Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this work, the authors investigated the influence of proton-irradiation on the dark current of XBp longwave infrared InAs/GaSb type-II superlattice barrier detectors, showing a cut-off wavelength from 11 µm to 13 µm at 80 K. The proton irradiations were performed with 63 MeV protons and fluences up to 8∙1011 H+/cm² on a type-II superlattice detector kept at cryogenic (100 K) or room temperature (300 K). The irradiation temperature of the detector is a key parameter influencing the effects of proton irradiation. The dark current density increases due to displacement damage dose effects and this increase is more important when the detector is proton-irradiated at room temperature rather than at cryogenic temperature.
Go to article

Authors and Affiliations

Clara Bataillon
1
Jean-Phillipe Perez
1
Rodolphe Alchaar
1
Alain Michez
1
Olivier Gilard
2
Olivier Saint-Pé
3
Philippe Christol
1

  1. University of Montpellier, 163 Auguste Broussonnet St., 34090 Montpellier, France
  2. CNES, 18 Edouard Belin Ave., 31400 Toulouse, France
  3. Airbus Defense & Space, 31 des Cosmonautes St., 31400 Toulouse, France
Download PDF Download RIS Download Bibtex

Abstract

In the past ten years, InAs/InAsSb type-II superlattice has emerged as a promising technology for high-temperature mid-wave infrared photodetector. Nevertheless, transport properties are still poorly understood in this type of material. In this paper, optical and electro-optical measurements have been realised on InAs/InAsSb type-II superlattice mid-wave infrared photodetectors. Quantum efficiency of 50% is measured at 150 K, on the front side illumination and simple pass configuration. Absorption measurement, as well as lifetime measurement are used to theoretically calculate the quantum efficiency thanks to Hovel’s equation. Diffusion length values have been extracted from this model ranging from 1.55 µm at 90 K to 7.44 µm at 200 K. Hole mobility values, deduced from both diffusion length and lifetime measurements, varied from 3.64 cm²/Vs at 90 K to 37.7 cm²/Vs at 200 K. The authors then discuss the hole diffusion length and mobility variations within temperature and try to identify the intrinsic transport mechanisms involved in the superlattice structure.
Go to article

Authors and Affiliations

Maxime Bouschet
1 2
Vignesh Arounassalame
3
Anthony Ramiandrasoa
3
Jean-Philippe Perez
1
Nicolas Péré-Laperne
2
Isabelle Ribet-Mohamed
3
Philippe Christol
1

  1. IES, Université de Montpellier, CNRS, 860 Saint Priest St., F-34000 Montpellier, CEDEX 5, France
  2. LYNRED, BP 21, 364 de Valence Ave., 38113 Veurey-Voroize, France
  3. ONERA, Chemin de la Hunière, F-91761 Palaiseau Cedex, France

This page uses 'cookies'. Learn more