were tested on an electrohydraulic

servo face friction and wear testing machine (MM-U10G). The microstructures of the competitive coupons were investigated by

scanning electron microscopy (SEM) and consequently the corresponding friction and wear mechanisms were studied. The results

demonstrated that: (1) the best competitive material of friction and wear performance of the 201HT was the 201HTC. (2) the 201HTC

modified by carbon following the initial mill for oil storage of the micro-groove to be produced, increased the corresponding lubrication

performance reduced the friction coefficient and wear rate effectively. (3) the 201HT-201HTC could obtain both better friction and wear

mainly due to the initial process of grinding following the 201HT plastic deformation occurred in the surface and the formation of a series

of re-melting welding points, whereas the 201HT material hardness would be similar to the 201HTC material hardness, which led into the

competitive material friction and wear performance improvement.

Przejdź do artykułu

Autorzy i Afiliacje

Y. Liu
R. Li
L.J. Chen
M. Su
Q. Zeng
H. Li
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Mannose oligosaccharide (MOS) has been shown to promote animal growth, maintain intestinal health, and activate the intestinal immune system. However, the question of whether MOS can stimulate the immune system and alleviate acetylsalicylic acid (ASA)-induced gut damage remains unresolved. The purpose of this study was to investigate the impact of MOS pretreatment on the immunological and anti-inflammatory capabilities of rats with ASA-induced intestinal injury. Thirty-six male Sprague-Dawley rats were divided into 6 groups and were fed with 0 (negative control), 100, 300, 600, and 800 mg/kg·Body weight (BW) of MOS for 3 weeks. From day 8, rats were fed with 200 mg/kg BW of ASA for 14 days to induce intestinal injury. The growth performance, viscera index, serum and intestinal immunity, intestinal inflammation and morphology of ASA-induced intestinal injury rats with or without MOS administration were investigated. In MOS deficient rats, oral treatment of ASA causes severe intestine damage and immunological dysfunction. In a rat model, 600 mg/kg BW MOS can lower the expression of inflammatory markers and effectively increase liver index, serum interleukin-2 (IL-2), lysozyme contents, intestinal secretory immunoglobulin A (sIgA) and mucus volume, intestinal villus height, crypt depth and villus height/crypt depth in comparison to the ASA group. These results imply that providing rats with MOS at the appropriate dosage can significantly improve their immune system and successfully shield the intestines from ASA damage. MOS is therefore expected to be a promising gut immunopotentiator for enhancing intestinal health in animals.
Przejdź do artykułu

Bibliografia

Agazzi A, Perricone V, Zorini FO, Sandrini S, Mariani E, Jiang XR, Ferrari A, Crestani M, Nguyen TX, Bontempo V, Domeneghini C, Savoini G (2020) Dietary mannan oligosaccharides modulate gut inflammatory response and improve duodenal villi height in post-weaning piglets im-proving feed efficiency. Animals-Basel 10: 1283.

Attia Y, Al-Khalaifah H, Ibrahim M, Al-Hamid A, Al-Harthi M, El-Naggar A (2017) Blood hematological and biochemical constituents, antioxi-dant enzymes, immunity and lymphoid organs of broiler chicks supplemented with propolis, bee pollen and mannan oligosaccharides continu-ously or intermittently. Poult Sci 96: 4182-4192.

Cai GF, Wu Y, Wusiman A, Gu PF, Mao NN, Xu SW, Zhu TY, Feng ZA, Liu ZG, Wang DY (2021) Alhagi honey polysaccharides attenuate intestinal injury and immune suppression in cyclophosphamide-induced mice. Food Funct 12: 6863-6877.

Chen YJ, Wang JR, Qiao HZ, Su LL, Tang GF, Huang J, Zhao YL, Gao WT (2021) Effects of mannose oligosaccharide on repair of intesinal injury induced by aspirin in rats. Chinese J Anim Nutr 33: 3523-3531. https://kns.cnki.net/kcms2/article/abstract?v=FC2wxXHna7psXyPQp1jyoFY_EP9XoXFTYTRVGknZ_4RSI6LqmF3aRoS3ykCQbSKLCsPoiG9yEuF_Ksn9VXO-n8BLbyMlplsW0bxGGubv_rQ0jp7wFhGcuzMTov3j7XNXSUBM-DT7LhuFlTV3Da7dlA==&uniplatform=NZKPT&language=CHS.

Chen YJ, Wang JR, Su LL, Gao WT, Zhao YL, Duan EZ, Wang JJ, Lou P (2020) Establishment of intestinal injury model induced by aspirin in rat. Chinese J Anim Nutr 32: 898-904. https://kns.cnki.net/kcms2/article/abstract?v= FC2wxXHna7o_p7k4sM_Jux5Js9aCML2rX-FS_b4oA1W Z04DMc8TDAG-ix9iHpZKz38TvlwflnVRE72vt3cTCukc sKWqkFnvOblQjVg3VG0sVTGmq48C4j2IMUmrUT 5K6e3vu0ZnXqJQ78K9Z2gu0pw==&uniplatform=NZ KPT&language=CHS.

Cheng YF, Chen YP, Chen R, Su Y, Zhang RQ, He QF, Wang K, Wen C, Zhou YM (2019) Dietary mannan oligosaccharide ameliorates cyclic heat stress-induced damages on intestinal oxidative status and barrier integrity of broilers. Poult Sci 98: 4767-4776.

Cipriani S, Mencarelli A, Bruno A, Renga B, Distrutti E, Santucci L, Baldelli F, Fiorucci S (2013) Activation of the bile acid receptor GPBAR1 protects against gastrointestinal injury caused by non-steroidal anti-inflammatory drugs and aspirin in mice. Brit J Pharmacol 168: 225-237.

Davis ME, Maxwell CV, Erf GF, Brown DC, Wistuba TJ (2004) Dietary supplementation with phosphorylated mannans improves growth re-sponse and modulates immune function of weanling pigs. J Anim Sci 82: 1882-1891.

de Oliveira AC, Vanelli K, Sotomaior CS, Weber SH, Costa LB (2019) Impacts on performance of growing-finishing pigs under heat stress condi-tions: A meta-analysis. Vet Res Commun 43: 37-43.

de Souza TC, Landín GM, García KE, Barreyro AA, Barrón AM (2012) Nutritional changes in piglets and morphophysiologic development of their digestive tract. Vet Mexico 43: 155-173.

Dos Anjos CM, Gois FD, dos Anjos CM, Rocha VD, de Sa e Castro DE, Allaman IB, Silva FL, Carvalho PL, Meneghetti C, Costa LB (2019) Effects of dietary beta-glucans, glucomannans and mannan oligosaccharides or chlorohydroxyquinoline on the performance, diarrhea, hemato-logical parameters, organ weight and intestinal health of weanling pigs. Livest Sci 223: 39-46.

Elderman M, Sovran B, Hugenholtz F, Graversen K, Huijskes M, Houtsma E, Belzer C, Boekschoten M, de Vos P, Dekker J, Wells J, Faas M (2017) The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice. PloS One 12: e0184274.

Geraylou Z, Souffreau C, Rurangwa E, De Meester L, Courtin CM, Delcour JA, Buyse J, Ollevier F (2012) Effects of arabinoxy-lan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish Shellfish Immun 33: 718-724.

Giannenas I, Doukas D, Karamoutsios A, Tzora A, Bonos E, Skoufos I, Tsinas A, Christaki E, Tontis D, Florou-Paneri P (2016) Effects of En-terococcus faecium, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphol-ogy and blood lymphocyte subpopulations of fattening pigs. Anim Feed Sci Technol 220: 159-167.

Halas V, Nochta I (2012) Mannan oligosaccharides in nursery pig nutrition and their potential mode of action. AnimalsBasel 2: 261-274.
Hogenkamp A, van Vlies N, Thijssen S, Dingjan G, Knipping K, Garssen J, Knippels L (2012) Effects of short-chain galacto- and long-chain fructo-oligosaccharides on systemic and local immune status during pregnancy. J Reprod Immunol 94: 161-168.

Hutsko SL, Meizlisch K, Wick M, Lilburn MS (2016) Early intestinal development and mucin transcription in the young poult with probiotic and mannan oligosaccharide prebiotic supplementation. Poult Sci 95: 1173-1178.

Jahanian R, Ashnagar M (2015) Effect of dietary supplementation of mannan-oligosaccharides on performance, blood metabolites, ileal nutrient digestibility, and gut microflora in Escherichia coli-challenged laying hens. Poult Sci 94: 2165-2172.

Jami MJ, Kenari AA, Paknejad H, Mohseni M (2019) Effects of dietary b-glucan, mannan oligosaccharide, Lactobacillus plantarum and their com-binations on growth performance, immunity and immune related gene expression of Caspian trout, Salmo trutta caspius (Kessler, 1877). Fish Shellfish Immunol 91: 202-208.

Kim MW, Kang JH, Shin E, Shim K, Kim MJ, Lee C, Yoon Y, Oh S (2019) Processed Aloe vera gel attenuates non-steroidal anti-inflammatory drug (NSAID)-induced small intestinal injury by enhancing mucin expression. Food Funct 10: 6088-6097.

Lai Y, Zhong W, Yu T, Xia ZS, Li JY, Ouyang H, Shan TD, Yang HS, Chen QK (2015) Rebamipide promotes the regeneration of aspirin-induced small-intestine mucosal injury through accumulation of β-catenin. PloS One 10: e0297646.

Li Y, Yue HG, Yang SY, Yuan DD, Li LX, Zhao JH, Zhao LT (2019) Splenomegaly induced by anemia impairs T cell movement in the spleen partially via EPO. Mol Immunol 112: 399-405.

Ma TT, Li C, Zhao FQ, Cao J, Zhang XY, Shen XR (2021) Effects of co-fermented collagen peptide-jackfruit juice on the immune response and gut microbiota in immunosuppressed mice, Food Chem 365: 130487.

Mohammadsadeghi F, Afsharmanesh M, Ebrahimnejad H (2019) The substitution of humic material complex with mineral premix in diet and interaction of that with probiotic on performance, intestinal morphology and microflora of chickens. Livest Sci 228: 1-4.

Mortensen B, Murphy C, O’Grady J, Lucey M, Elsafi G, Barry L, Westphal V, Wellejus A, Lukjancenko O, Eklund AC, Nielsen HB, Baker A, Damholt A, Vlieg JE, Shanahan F, Buckley M (2019) Bifidobacterium breve Bif195 protects against small-intestinal damage caused by ace-tylsalicylic acid in healthy volunteers. Gastroenterology 157: 637-646.

Mourão JL, Pinheiro V, Alves A, Guedes CM, Pinto L, Saavedra MJ, Spring P, Kocher A (2006) Effect of mannan oligosaccharides on the per-formance, intestinal morphology and cecal fermentation of fattening rabbits. Anim Feed Sci Technol 126: 107-120.

Paul AL, Saki AA, Tivey DR (2001) Intestinal structure and function of broiler chickens on diets supplemented with a mannan oligosaccharide. J Sci Food Agric 81: 1186-1192.

Pluske JR, Miller DW, Sterndale SO, Turpin DL (2019) Associations between gastrointestinal-tract function and the stress response after weaning in pigs. Anim Prod Sci 59: 1-8.

Saito H, Sakakibara Y, Sakata A, Kurashige R, Murakami D, Kageshima H, Saito A, Miyazaki Y (2019) Antibacterial activity of lyso-zyme-chitosan oligosaccharide conjugates (LYZOX) against Pseudomonas aeruginosa, Acinetobacter baumannii and Methicillin-resistant Staphylococcus aureus. PloS One 14: e0217504.

Shalaei M, Hosseini SM, Zergani E (2014) Effect of different supplements on eggshell quality, some characteristics of gastrointestinal tract and performance of laying hens. Vet Res Forum 5: 277-286.

Shen YB, Piao XS, Kim SW, Wang L, Liu P, Yoon I, Zhen YG (2009) Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. J Anim Sci 87: 2614-2624.

