Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 3
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The paper presents the method of control of an induction squirrel-cage machine supplied by a voltage source converter. The presented idea is based on an innovative method of the voltage source converter control, consisting in direct joining of the motor control system with the voltage source rectifier control system. The combined control system gives good dc-bus voltage stabilization. In the applied control system the limits of the reference variables have been introduced. A correction of the estimated machine load torque is proposed. The new proposed solutions are confirmed by mathematical dependences, simulation and experimental results.

Przejdź do artykułu

Autorzy i Afiliacje

Marcin Morawiec

Abstrakt

In recent years, the use of the interior permanent magnet synchronous machine (IPMSM) in various applications has grown significantly due to numerous benefits. Sensors are used to achieve high efficiency and good dynamic response in IPMSM drives but due to their high cost and reduced overall size of the system, sensorless control techniques are preferred. Non-sinusoidal distribution of rotor flux and slot harmonics are present in the considered IPMSM. In this article, these problems are considered control system disturbances. With the above-mentioned problems, the classical observer structure based on (d-q) fails to estimate at low-speed ranges. This article proposes an observer structure based on a rotor flux vector in (��-��) stationary reference frame, which works using the adaptive control law to estimate speed and position, and a non-adaptive EEMF-based observer to estimate speed and position. Moreover, a comparative analysis between both observer structures at different speed ranges is also considered in this article. The effectiveness of the observer structure is validated by simulation tests and experimental tests using the sensorless control system with a field-oriented control scheme for a 3.5 kW IPMSM drive system.
Przejdź do artykułu

Autorzy i Afiliacje

Deepak Vyas
1
Marcin Morawiec
1
ORCID: ORCID
Daniel Wachowiak
1
ORCID: ORCID

  1. Department of Electric Drives and Energy Conversion, Faculty of Electrical and Control Engineering and EkoTech Center, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland

Abstrakt

Induction motors (IMs) experience power losses when a portion of the input power is converted to heat instead of driving the load. The combined effect of copper losses, core losses, and mechanical losses results in IM power losses. Unfortunately, the core losses in the motor, which have a considerable impact on its energy efficiency, are not taken into account by the generally employed dynamic model in the majority of the studies. Due to this, the motor rating often corresponds to the worst-case load in applications, but the motor frequently operates below rated conditions. A hybridized model reference adaptive system (MRAS) with sliding mode control (SMC) is used in this study for sensorless speed control of an induction motor with core loss, allowing the motor to operate under a variety of load conditions. As a result, the machine can run at maximum efficiency while carrying its rated load. By adjusting the ��-axis current in the �� - �� reference frame in vector-controlled drives, the system’s performance is enhanced by running the motor at its optimum flux. Regarding the torque and speed of both induction motors with and without core loss, the Adaptive Observer Sliding Mode Control (AOSMC) has been constructed and simulated in this case. The AOSMC with core loss produced good performance when the proposed controller was tested.
Przejdź do artykułu

Autorzy i Afiliacje

Tadele Ayana
1
ORCID: ORCID
Lelisa Wogi
1
ORCID: ORCID
Marcin Morawiec
1
ORCID: ORCID

  1. Faculty of Electrical and Control Engineering, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji