Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In homeostasis, which plays an important role in the proper functioning and maintenance of the internal functioning of the body, kidneys play a key role in being responsible for the proper homeostasis of glucose. Among glucose transporters, sodium-dependent glucose co-transporters (SGLTs) have a major role in the kidney‘s ability to reabsorb glucose. Although the localization of these transporters has been extensively studied in mammals, there are still gaps in knowledge of the localization of SGLTs in birds of different age groups. The aim of this study was to immunolocalize in kidneys of hen chickens of different ages the sodium-dependent glucose co-transporters SGLT1 and SGLT2, comparing the localization between different age groups. The kidneys derived from 32 hen chickens (Gallus gallus domesticus) were devided equally into four age groups: 3, 7, 14, and 20 day old broilers, 8 indivuals in each group. The polyclonal primary antibodies Rabbit anti- SGLT1 and Rabbit anti-SGLT2 (Abcam, UK) were used together with the corresponding IHC kit (Abcam, UK). The results were visualized photographically using an AxioCam HRc camera (Germany) connected to a Zeiss Axioplan-2 Imaging microscope (Germany). The study revealed similar immunolocalization of SGLT1 and SGLT2 in the apical part of cells of proximal renal tubules in hen chickens’ kidneys in all age groups. Strong staining of SGLT2 was noted also in the cytoplasm of epithelial cells of the proximal straight and convoluted tubules. Based on our study, the kidney tissue of newly hatched chickens is ready immediately after hatching for glucose reabsorption and transport, similarily to that of three-week-old chicks.
Go to article

Bibliography


Bonora BM, Avogaro A, Fadini GP (2020) Extraglycemic effects of SGLT2 inhibitors: A review of the evidence. Diabetes metab syndr obes 13: 161-174.

Boron WF, Boulpaep EL (2004) Medical Physiology: A Cellular and Molecular Approach. 1st ed., Saunders Elsevier, Philadelphia, p 743.

Boron WF, Boulpaep EL (2016) Medical physiology. 3rd ed., Elsevier, Philadelphia, p 727.

Carson FL (1997) Histotechnology: A Self-Instructional Text. 2nd ed., American Society for Clinical Pathology Press, Chicago, p 160.

Haas B, Eckstein N, Pfeifer V, Mayer P, Hass MD (2014) Efficacy, safety and regulatory status of SGLT2 inhibitors: focus on canagliflozin. Nutr Diabetes 4: e143.

Horiba N, Masuda S, Takeuchi A, Takeuchi D, Okuda M, Inui K (2003) Cloning and characterization of a novel Na+-dependent glucose transporter (NaGLT1) in rat kidney. J Biol Chem 278: 14669-14676.

Hruby VJ (1997) Glucagon: molecular biology and structure - activity. Principles of medical biology. In: Bittar E, Bittar N (eds) Molecular and cellular endocrinology. JAI Press Inc., Greenwhich, pp. 387-401.

Hussar P, Allmang C, Popovska-Percinic F, Järveots T, Dūrītis I (2022) Comparative study of sodium-dependent glucose co-transporters in kidneys of ostrich chickens. Sci Horiz 25: 30-35.

Hussar P, Dūrītis I, Popovska-Percinic F, Järveots T (2020) Short communication: Immunohistochemical study of sodiumdependent glucose co-transporters in ostriches kidneys. Agraarteadus 31: 147-150.

Hussar P, Kärner M, Duritis I, Plivca A, Pendovski L, Järveots T, Popovska-Percinic F (2017) Temporospatial study of hexose transporters and mucin in the epithelial cells of chicken (Gallus gallus domesticus) small intestine. Pol J Vet Sci 20: 627-633.

Hussar P, Kärner M, Järveots T, Pendovski L, Duritis I, Popovska-Percinic F (2016) Comparative study of glucose transporters GLUT-2 and GLUT-5 in ostriches gastrointestinal tract. Mac Vet Rev 39: i-vii.