Sugimoto N, Yoshida N, Yoshikawa T, Nakamuara Y, Ichikawa H, Naito Y, Kondo M (2000) Effect of vitamin E on aspirin-induced gastric mucosal injury in rats. Dig Dis Sci 45: 599-605.

Sun Z, Wang T, Demelash N, Zheng S, Zhao W, Chen X, Zhen YG, Qin GX (2019) Effect of yeast culture (Saccharomyces cerevisiae) on broil-ers: A preliminary study on the effective components of yeast culture. Animals-Basel 10: 68.

Suyama Y, Handa O, Naito Y, Takayama S, Mukai R, Ushiroda C, Majima A, Yasuda-Onozawa Y, Higashimura Y, Fukui A, Dohi O, Okayama T, Yoshida N, Katada K, Kamada K, Uchiyama K, Ishikawa T, Takagi T, Konishi H, Itoh Y (2018) Mucus reduction promotes acetyl salicylic acid-induced small intestinal mucosal injury in rats. Biochem Biophys Res Commun 498: 228-233.

Tarasenko TN, McGuire PJ (2017) The liver is a metabolic and immunologic organ: a reconsideration of metabolic decompensation due to infection in inborn errors of metabolism (IEM). Mol Genet Metab 121: 283-288.

Thapa P, Farber DL (2019) The role of the thymus in the immune response. Thorac Surg Clin 29: 123-131.

Tiwari UP, Fleming SA, Abdul R, Muhammed S, Jha R, Dilger RN (2020) The role of oligosaccharides and polysaccharides of xylan and mannan in gut health of monogastric animals. J Nutr Sci 9: e21.

Torrecillas S, Makol A, Benítez-Santana T, Caballero MJ, Montero D, Sweetman J, Izquierdo M (2011) Reduced gut bacterial translocation in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Fish Shellfish Immunol 30: 674-681.

Torrecillas S, Makol A, Caballero MJ, Montero D, Ginés R, Sweetman J, Izquierdo M (2011) Improved feed utilization, intestinal mucus produc-tion and immune parameters in sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Aquac Nutr 17: 223-233.

Wang T, Cheng K, Yu CY, Li QM, Tong YC, Wang C, Yang ZB, Wang T (2021) Effects of a yeast-derived product on growth performance, antioxidant capacity, and immune function of broilers. Poult Sci 100: 101343.

Watanabe T, Fujiwara Y, Chan FK (2020) Current knowledge on non-steroidal anti-inflammatory druginduced small-bowel damage: a comprehen-sive review. J Gastroenterol 55: 481-495.

Wu FY, Cui J, Xia XR, Liu TT, Gu ZL, Chen BJ (2018) Effects of konjac mannan oligosaccharide on nutrient digestibility, immune organ index and serum indices of growing rex rabbits. Feed Industry 39: 8-13. https://kns.cnki.net/kcms2/article/abstract?v=FC2wxXHna7rUJpFCGPRJI2kfAF2T W8yqRzZOI-X3g-xicTfy4lXz9_JSPk9EHmjoHdQK_ u-Cut75hd3j8ylbCvyIB45vnfprAMlnLSTlXjyGkaqjwFW zMnKUzKsgQfJmOXRczTqmO9G8OyU-mqiihg==&uni platform=NZKPT&language=CHS.

Yan SK, Shi RJ, Li L, Ma SB, Zhang HB, Ye J, Wang JM, Pan JR, Wang QX, Jin X, Liu XB, Liu ZG (2019) Mannan oligosaccharide suppresses lipid accumulation and appetite in western‐diet‐induced obese mice via reshaping gut microbiome and enhancing short‐chain fatty acids produc-tion. Mol Nutr Food Res 63: 1900521.

Yi D, Hou YQ, Xiao H, Wang L, Zhang Y, Chen HB, Wu T, Ding BY, Hu CA, Wu GY (2017) N-Acetylcysteine improves intestinal function in lipopolysaccharides-challenged piglets through multiple signaling pathways. Amino Acids 49: 1915-1929.

Yin H, Pan XC, Wang SK, Yang LG, Sun GJ (2014) Protective effect of wheat peptides against small intestinal damage induced by non-steroidal anti-inflammatory drugs in rats. J Integr Agric 13: 2019-2027.

Yu CC, Xiong YJ, Chen DP, Li YL, Xu B, Lin Y, Tang ZY, Jiang CL, Wang L (2017) Ameliorative effects of atractylodin on intestinal inflamma-tion and co-occurring dysmotility in both constipation and diarrhea prominent rats. Korean J Physiol Pharmacol 21: 1-9.

Yu Z, Yu RL, Shao JW, Yang Z, Wang H (2019) Study on repair effect of artificial artificial Isaria cicadae on intestinal mucosal injury induced by 5-fluorouracil in rats. China Pharmacy 30: 2973-2979.
https://kns.cnki.net/kcms2/article/abstract?v =FC2wxXHna7qqMRqnMN6Ua4GgXOelY-z4D9_xiRM3h8Ro0tmA_YfLOQGF9aOXNGh0JVU5B3UXfy 9jO-nQgMaes-V1odScSTQOHiNsmmHdR4B 47WqTEWNO8TYeOX8mEA_f_gopAm9uo_Xw 10oTR4opVQ==&uniplatform=NZKPT&language=CHS.

Zhu C, Wang L, Wei SY, Chen Z, Ma XY, Zheng CT, Jiang ZY (2017) Effect of yeast Saccharomyces cerevisiae supplementation on serum anti-oxidant capacity, mucosal sIgA secretions and gut microbial populations in weaned piglets. J Integr Agric 16: 2029-2037.

Zhu ZM, Zhu WM, Lan HB, Cui XD (2014) Research development of Saccharomyces cerevisiae: Nutritional manipulation and application in aqua feed. Chinese J Anim Nutr 26: 3550-3560. https://kns.cnki.net/kcms2/article/abstract? v=FC2wxXHna7rm6nZo2NdW52AMf6cbsAQYhdx 1m9XSgv8J8cFzjOTycdcp_uTikVzlGjYHWMgnkM ROgxB8M1CnOAtA9k57XRl2S3ONt-ay6lTOgtd7wh Fm6XHqw0CUY8yBJMLy_2Egq7TMUL7hbbHn nA==&uniplatform=NZKPT&language=CHS.

Zou JF, Liu C, Jiang S, Qian DW, Duan JN (2021) Cross talk between gut microbiota and intestinal mucosal immunity in the development of ulcerative colitis. Infect Immun 89: e00014-21.

Przejdź do artykułu

Autorzy i Afiliacje

H. Qiao
1
Y. Chen
1
K. Yang
1
J. Wang
1
Y. Chou
1
L. Chen
1
Y. Zhang
1
J. Huang
1
E. Duan
1
L. Su
1

  1. College of Biological Engineering, Henan University of Technology, Zhengzhou, China

Abstrakt

Sapelovirus A (SV-A) is a positive-sense single-stranded RNA virus which is associated with acute diarrhea, pneumonia and reproductive disorders. The virus capsid is composed of four proteins, and the functions of the structural proteins are unclear. In this study, we expressed SV-A structural protein VP1 and studied its antigenicity and immunogenicity. SDS-PAGE analysis revealed that the target gene was expressed at high levels at 0.6 mM concentration of IPTG for 24 h. The mouse polyclonal antibody against SV-A VP1 protein was produced and reached a high antiserum titer (1: 2,048,000). Immunized mice sera with the recombinant SV-A VP1 protein showed specific recognition of purified VP1 protein by western blot assay and could recognize native SV-A VP1 protein in PK-15 cells infected with SV-A by indirect immunofluorescence assay. The successfully purified recombinant protein was able to preserve its antigenic determinants and the generated mouse anti-SV-A VP1 antibodies could recognize native SV-A, which may have the potential to be used to detect SV-A infection in pigs.