Hussar P, Suuroja T, Hussar Ü, Haviko T (2004) Transport proteins in rats’ renal corpuscle and tubules. Medicina (Kaunas) 40: 650-656.

Koepsell H, Vallon V (2020) A special issue on glucose transporters in health and disease. Pflug Arch Eur J Phy 472: 1107-1109.

König HE, Korbel R, Liebich HG (2016) Avian Anatomy textbook and colour atlas. 2nd ed., 5m Publishing, Sheffield, pp 131-133.

Liebich HG (2019) Veterinary histology of domestic mammals and birds. 5th ed., 5m Publishing, Sheffield, pp 258-273.

Lin F, Chen Z (2014) Standardization of diagnostic immunohistochemistry: literature review and geisinger experience. Arch Pathol Lab Med 138: 1564-1577.

Magaki S, Hojat SA, Wei B, So A, Yong WH (2019) An Introduction to the Performance of Immunohistochemistry. Methods Mol Biol 1897: 289-298.

Mather A, Pollock C (2011) Glucose handling by the kidney. Kidney Int 79: S1-S6.

Mota M, Mota E, Dinu IR (2015) The role of the kidney in glucose homeostasis. In: Croniger C (ed) Treatment of type 2 diabetes. IntechOpen, Rijeka, pp 13-17.

Navale AM, Paranjape AN (2016) Glucose transporters: physiological and pathological roles. Biophys Rev 8(I): 5-9.

Nespoux J, Patel R, Hudkins KL, Huang W, Freeman B, Kim YC, Koepsell H, Alpers CE, Vallon V (2019) Gene deletion of the Na+-glucose cotransporter SGLT1 ameliorates kidney recovery in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Renal Physiol 316: F1201-F1210.

Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, Thomson SC, Koepsell H, Vallon V (2014) Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 306: 188-193.

Sano R, Shinozaki Y, Ohta T (2020) Sodium – glucose cotransporters: Functional properties and pharmaceutical potential. J Diabetes Investig 11: 770-782.

Takata K (1996) Glucose transporters in the transepithelial transport of glucose. J Electron Microsc (Tokyo) 45: 275-284.

Umino H, Hasegawa K, Minakuchi H, Muraoka H, Kawaguchi T, Kanda T, Tokuyama H, Wakino S, Itoh H (2018) High basolateral glucose increases sodium-glucose cotransporter 2 and reduces sirtuin-1 in renal tubules through glucose transporter-2 detection. Sci Rep 8: 6791.

Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, Koepsell H, Rieg T (2011) SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 22: 104-112.

Vallon V, Thomson SC (2012) Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol 74: 351-375.

Vrhovac I, Eror DB, Klessen D, Burger C, Breljak D, Kraus O, Radovic N, Jadrijevic S, Aleksic I, Walles T, Sauavant C, Sabolic I, Koepsell H (2015) Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 467: 1881-1898.

Wilcox CS (2020) Antihypertensive and Renal Mechanisms of SGLT2 (Sodium-Glucose Linked Transporter 2) Inhibitors. Hypertension 75: 894-901.

Wright EM (2021) SGLT2 inhibitors: Physiology and pharmacology. Kidney360 2: 2027-2037.

Wright EM, Hirayama BA, Loo DF (2007) Active sugar transport in health and disease. J Intern Med 261: 32-43.

You G, Lee WS, Barros EJ, Kanai Y, Huo TL, Khawaja S, Wells RG, Nigam SK, Hediger MA (1995) Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney. J Biol Chem 270: 29365-29371.

Go to article

Authors and Affiliations

C. Allmang
1
P. Hussar
1 2
I. Dūrītis
3
T. Järveots
1

  1. Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi Str.62, Tartu 51006, Estonia
  2. Department of Anatomy, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19, Tartu 50411, Estonia
  3. Faculty of Veterinary Medicine, Latvian University of Agriculture, Kristapa Helmaņa 8, Jelgava LV-3004, Latvia

This page uses 'cookies'. Learn more