Przejdź do artykułu

Autorzy i Afiliacje

T.T. Zhao
L. Cui
L. Chen
J.J. Li
Q.L. Liang
P.J. Wu
X.Q. Yu
Z.H. Zhang
X.G. Hua
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a major public health concern. Nucleocapsid (N) protein is the most abundant structural protein on SARS-CoV-2 virions and induces the production of antibodies at the early stage of infection. Large-scale preparation of N protein is essential for the development of immunoassays to detect antibodies to SARS-CoV-2 and the control of virus transmission. In this study, expression of water-soluble N protein was achieved through inducing protein expression at 25°C with 0.5 mM IPTG for 12 h. Western blot and ELISA showed that recombinant N protein could be recognized by sera collected from subjects immunized with Sinovac inactivated SARS-CoV-2 vaccine. Four monoclonal antibodies namely 2B1B1, 4D3A3, 5G1F8, and 7C6F5 were produced using hybridoma technology. Titers of all four monoclonal antibodies in ELISA reached more than 1.28×10 6.0. Moreover, all monoclonal antibodies could react specifically with N protein expressed by transfection of pcDNA3.1-N into BHK-21 cells in IPMA and IFA. These results indicated that water-soluble N protein retained high immunogenicity and possessed the same epitopes as that of native N protein on virions. In addition, the preparation of water-soluble N protein and its monoclonal antibodies laid the basis for the development of immunoassays for COVID-19 detection.
Przejdź do artykułu

Bibliografia

1. Bai Z, Cao Y, Liu W, Li J (2021) The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a poten-tial target for drug or vaccine mitigation. Viruses 13: 1115.
2. Bates TA, Weinstein JB, Farley S, Leier HC, Messer WB, Tafesse FG (2021) Cross-reactivity of SARS-CoV structural protein antibod-ies against SARS-CoV-2. Cell Rep 34: 108737.
3. Chen K, Xiao F, Hu D, Ge W, Tian M, Wang W, Pan P, Wu K, Wu J (2020) SARS-CoV-2 nucleocapsid protein interacts with RIG-I and represses RIG-mediated IFN-β production. Viruses 13: 47.
4. Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 92: 418-423.
5. Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N (2021) Viral respiratory pathogens and lung injury. Clin Microbiol Rev 34: e00103-00120.
6. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, Dela Cruz CS, Wang Y, Wu C, Xiao Y, Zhang L, Han L, Dang S, Xu Y, Yang QW, Xu SY, Zhu HD, Xu Y,C Jin Q, Sharma L, Wang L, Wang J (2020) Profiling early humoral response to diagnose novel corona-virus disease (COVID-19). Clin Infect Dis 71: 778-785.
7. Gutiérrez-González M, Farías C, Tello S, Pérez-Etcheverry D, Romero A, Zúñiga R, Ribeiro CH, Lorenzo-Ferreiro C, Molina MC (2019) Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep 9: 16850.
8. Han Y, Luo Z, Zhai W, Zheng Y, Liu H, Wang Y, Wu E, Xiong F, Ma Y (2020) Comparison of the clinical manifestations between dif-ferent age groups of patients with overseas imported COVID-19. PLoS One 15: e0243347.
9. Ji T, Liu Z, Wang G, Guo X, Akbar khan S, Lai C, Chen H, Huang S, Xia S, Chen B, Jia H, Chen Y, Zhou Q (2020) Detection of COVID-19: A review of the current literature and future perspectives. Biosens Bioelectron 166: 112455.
10. Jin Q, Yang J, Lu Q, Guo J, Deng R, Wang Y, Wang S, Wang S, Chen W, Zhi Y, Wang L, Yang S, Zhang G (2012) Development of an immunochromatographic strip for the detection of antibodies against Porcine circovirus-2. J Vet Diagn Invest 24: 1151-1157.
11. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, Duan G (2020) Virology, epidemiology, pathogenesis, and control of COVID-19. Vi-ruses 12: 372.
12. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J (2020) The incubation period of coro-navirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 172: 577-582.
13. Leung NH (2021) Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol 19: 528-545.
14. Liao M, Yan J, Wang X, Qian H, Wang C, Xu D, Wang B, Yang B, Liu S, Zhou M, Gao Q, Zhou Q, Luo J, Li Z, Liu W (2020) De-velopment and clinical application of a rapid SARS-CoV-2 antibody test strip: A multi-center assessment across China. J Clin Lab Anal 35: e23619.
15. Liu P, Zong Y, Jiang S, Jiao Y, Yu X (2021) Development of a nucleocapsid protein-based ELISA for detection of human IgM and IgG antibodies to SARS-CoV-2. ACS Omega 6: 9667-9671.
16. Lv Y, Ma Y, Si Y, Zhu X, Zhang L, Feng H, Tian D, Liao Y, Liu T, Lu H, Ling Y (2021) Rapid SARS-CoV-2 antigen detection poten-tiates early diagnosis of COVID-19 disease. Biosci Trends 15: 93-99.
17. Mak GC, Cheng PK, Lau SS, Wong KK, Lau CS, Lam ET, Chan RC, Tsang DN (2020) Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. J Clin Virol 129: 104500.
18. Malik YA (2020) Properties of coronavirus and SARS-CoV-2. Malays J Pathol 42: 3-11.
19. Meyer NJ, Gattinoni L, Calfee CS (2021) Acute respiratory distress syndrome. Lancet 398: 622-637.
20. Okba NM, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, Lamers MM, Sikkema RS, de Bruin E, Chandler FD, Yazdanpanah Y, Hingrat QL, Descamps D, Houhou-Fidouh N, Reusken CB, Bosch BJ, Drosten C, Koopmans MP, Haagmans BL (2020) Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis 26: 1478-1488.
21. Rump A, Risti R, Kristal ML, Reut J, Syritski V, Lookene A, Boudinot SR (2021) Dual ELISA using SARS-CoV-2 nucleocapsid pro-tein produced in E. coli and CHO cells reveals epitope masking by N-glycosylation. Biochem Biophys Res Commun 534: 457-460.
22. Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 14: 41.
23. Tian Y, Zhang G, Liu H, Ding P, Jia R, Zhou J, Chen Y, Qi Y, Du J, Liang C, Zhu X, Wang A (2022) Screening and identification of B cell epitope of the nucleocapsid protein in SARS-CoV-2 using the monoclonal antibodies. Appl Microbiol Biotechnol 106: 1151-1164.
24. Vashisht K, Goyal B, Pasupureddy R, Na BK, Shin HJ, Sahu D, De S, Chakraborti S, Pandey KC (2023) Exploring the immunodomi-nant epitopes of SARS-CoV-2 nucleocapsid protein as exposure biomarker. Cureus 15: e34827.
25. Wang Y, Liu X, Tao L, Xu P, Gao X, Li H, Yang Z, Wu W (2017) Expression and immunogenicity of VP40 protein of ZEBOV. Arch Iran Med 20: 246-250.
26. Wang YB, Li YH, Li QM, Xie WT, Guo CL, Guo JQ, Deng RG, Zhang GP (2019) Development of a blocking immunoperoxidase monolayer assay for differentiation between pseudorabies virus-infected and vaccinated animals. Pol J Vet Sci 44: 717-723.
27. Zeng W, Liu G, Ma H, Zhao D, Yang Y, Liu M, Mohammed A, Zhao C, Yang Y, Xie J, Ding C, Ma X, Weng J, Gao Y, He H, Jin T (2020) Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun 527: 618-623.
28. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273.
Przejdź do artykułu

Autorzy i Afiliacje

Y.B. Wang
1
S.W. Wang
2
Q.Y. Jin
3
L.P. Chen
4
F.Q. Zhang
1
J.J. Shi
1
Y. Yin
5
Z.X. Fan
1
X.Y. Liu
6
L.P. Wang
6
P. Li
6

  1. School of Public Health, Xinxiang Medical University, Xinxiang 453003, P.R. China
  2. School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P.R. China
  3. Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, P.R. China
  4. Gushi County Center for Animal Disease Control and Prevention, Xinyang 465200, P.R. China
  5. Mingde College of Xinxiang Medical University, Xinxiang 453003, P.R. China
  6. School of Biological Engineering, Xinxiang University, Xinxiang 453003, P.R. China

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji